Download citation
Download citation
link to html
The title compound, [IrCl3(C4H6N2)2(C2H6OS)], has been synthesized and structurally characterized. The DMSO ligand is S-bonded and is trans to one and cis to the other 1-methyl­imidazole ligand. The two 1-methyl­imidazole ligands are cis to each other with an N...N...N...N pseudo-torsion angle between the planes of the two 1-methyl­imidazoles of 141.9 (5) °.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536806051944/sg2108sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536806051944/sg2108Isup2.hkl
Contains datablock I

CCDC reference: 633995

Key indicators

  • Single-crystal X-ray study
  • T = 183 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.023
  • wR factor = 0.048
  • Data-to-parameter ratio = 20.2

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT153_ALERT_1_C The su's on the Cell Axes are Equal (x 100000) . 100 Ang. PLAT180_ALERT_3_C Check Cell Rounding: # of Values Ending with 0 = 4
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DIRAX/LSQ (Duisenberg, 1992); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: enCIFer (Allen et al., 2004).

mer-Trichloro(dimethyl sulfoxide-κS)-cis-bis(1-methylimidazole-κN3)iridium(III) top
Crystal data top
[IrCl3(C4H6N2)2(C2H6OS)]F(000) = 2064
Mr = 540.92Dx = 2.172 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 186 reflections
a = 30.741 (1) Åθ = 3.9–23.7°
b = 8.614 (1) ŵ = 8.68 mm1
c = 13.667 (1) ÅT = 183 K
β = 113.90 (1)°Plate, colourless
V = 3308.7 (5) Å30.46 × 0.11 × 0.04 mm
Z = 8
Data collection top
Nonius KappaCCD
diffractometer
3734 independent reflections
Radiation source: fine-focus sealed tube3155 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
Detector resolution: 9 pixels mm-1θmax = 27.4°, θmin = 3.9°
φ? ω? scansh = 3939
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1011
Tmin = 0.109, Tmax = 0.701l = 1717
28714 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.048H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0127P)2 + 12.7531P]
where P = (Fo2 + 2Fc2)/3
3734 reflections(Δ/σ)max = 0.003
185 parametersΔρmax = 1.01 e Å3
0 restraintsΔρmin = 1.37 e Å3
Special details top

