Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110052558/sf3145sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270110052558/sf3145Isup2.hkl |
CCDC reference: 762707
4,4'-Bipyridine (0.2 mmol), CuSO4.5H2O (0.1 mmol), ethane-1,2-diol (2.0 ml) and water (1.0 ml) were mixed and placed in a thick Pyrex tube, which was sealed and heated to 383 K for 72 h. After this time, the tube was allowed to cool to room temperature and blue prisms of (I) were obtained. Analysis found: C 36.41, H 4.05, N 7.08%; calculated for C24H32Cu2N4O14S2: C 36.32, H 3.93, N 6.74%.
The aromatic and methylene H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 and 0.97 Å, respectively, and with Uiso(H) = 1.2Ueq(C). The hydroxy and water H atoms were located in a difference Fourier map and their positions were refined freely, but with Uiso(H) = 1.5Ueq(O).
Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
[Cu2(SO4)2(C10H8N2)2(C2H6O2)2(H2O)2] | F(000) = 1624 |
Mr = 791.74 | Dx = 1.762 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C2yc | Cell parameters from 6932 reflections |
a = 11.060 (2) Å | θ = 3.3–27.5° |
b = 22.220 (4) Å | µ = 1.64 mm−1 |
c = 12.208 (2) Å | T = 223 K |
β = 95.87 (3)° | Prism, blue |
V = 2984.5 (10) Å3 | 0.65 × 0.20 × 0.18 mm |
Z = 4 |
Rigaku Mercury CCD area-detector diffractometer | 3390 independent reflections |
Radiation source: fine-focus sealed tube | 2730 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
Detector resolution: 28.5714 pixels mm-1 | θmax = 27.5°, θmin = 3.3° |
ω scans | h = −14→10 |
Absorption correction: multi-scan (REQAB; Jacobson, 1998) | k = −28→25 |
Tmin = 0.823, Tmax = 1.000 | l = −15→15 |
8511 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.094 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0461P)2 + 1.4943P] where P = (Fo2 + 2Fc2)/3 |
3390 reflections | (Δ/σ)max = 0.002 |
225 parameters | Δρmax = 0.52 e Å−3 |
0 restraints | Δρmin = −0.40 e Å−3 |
[Cu2(SO4)2(C10H8N2)2(C2H6O2)2(H2O)2] | V = 2984.5 (10) Å3 |
Mr = 791.74 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 11.060 (2) Å | µ = 1.64 mm−1 |
b = 22.220 (4) Å | T = 223 K |
c = 12.208 (2) Å | 0.65 × 0.20 × 0.18 mm |
β = 95.87 (3)° |
Rigaku Mercury CCD area-detector diffractometer | 3390 independent reflections |
Absorption correction: multi-scan (REQAB; Jacobson, 1998) | 2730 reflections with I > 2σ(I) |
Tmin = 0.823, Tmax = 1.000 | Rint = 0.024 |
8511 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.094 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.10 | Δρmax = 0.52 e Å−3 |
3390 reflections | Δρmin = −0.40 e Å−3 |
225 parameters |
Experimental. Collected data with 0.8 mm caliber collimator tube. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.0000 | 0.626444 (15) | 0.7500 | 0.01634 (12) | |
Cu2 | 0.5000 | 0.627198 (16) | 0.7500 | 0.01783 (12) | |
S1 | 0.26518 (6) | 0.60462 (3) | 0.88780 (5) | 0.02182 (15) | |
N1 | 0.5000 | 0.53688 (12) | 0.7500 | 0.0184 (6) | |
N2 | 0.5000 | 0.71808 (12) | 0.7500 | 0.0198 (6) | |
N3 | 0.0000 | 0.71719 (12) | 0.7500 | 0.0178 (6) | |
N4 | 0.0000 | 0.53708 (12) | 0.7500 | 0.0174 (6) | |
C8 | 0.0623 (2) | 0.81057 (10) | 0.8353 (2) | 0.0227 (5) | |
H8A | 0.1047 | 0.8305 | 0.8943 | 0.027* | |
C3 | 0.4288 (2) | 0.50574 (11) | 0.6752 (2) | 0.0273 (6) | |
H3A | 0.3789 | 0.5268 | 0.6225 | 0.033* | |
C6 | 0.5000 | 0.84460 (14) | 0.7500 | 0.0197 (7) | |
C9 | 0.0608 (2) | 0.74843 (10) | 0.8322 (2) | 0.0225 (5) | |
H9A | 0.1038 | 0.7273 | 0.8893 | 0.027* | |
C10 | 0.0764 (2) | 0.50599 (10) | 0.6931 (2) | 0.0219 (5) | |
H10A | 0.1304 | 0.5271 | 0.6538 | 0.026* | |
C5 | 0.4051 (3) | 0.81159 (11) | 0.7864 (2) | 0.0302 (6) | |
H5A | 0.3395 | 0.8314 | 0.8120 | 0.036* | |
C1 | 0.5000 | 0.41052 (14) | 0.7500 | 0.0180 (7) | |
C2 | 0.4262 (2) | 0.44350 (11) | 0.6730 (2) | 0.0257 (6) | |
H2A | 0.3749 | 0.4237 | 0.6196 | 0.031* | |
C4 | 0.4081 (2) | 0.74948 (11) | 0.7847 (2) | 0.0306 (6) | |
H4A | 0.3430 | 0.7285 | 0.8088 | 0.037* | |
C11 | 0.0784 (2) | 0.44386 (10) | 0.6904 (2) | 0.0223 (5) | |
H11A | 0.1320 | 0.4239 | 0.6489 | 0.027* | |
C7 | 0.0000 | 0.84347 (14) | 0.7500 | 0.0182 (7) | |
C12 | 0.0000 | 0.41118 (14) | 0.7500 | 0.0186 (7) | |
C14 | 0.2969 (3) | 0.60414 (14) | 0.4427 (2) | 0.0360 (7) | |
H14A | 0.2817 | 0.6180 | 0.3672 | 0.043* | |
H14B | 0.3719 | 0.5812 | 0.4497 | 0.043* | |
C13 | 0.3081 (3) | 0.65679 (12) | 0.5193 (3) | 0.0383 (7) | |
H13A | 0.3728 | 0.6830 | 0.5002 | 0.046* | |
H13B | 0.2329 | 0.6796 | 0.5121 | 0.046* | |
O2 | 0.18604 (16) | 0.62764 (7) | 0.78866 (14) | 0.0225 (4) | |
O1 | 0.38961 (17) | 0.62756 (7) | 0.87965 (16) | 0.0255 (4) | |
O3 | 0.26430 (19) | 0.53917 (8) | 0.88790 (18) | 0.0407 (5) | |
O1W | 0.0269 (2) | 0.63123 (9) | 0.56389 (16) | 0.0301 (4) | |
H5C | 0.072 (3) | 0.6098 (15) | 0.531 (3) | 0.045* | |
H5B | −0.044 (3) | 0.6278 (14) | 0.532 (3) | 0.045* | |
O4 | 0.22028 (18) | 0.62951 (9) | 0.98674 (16) | 0.0330 (5) | |
O7 | 0.19940 (19) | 0.56732 (9) | 0.46951 (18) | 0.0379 (5) | |
H7A | 0.205 (3) | 0.5346 (16) | 0.443 (3) | 0.057* | |
O6 | 0.3337 (2) | 0.63657 (10) | 0.62979 (18) | 0.0379 (5) | |
H6 | 0.271 (4) | 0.6373 (17) | 0.654 (3) | 0.057* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0162 (2) | 0.0099 (2) | 0.0228 (2) | 0.000 | 0.00125 (16) | 0.000 |
Cu2 | 0.0189 (2) | 0.0099 (2) | 0.0246 (2) | 0.000 | 0.00234 (16) | 0.000 |
S1 | 0.0209 (3) | 0.0173 (3) | 0.0267 (3) | −0.0019 (2) | −0.0005 (2) | 0.0041 (2) |
N4 | 0.0182 (14) | 0.0121 (13) | 0.0215 (14) | 0.000 | −0.0001 (11) | 0.000 |
N2 | 0.0203 (15) | 0.0128 (13) | 0.0267 (15) | 0.000 | 0.0036 (12) | 0.000 |
N3 | 0.0200 (15) | 0.0117 (12) | 0.0217 (14) | 0.000 | 0.0017 (11) | 0.000 |
N1 | 0.0209 (15) | 0.0114 (13) | 0.0234 (14) | 0.000 | 0.0038 (12) | 0.000 |
C8 | 0.0271 (14) | 0.0177 (12) | 0.0219 (12) | −0.0017 (10) | −0.0054 (10) | 0.0014 (10) |
C3 | 0.0328 (15) | 0.0184 (12) | 0.0284 (13) | 0.0007 (11) | −0.0081 (11) | 0.0028 (11) |
C6 | 0.0230 (18) | 0.0132 (15) | 0.0224 (17) | 0.000 | −0.0001 (14) | 0.000 |
C9 | 0.0251 (13) | 0.0169 (11) | 0.0243 (12) | −0.0004 (10) | −0.0036 (10) | 0.0023 (10) |
C10 | 0.0210 (13) | 0.0174 (11) | 0.0280 (13) | −0.0005 (9) | 0.0058 (10) | 0.0013 (10) |
C5 | 0.0282 (15) | 0.0163 (12) | 0.0491 (17) | 0.0017 (10) | 0.0183 (13) | −0.0002 (11) |
C1 | 0.0198 (17) | 0.0135 (15) | 0.0208 (16) | 0.000 | 0.0033 (13) | 0.000 |
C2 | 0.0307 (15) | 0.0184 (12) | 0.0260 (13) | 0.0004 (10) | −0.0068 (11) | −0.0009 (10) |
C4 | 0.0281 (15) | 0.0164 (12) | 0.0497 (17) | −0.0019 (10) | 0.0161 (13) | 0.0001 (12) |
C11 | 0.0246 (13) | 0.0169 (12) | 0.0263 (13) | 0.0019 (9) | 0.0076 (10) | −0.0016 (10) |
C7 | 0.0215 (18) | 0.0107 (15) | 0.0229 (17) | 0.000 | 0.0057 (13) | 0.000 |
C12 | 0.0201 (17) | 0.0158 (15) | 0.0198 (16) | 0.000 | 0.0016 (13) | 0.000 |
C14 | 0.0358 (17) | 0.0429 (16) | 0.0307 (15) | 0.0051 (14) | 0.0104 (12) | 0.0041 (13) |
C13 | 0.0341 (17) | 0.0277 (14) | 0.0551 (19) | −0.0028 (12) | 0.0139 (14) | 0.0080 (14) |
O2 | 0.0200 (9) | 0.0223 (9) | 0.0250 (9) | −0.0015 (7) | 0.0014 (7) | 0.0042 (7) |
O1 | 0.0206 (9) | 0.0213 (9) | 0.0343 (10) | −0.0012 (7) | 0.0005 (8) | −0.0029 (7) |
O3 | 0.0403 (12) | 0.0181 (9) | 0.0613 (14) | −0.0056 (8) | −0.0066 (10) | 0.0107 (9) |
O1W | 0.0283 (11) | 0.0319 (10) | 0.0298 (11) | 0.0038 (8) | 0.0023 (9) | −0.0066 (8) |
O4 | 0.0253 (10) | 0.0499 (13) | 0.0234 (9) | −0.0033 (8) | 0.0007 (8) | −0.0013 (8) |
O7 | 0.0378 (12) | 0.0308 (10) | 0.0467 (12) | −0.0016 (9) | 0.0116 (10) | −0.0146 (9) |
O6 | 0.0259 (11) | 0.0503 (12) | 0.0392 (12) | −0.0070 (10) | 0.0111 (9) | −0.0131 (10) |
Cu1—N3 | 2.016 (3) | C6—C5ii | 1.390 (3) |
Cu1—N4 | 1.986 (3) | C6—C12iii | 1.479 (5) |
Cu1—O1W | 2.324 (2) | C9—H9A | 0.9300 |
Cu1—O2 | 2.0637 (18) | C10—C11 | 1.381 (3) |
Cu1—O2i | 2.0637 (18) | C10—H10A | 0.9300 |
Cu2—N1 | 2.007 (3) | C5—C4 | 1.381 (3) |
Cu2—N2 | 2.019 (3) | C5—H5A | 0.9300 |
Cu2—O1 | 2.095 (2) | C1—C2ii | 1.389 (3) |
Cu2—O6 | 2.242 (2) | C1—C2 | 1.389 (3) |
Cu1—O1Wi | 2.324 (2) | C1—C7iv | 1.490 (5) |
Cu2—O1ii | 2.095 (2) | C2—H2A | 0.9300 |
Cu2—O6ii | 2.242 (2) | C4—H4A | 0.9300 |
S1—O1 | 1.4805 (19) | C11—C12 | 1.392 (3) |
S1—O2 | 1.5085 (19) | C11—H11A | 0.9300 |
S1—O3 | 1.4544 (19) | C7—C8i | 1.395 (3) |
S1—O4 | 1.461 (2) | C7—C1v | 1.490 (5) |
N4—C10i | 1.340 (3) | C12—C11i | 1.392 (3) |
N4—C10 | 1.340 (3) | C12—C6vi | 1.479 (5) |
N2—C4 | 1.337 (3) | C14—O7 | 1.418 (4) |
N2—C4ii | 1.337 (3) | C14—C13 | 1.495 (4) |
N3—C9 | 1.343 (3) | C14—H14A | 0.9700 |
N3—C9i | 1.343 (3) | C14—H14B | 0.9700 |
N1—C3ii | 1.336 (3) | C13—O6 | 1.423 (4) |
N1—C3 | 1.336 (3) | C13—H13A | 0.9700 |
C8—C9 | 1.381 (3) | C13—H13B | 0.9700 |
C8—C7 | 1.395 (3) | O1W—H5C | 0.83 (3) |
C8—H8A | 0.9300 | O1W—H5B | 0.84 (4) |
C3—C2 | 1.383 (3) | O7—H7A | 0.80 (4) |
C3—H3A | 0.9300 | O6—H6 | 0.78 (4) |
C6—C5 | 1.390 (3) | ||
N3—Cu1—N4 | 180.000 (1) | C2—C3—H3A | 118.6 |
N3—Cu1—O1W | 87.37 (5) | C5—C6—C5ii | 116.3 (3) |
N3—Cu1—O2 | 89.26 (4) | C5—C6—C12iii | 121.85 (15) |
N4—Cu1—O1W | 92.63 (5) | C5ii—C6—C12iii | 121.85 (15) |
N4—Cu1—O2 | 90.74 (4) | N3—C9—C8 | 122.8 (2) |
O1Wi—Cu1—O1W | 174.75 (10) | N3—C9—H9A | 118.6 |
O1W—Cu1—O2 | 89.91 (8) | C8—C9—H9A | 118.6 |
O2i—Cu1—O2 | 178.53 (9) | N4—C10—C11 | 122.7 (2) |
N1—Cu2—N2 | 180.000 (1) | N4—C10—H10A | 118.6 |
N1—Cu2—O1 | 90.22 (4) | C11—C10—H10A | 118.6 |
N1—Cu2—O6 | 95.33 (6) | C4—C5—C6 | 120.2 (2) |
N2—Cu2—O1 | 89.78 (4) | C4—C5—H5A | 119.9 |
N2—Cu2—O6 | 84.67 (6) | C6—C5—H5A | 119.9 |
O1—Cu2—O1ii | 179.55 (9) | C2ii—C1—C2 | 116.3 (3) |
O1—Cu2—O6 | 89.53 (8) | C2ii—C1—C7iv | 121.83 (15) |
O6ii—Cu2—O6 | 169.34 (12) | C2—C1—C7iv | 121.83 (15) |
N4—Cu1—O2i | 90.74 (4) | C3—C2—C1 | 120.3 (2) |
N3—Cu1—O2i | 89.26 (4) | C3—C2—H2A | 119.9 |
N4—Cu1—O1Wi | 92.63 (5) | C1—C2—H2A | 119.9 |
N3—Cu1—O1Wi | 87.37 (5) | N2—C4—C5 | 123.1 (2) |
O2i—Cu1—O1Wi | 89.91 (8) | N2—C4—H4A | 118.5 |
O2—Cu1—O1Wi | 90.02 (8) | C5—C4—H4A | 118.5 |
O2i—Cu1—O1W | 90.02 (8) | C10—C11—C12 | 119.8 (2) |
N1—Cu2—O1ii | 90.22 (4) | C10—C11—H11A | 120.1 |
N2—Cu2—O1ii | 89.78 (4) | C12—C11—H11A | 120.1 |
N1—Cu2—O6ii | 95.33 (6) | C8i—C7—C8 | 116.8 (3) |
N2—Cu2—O6ii | 84.67 (6) | C8i—C7—C1v | 121.60 (15) |
O1—Cu2—O6ii | 90.43 (8) | C8—C7—C1v | 121.60 (15) |
O1ii—Cu2—O6ii | 89.53 (8) | C11i—C12—C11 | 117.1 (3) |
O1ii—Cu2—O6 | 90.43 (8) | C11i—C12—C6vi | 121.44 (15) |
O3—S1—O4 | 112.03 (13) | C11—C12—C6vi | 121.44 (15) |
O3—S1—O1 | 110.54 (11) | O7—C14—C13 | 108.9 (2) |
O4—S1—O1 | 108.79 (11) | O7—C14—H14A | 109.9 |
O3—S1—O2 | 109.66 (11) | C13—C14—H14A | 109.9 |
O4—S1—O2 | 108.45 (11) | O7—C14—H14B | 109.9 |
O1—S1—O2 | 107.24 (11) | C13—C14—H14B | 109.9 |
C10i—N4—C10 | 117.9 (3) | H14A—C14—H14B | 108.3 |
C10i—N4—Cu1 | 121.04 (14) | O6—C13—C14 | 110.0 (2) |
C10—N4—Cu1 | 121.04 (14) | O6—C13—H13A | 109.7 |
C4—N2—C4ii | 117.1 (3) | C14—C13—H13A | 109.7 |
C4—N2—Cu2 | 121.45 (15) | O6—C13—H13B | 109.7 |
C4ii—N2—Cu2 | 121.45 (15) | C14—C13—H13B | 109.7 |
C9—N3—C9i | 117.7 (3) | H13A—C13—H13B | 108.2 |
C9—N3—Cu1 | 121.13 (14) | S1—O2—Cu1 | 131.47 (11) |
C9i—N3—Cu1 | 121.13 (14) | S1—O1—Cu2 | 131.82 (11) |
C3ii—N1—C3 | 117.6 (3) | Cu1—O1W—H5C | 127 (2) |
C3ii—N1—Cu2 | 121.20 (14) | Cu1—O1W—H5B | 104 (2) |
C3—N1—Cu2 | 121.20 (14) | H5C—O1W—H5B | 108 (3) |
C9—C8—C7 | 120.0 (2) | C14—O7—H7A | 110 (3) |
C9—C8—H8A | 120.0 | C13—O6—Cu2 | 136.10 (18) |
C7—C8—H8A | 120.0 | C13—O6—H6 | 104 (3) |
N1—C3—C2 | 122.8 (2) | Cu2—O6—H6 | 117 (3) |
N1—C3—H3A | 118.6 | ||
O2i—Cu1—N4—C10i | −50.16 (13) | C10i—N4—C10—C11 | 0.53 (18) |
O2—Cu1—N4—C10i | 129.84 (13) | Cu1—N4—C10—C11 | −179.47 (18) |
O1Wi—Cu1—N4—C10i | 39.78 (13) | C5ii—C6—C5—C4 | −0.3 (2) |
O1W—Cu1—N4—C10i | −140.22 (13) | C12iii—C6—C5—C4 | 179.7 (2) |
O2i—Cu1—N4—C10 | 129.84 (13) | N1—C3—C2—C1 | −0.4 (4) |
O2—Cu1—N4—C10 | −50.16 (13) | C2ii—C1—C2—C3 | 0.17 (19) |
O1Wi—Cu1—N4—C10 | −140.22 (13) | C7iv—C1—C2—C3 | −179.83 (19) |
O1W—Cu1—N4—C10 | 39.78 (13) | C4ii—N2—C4—C5 | −0.3 (2) |
O1—Cu2—N2—C4 | −27.03 (16) | Cu2—N2—C4—C5 | 179.7 (2) |
O1ii—Cu2—N2—C4 | 152.97 (16) | C6—C5—C4—N2 | 0.7 (4) |
O6ii—Cu2—N2—C4 | −117.49 (16) | N4—C10—C11—C12 | −1.1 (3) |
O6—Cu2—N2—C4 | 62.51 (16) | C9—C8—C7—C8i | 0.41 (17) |
O1—Cu2—N2—C4ii | 152.97 (16) | C9—C8—C7—C1v | −179.59 (18) |
O1ii—Cu2—N2—C4ii | −27.03 (16) | C10—C11—C12—C11i | 0.50 (16) |
O6ii—Cu2—N2—C4ii | 62.51 (16) | C10—C11—C12—C6vi | −179.50 (17) |
O6—Cu2—N2—C4ii | −117.49 (16) | O7—C14—C13—O6 | 61.2 (3) |
O2i—Cu1—N3—C9 | 132.91 (14) | O3—S1—O2—Cu1 | 69.94 (17) |
O2—Cu1—N3—C9 | −47.09 (14) | O4—S1—O2—Cu1 | −52.68 (16) |
O1Wi—Cu1—N3—C9 | 42.96 (14) | O1—S1—O2—Cu1 | −170.00 (12) |
O1W—Cu1—N3—C9 | −137.04 (14) | N4—Cu1—O2—S1 | −62.36 (13) |
O2i—Cu1—N3—C9i | −47.09 (14) | N3—Cu1—O2—S1 | 117.64 (13) |
O2—Cu1—N3—C9i | 132.91 (14) | O1Wi—Cu1—O2—S1 | 30.27 (14) |
O1Wi—Cu1—N3—C9i | −137.04 (14) | O1W—Cu1—O2—S1 | −154.98 (14) |
O1W—Cu1—N3—C9i | 42.96 (14) | O3—S1—O1—Cu2 | 70.52 (17) |
O1—Cu2—N1—C3ii | −78.68 (15) | O4—S1—O1—Cu2 | −166.08 (13) |
O1ii—Cu2—N1—C3ii | 101.32 (15) | O2—S1—O1—Cu2 | −48.97 (16) |
O6ii—Cu2—N1—C3ii | 11.77 (16) | N1—Cu2—O1—S1 | −62.25 (13) |
O6—Cu2—N1—C3ii | −168.23 (16) | N2—Cu2—O1—S1 | 117.75 (13) |
O1—Cu2—N1—C3 | 101.32 (15) | O6ii—Cu2—O1—S1 | −157.58 (14) |
O1ii—Cu2—N1—C3 | −78.68 (15) | O6—Cu2—O1—S1 | 33.08 (14) |
O6ii—Cu2—N1—C3 | −168.23 (16) | C14—C13—O6—Cu2 | 98.9 (3) |
O6—Cu2—N1—C3 | 11.77 (16) | N1—Cu2—O6—C13 | −111.1 (3) |
C3ii—N1—C3—C2 | 0.2 (2) | N2—Cu2—O6—C13 | 68.9 (3) |
Cu2—N1—C3—C2 | −179.8 (2) | O1—Cu2—O6—C13 | 158.7 (3) |
C9i—N3—C9—C8 | 0.43 (19) | O1ii—Cu2—O6—C13 | −20.9 (3) |
Cu1—N3—C9—C8 | −179.57 (19) | O6ii—Cu2—O6—C13 | 68.9 (3) |
C7—C8—C9—N3 | −0.9 (4) |
Symmetry codes: (i) −x, y, −z+3/2; (ii) −x+1, y, −z+3/2; (iii) x+1/2, y+1/2, z; (iv) x+1/2, y−1/2, z; (v) x−1/2, y+1/2, z; (vi) x−1/2, y−1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H5B···O4i | 0.84 (4) | 1.94 (4) | 2.741 (3) | 159 (3) |
O7—H7A···O3vii | 0.80 (4) | 1.92 (4) | 2.693 (3) | 164 (4) |
O1W—H5C···O7 | 0.83 (3) | 1.91 (4) | 2.726 (3) | 170 (3) |
O6—H6···O2 | 0.78 (4) | 1.99 (4) | 2.668 (3) | 145 (4) |
Symmetry codes: (i) −x, y, −z+3/2; (vii) x, −y+1, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | [Cu2(SO4)2(C10H8N2)2(C2H6O2)2(H2O)2] |
Mr | 791.74 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 223 |
a, b, c (Å) | 11.060 (2), 22.220 (4), 12.208 (2) |
β (°) | 95.87 (3) |
V (Å3) | 2984.5 (10) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.64 |
Crystal size (mm) | 0.65 × 0.20 × 0.18 |
Data collection | |
Diffractometer | Rigaku Mercury CCD area-detector diffractometer |
Absorption correction | Multi-scan (REQAB; Jacobson, 1998) |
Tmin, Tmax | 0.823, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8511, 3390, 2730 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.094, 1.10 |
No. of reflections | 3390 |
No. of parameters | 225 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.52, −0.40 |
Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Cu1—N3 | 2.016 (3) | Cu2—O1 | 2.095 (2) |
Cu1—N4 | 1.986 (3) | Cu2—O6 | 2.242 (2) |
Cu1—O1W | 2.324 (2) | S1—O1 | 1.4805 (19) |
Cu1—O2 | 2.0637 (18) | S1—O2 | 1.5085 (19) |
Cu2—N1 | 2.007 (3) | S1—O3 | 1.4544 (19) |
Cu2—N2 | 2.019 (3) | S1—O4 | 1.461 (2) |
N3—Cu1—N4 | 180.000 (1) | N1—Cu2—N2 | 180.000 (1) |
N3—Cu1—O1W | 87.37 (5) | N1—Cu2—O1 | 90.22 (4) |
N3—Cu1—O2 | 89.26 (4) | N1—Cu2—O6 | 95.33 (6) |
N4—Cu1—O1W | 92.63 (5) | N2—Cu2—O1 | 89.78 (4) |
N4—Cu1—O2 | 90.74 (4) | N2—Cu2—O6 | 84.67 (6) |
O1Wi—Cu1—O1W | 174.75 (10) | O1—Cu2—O1ii | 179.55 (9) |
O1W—Cu1—O2 | 89.91 (8) | O1—Cu2—O6 | 89.53 (8) |
O2i—Cu1—O2 | 178.53 (9) | O6ii—Cu2—O6 | 169.34 (12) |
Symmetry codes: (i) −x, y, −z+3/2; (ii) −x+1, y, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H5B···O4i | 0.84 (4) | 1.94 (4) | 2.741 (3) | 159 (3) |
O7—H7A···O3iii | 0.80 (4) | 1.92 (4) | 2.693 (3) | 164 (4) |
O1W—H5C···O7 | 0.83 (3) | 1.91 (4) | 2.726 (3) | 170 (3) |
O6—H6···O2 | 0.78 (4) | 1.99 (4) | 2.668 (3) | 145 (4) |
Symmetry codes: (i) −x, y, −z+3/2; (iii) x, −y+1, z−1/2. |
The self-assembly of coordination polymers and the crystal engineering of metal–organic coordination frameworks have recently received much attention because of their interesting molecular topologies and potential applications as functional materials (Batten & Robson, 1998; Eddaoudi et al., 2001; Li et al., 2003; Dietzel et al., 2005; Liu et al., 2007; Zhang et al., 2010). It is still challenging to construct metal–organic coordination frameworks of mixed ligands with metal salts in crystal engineering. 4,4'-Bipyridine (4,4'-bipy) has been used as a bridging ligand, owing to its rod-like rigidity and length, and has been widely applied in constructing interesting coordination polymers (Tong et al., 1998; Lu et al., 1998; Kondo et al., 1999; Greve et al., 2003; Lah & Leban, 2006; Díaz de Vivar et al., 2007; Bo et al., 2008; Li et al., 2009; Xu et al., 2010; Wang et al., 2010; Guo et al., 2010). It is well known that hydrothermal (solvothermal) synthesis is an effective method for the construction of new metal–organic coordination polymers because it can provide ideal conditions for crystal growth, owing to the enhanced transport ability of solvents in superheated systems. We have focused on the synthesis of complexes with 4,4'-bipy as an auxiliary ligand, while retaining some of the solvent molecules capable of hydrogen bonding to form higher-dimensional supramolecular networks. The title compound, (I), a new three-dimensional supramolecular network with two-dimensional layers, was obtained via a solvothermal reaction.
Part of the layer structure of (I) is shown in Fig. 1. There are two types of crystallographically independent CuII centres, both on symmetry 2 with a slightly distorted octahedral CuN2O4 environment. Atom Cu1 is coordinated by two N atoms from bridging 4,4'-bipy ligands occupying the axial positions [Cu1—N3 = 2.016 (3) Å and Cu1—N4 = 1.986 (3) Å], two O atoms from two bridging sulfate anions [Cu1—O2 = 2.0640 (19) Å] and two O atoms from water molecules [Cu1—O1W = 2.323 (2) Å] occupying the equatorial sites (Table 1). Atoms Cu1, O2, O2A, O1W and O1Wi [symmetry code: (i) -x, y, -z + 3/2] are almost coplanar, the mean deviation from the plane being 0.0416 Å. The bond angles around each Cu1 centre are in the range 87.37 (5)–92.63 (5)° (Table 1). The coordination environment of each Cu2 centre is very similar to that of Cu1, with ethane-1,2-diol ligands replacing the water ligands. The corresponding bond angles around Cu2 lie in the range 84.67 (6)–95.33 (6)° (Table 1).
The sulfate anion acts as an O—S—O bridging link between two different CuII cations, giving rise to the formation of linear ···Cu1–O–SO2–O–Cu2–O–SO2–O··· chains running parallel to the a axis, the Cu1···Cu2 and Cu1···Cu1v [symmetry code: (v) -x + 1, y - 1, z] distances are 5.530 (1) and 11.060 (2) Å, respectively (Fig. 1). The dihedral angles between the two half-bipy rings coordinated to Cu1 and Cu2 are 82.254 (65) and 74.334 (80)°, respectively. The Cu1 and Cu2 centres of adjacent ···Cu1–O–SO2–O–Cu2–O–SO2–O··· chains are further cross-linked by the bridging 4,4'-bipy ligands, leading to the formation of linear ···Cu1–bipy–Cu2–bipy··· chains along the b axis, in which the Cu1···Cu2viii and Cu1···Cuvi [symmetry codes: (vi) x - 1/2, y - 1/2, z; (viii) x - 1/2, y + 1/2, z] separations are 11.093 (2) and 11.127 (2) Å, respectively (Fig. 2). Each bridging 4,4'-bipy ligand lies on a two-fold axis, with dihedral angles between the two pyridine rings of two adjacent independent 4,4'-bipy ligands of 7.94 (7) [4,4'-bipy A] and 15.47 (8)° [4,4'-bipy B] (Fig. 2). The ···M–O–SO2–O–M··· and ···M–bipy–M··· chains are almost orthogonal, leading to a layered structure (Fig. 2). Intermolecular O1W—H5C···O7 and O6—H6···O2 hydrogen bonds help to further stabilize the layered structure (Table 2).
In the crystal structure of (I), the two-dimensional polymeric layers are linked by classical hydrogen-bonding, namely O—H···O interactions involving the water molecules, sulfate anions and 1,2-ethanediol molecules, resulting in a three-dimensional supramolecular network (Table 2 and Fig. 3).