Experimental. Preliminary examination and data collection were carried out on a Nonius KappaCCD device with an Oxford Cryosystems cooling system at the window of a sealed X-ray tube with graphite-monochromated Mo Kα radiation (λ = 0.71073 Å). The reflections were integrated. Raw data were corrected for Lorentz and polarization and, arising from the scaling procedure, for latent decay. An absorption correction was applied using SADABS (Sheldrick, 2003). After merging, all independent reflections were used to refine the structure. The structure was solved by a combination of direct methods and difference Fourier syntheses.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger·A multi-scan absorption correction was applied (absorption coefficient = 8.681 mm-1), and the maximum and minimum transmission factors were 0.1086 and 0.7013. Systematically absent reflections were not deleted and symmetry equivalent reflections were averaged to yield the set of unique data. No statistical outlier was deleted from the data set. The resulting 3734 data were used in the least squares refinement. The structure was solved using the SIR92 (Altomare et al., 1993) software package. Subsequent least-squares refinement and difference Fourier calculations revealed the positions of the remaining non-hydrogen atoms. At this point, a calculation by PLATON (Spek, 2005) showed that there was no missed crystallographic symmetry. Nonhydrogen atoms were refined with independent anisotropic displacement parameters. H atoms attached to C atoms were all positioned geometrically and treated as riding on their parent atoms, with aromatic C–H distances of 0.95 Å and methyl C–H distances of 0.98 Å. The Uiso(H) values were set to 1.2 Ueq(C) for all C-bound H atoms. An isotropic extinction parameter (see the SHELX97 manual for the definition of the EXTI command) was not needed. The weighting parameters (see the SHELX97 manual for the definition of the WGHT command) were 0.0127 and 12.7531. Successful convergence was indicated by the maximum shift/error of 0.001 for the last cycle of least squares refinement. The largest peak in the final Fourier difference map (1.01 e Å-3) was located 1.40 Å from the Ir1 atom.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C40.50944 (18)0.6522 (6)0.1195 (4)0.0413 (12)
H4A0.53230.56680.13460.062*
H4B0.51990.72390.18040.062*
H4C0.50750.70770.05530.062*
N20.40711 (12)0.4217 (4)0.0848 (2)0.0188 (7)
C10.45315 (15)0.4394 (5)0.1099 (3)0.0231 (8)
H1A0.47600.35810.13030.028*
C140.24277 (18)0.1709 (8)0.3442 (4)0.0511 (16)
H14A0.22170.11720.31740.077*
H14B0.25150.10010.38940.077*
H14C0.22630.26160.38620.077*
Cl10.43593 (3)0.08725 (11)0.05357 (8)0.02103 (19)
Ir10.372381 (5)0.215242 (17)0.075814 (11)0.01573 (5)
N40.33961 (12)0.2436 (4)0.0887 (3)0.0217 (7)
N30.28614 (14)0.2218 (5)0.2531 (3)0.0321 (9)
N10.46257 (14)0.5897 (4)0.1020 (3)0.0270 (8)
C110.29683 (16)0.1899 (6)0.1494 (3)0.0292 (10)
H11A0.27660.13640.12370.035*
C30.42122 (18)0.6727 (5)0.0716 (4)0.0312 (10)
H3A0.41760.78160.06060.037*
C120.35665 (18)0.3141 (5)0.1557 (4)0.0320 (10)
H12A0.38670.36370.13440.038*
C20.38620 (16)0.5680 (5)0.0601 (3)0.0260 (9)
H2A0.35340.59080.03910.031*
S10.40564 (4)0.18433 (12)0.25441 (7)0.0205 (2)
Cl20.33284 (4)0.02596 (12)0.05722 (8)0.0249 (2)
O10.43795 (12)0.3075 (4)0.3185 (2)0.0340 (8)
C200.36144 (16)0.1529 (6)0.3045 (3)0.0328 (10)
H20A0.37630.11160.37750.049*
H20B0.33800.07830.25860.049*
H20C0.34560.25130.30520.049*
C130.32358 (19)0.3015 (6)0.2577 (4)0.0394 (12)
H13A0.32600.34060.32030.047*
Cl30.30776 (4)0.34714 (13)0.08643 (8)0.0287 (2)
C210.43630 (16)0.0059 (5)0.2903 (3)0.0282 (9)
H21A0.44740.00980.36770.042*
H21B0.46370.00740.27080.042*
H21C0.41490.07900.25240.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C40.043 (3)0.027 (3)0.059 (3)0.017 (2)0.026 (3)0.001 (2)
N20.0237 (17)0.0146 (16)0.0200 (16)0.0013 (14)0.0111 (14)0.0009 (13)
C10.029 (2)0.017 (2)0.025 (2)0.0039 (17)0.0131 (18)0.0009 (16)
C140.035 (3)0.087 (5)0.025 (2)0.015 (3)0.005 (2)0.004 (3)
Cl10.0247 (5)0.0163 (5)0.0266 (5)0.0015 (4)0.0150 (4)0.0014 (4)
Ir10.01822 (7)0.01462 (8)0.01656 (7)0.00017 (6)0.00931 (5)0.00026 (6)
N40.0241 (17)0.0236 (19)0.0175 (16)0.0045 (14)0.0084 (14)0.0045 (13)
N30.031 (2)0.045 (2)0.0183 (17)0.0138 (19)0.0082 (15)0.0043 (17)
N10.037 (2)0.0175 (18)0.0301 (19)0.0054 (16)0.0173 (17)0.0002 (15)
C110.027 (2)0.039 (3)0.023 (2)0.0065 (19)0.0113 (18)0.0035 (18)
C30.048 (3)0.016 (2)0.031 (2)0.0007 (19)0.017 (2)0.0003 (17)
C120.043 (3)0.031 (3)0.031 (2)0.004 (2)0.024 (2)0.0006 (19)
C20.032 (2)0.016 (2)0.032 (2)0.0079 (18)0.0162 (19)0.0028 (17)
S10.0223 (5)0.0226 (5)0.0173 (4)0.0016 (4)0.0088 (4)0.0007 (4)
Cl20.0273 (5)0.0224 (5)0.0248 (5)0.0076 (4)0.0105 (4)0.0006 (4)
O10.0391 (19)0.0309 (19)0.0266 (16)0.0108 (14)0.0077 (14)0.0078 (13)
C200.030 (2)0.050 (3)0.026 (2)0.002 (2)0.0188 (19)0.004 (2)
C130.056 (3)0.042 (3)0.028 (2)0.005 (2)0.025 (2)0.008 (2)
Cl30.0241 (5)0.0327 (6)0.0331 (5)0.0054 (4)0.0156 (4)0.0009 (5)
C210.035 (2)0.027 (2)0.024 (2)0.0061 (19)0.0138 (19)0.0068 (18)
Geometric parameters (Å, º) top
C4—N11.464 (6)N3—C111.346 (5)
C4—H4A0.9800N3—C131.364 (6)
C4—H4B0.9800N1—C31.368 (6)
C4—H4C0.9800C11—H11A0.9500
N2—C11.323 (5)C3—C21.364 (6)
N2—C21.392 (5)C3—H3A0.9500
C1—N11.341 (5)C12—C131.356 (7)
C1—H1A0.9500C12—H12A0.9500
C14—N31.475 (6)C2—H2A0.9500
C14—H14A0.9800S1—O11.475 (3)
C14—H14B0.9800S1—C211.766 (4)
C14—H14C0.9800S1—C201.773 (4)
Ir1—Cl12.3676 (9)C20—H20A0.9800
Ir1—Cl22.3683 (10)C20—H20B0.9800
Ir1—Cl32.3434 (10)C20—H20C0.9800
Ir1—N22.052 (3)C13—H13A0.9500
Ir1—N42.072 (3)C21—H21A0.9800
Ir1—S12.2477 (9)C21—H21B0.9800
N4—C111.322 (6)C21—H21C0.9800
N4—C121.368 (5)
N1—C4—H4A109.5C13—N3—C14127.0 (4)
N1—C4—H4B109.5C1—N1—C3108.9 (4)
H4A—C4—H4B109.5C1—N1—C4124.9 (4)
N1—C4—H4C109.5C3—N1—C4126.1 (4)
H4A—C4—H4C109.5N4—C11—N3110.2 (4)
H4B—C4—H4C109.5N4—C11—H11A124.9
C1—N2—C2107.4 (3)N3—C11—H11A124.9
C1—N2—Ir1126.2 (3)C2—C3—N1106.4 (4)
C2—N2—Ir1126.3 (3)C2—C3—H3A126.8
N2—C1—N1109.5 (4)N1—C3—H3A126.8
N2—C1—H1A125.3C13—C12—N4108.8 (4)
N1—C1—H1A125.3C13—C12—H12A125.6
N3—C14—H14A109.5N4—C12—H12A125.6
N3—C14—H14B109.5C3—C2—N2107.8 (4)
H14A—C14—H14B109.5C3—C2—H2A126.1
N3—C14—H14C109.5N2—C2—H2A126.1
H14A—C14—H14C109.5O1—S1—C21107.8 (2)
H14B—C14—H14C109.5O1—S1—C20108.5 (2)
N2—Ir1—N488.59 (13)C21—S1—C2099.6 (2)
N2—Ir1—S192.33 (9)O1—S1—Ir1117.40 (14)
N4—Ir1—S1178.18 (10)C21—S1—Ir1111.21 (15)
N2—Ir1—Cl188.57 (9)C20—S1—Ir1110.80 (15)
N4—Ir1—Cl188.83 (9)S1—C20—H20A109.5
N2—Ir1—Cl2177.05 (9)S1—C20—H20B109.5
N4—Ir1—Cl289.10 (10)H20A—C20—H20B109.5
N2—Ir1—Cl390.54 (9)S1—C20—H20C109.5
N4—Ir1—Cl387.60 (10)H20A—C20—H20C109.5
S1—Ir1—Cl390.81 (4)H20B—C20—H20C109.5
S1—Ir1—Cl192.77 (3)C12—C13—N3106.7 (4)
S1—Ir1—Cl290.03 (3)C12—C13—H13A126.6
Cl3—Ir1—Cl1176.34 (3)N3—C13—H13A126.6
Cl1—Ir1—Cl289.54 (3)S1—C21—H21A109.5
Cl3—Ir1—Cl291.20 (4)S1—C21—H21B109.5
C11—N4—C12106.7 (4)H21A—C21—H21B109.5
C11—N4—Ir1124.2 (3)S1—C21—H21C109.5
C12—N4—Ir1129.0 (3)H21A—C21—H21C109.5
C11—N3—C13107.5 (4)H21B—C21—H21C109.5
C11—N3—C14125.4 (4)
C2—N2—C1—N10.2 (4)C1—N1—C3—C20.6 (5)
Ir1—N2—C1—N1176.6 (2)C4—N1—C3—C2177.3 (4)
C1—N2—Ir1—N4110.4 (3)C11—N4—C12—C130.2 (5)
C2—N2—Ir1—N465.9 (3)Ir1—N4—C12—C13178.2 (3)
C1—N2—Ir1—S171.2 (3)N1—C3—C2—N20.5 (5)
C2—N2—Ir1—S1112.5 (3)C1—N2—C2—C30.2 (5)
C1—N2—Ir1—Cl3162.1 (3)Ir1—N2—C2—C3177.0 (3)
C2—N2—Ir1—Cl321.7 (3)N2—Ir1—S1—O11.11 (19)
C1—N2—Ir1—Cl121.5 (3)Cl3—Ir1—S1—O189.46 (17)
N2—Ir1—N4—C11150.0 (4)Cl1—Ir1—S1—O189.80 (16)
Cl3—Ir1—N4—C1159.4 (3)Cl2—Ir1—S1—O1179.34 (17)
Cl1—Ir1—N4—C11121.4 (3)N2—Ir1—S1—C21123.70 (19)
Cl2—Ir1—N4—C1131.8 (3)Cl3—Ir1—S1—C21145.72 (17)
N2—Ir1—N4—C1231.9 (4)Cl1—Ir1—S1—C2135.02 (17)
Cl3—Ir1—N4—C12122.5 (4)Cl2—Ir1—S1—C2154.52 (17)
Cl1—Ir1—N4—C1256.7 (4)N2—Ir1—S1—C20126.5 (2)
Cl2—Ir1—N4—C12146.3 (4)Cl3—Ir1—S1—C2035.97 (19)
N2—C1—N1—C30.5 (5)Cl1—Ir1—S1—C20144.77 (19)
N2—C1—N1—C4177.5 (4)Cl2—Ir1—S1—C2055.23 (19)
C12—N4—C11—N30.7 (5)N4—C12—C13—N30.4 (6)
Ir1—N4—C11—N3177.7 (3)C11—N3—C13—C120.8 (6)
C13—N3—C11—N41.0 (5)C14—N3—C13—C12176.0 (5)
C14—N3—C11—N4175.9 (4)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds