

Supporting information
![]() | Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807058485/si2051sup1.cif |
![]() | Structure factor file (CIF format) https://doi.org/10.1107/S1600536807058485/si2051Isup2.hkl |
CCDC reference: 672692
A mixture of NiCl2.6H2O (24 mg, 0.1 mmol), NaN3 (26 mg, 0.4 mmol) and pyridine (20 mg, 0.25 mmol) in 10 ml of water was sealed in a Teflon-lined stainless-steel Parr bomb that was heated at 413 K for 48 h. Green crystals of the title compound were collected after the bomb was allowed to cool to room temperature spontaneously. Yield, 10% with respect to Cu(II). Caution: Azide is potentially explosive, especially in a hydrothermal manipulation. Although we have met no problems in this work, only a small amount of them should be prepared and handled with great caution.
H atoms were included in calculated positions and treated in the subsequent refinement as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C, N).
Data collection: SMART (Bruker, 1998); cell refinement: SMART (Bruker, 1998); data reduction: SHELXTL (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL (Bruker, 1998).
[Ni2(N3)4(C5H5N)4] | Z = 2 |
Mr = 300.97 | F(000) = 308 |
Triclinic, P1 | Dx = 1.538 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.1354 (16) Å | Cell parameters from 6054 reflections |
b = 9.4770 (19) Å | θ = 2.9–27.6° |
c = 10.094 (2) Å | µ = 1.49 mm−1 |
α = 84.66 (3)° | T = 293 K |
β = 67.17 (3)° | Block, green |
γ = 65.36 (3)° | 0.30 × 0.10 × 0.08 mm |
V = 649.8 (3) Å3 |
Bruker SMART 1000 CCD area-detector diffractometer | 2532 independent reflections |
Radiation source: fine-focus sealed tube | 2127 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
ϕ and ω scan | θmax = 26.0°, θmin = 3.0° |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | h = −10→10 |
Tmin = 0.913, Tmax = 1.000 | k = −11→11 |
6061 measured reflections | l = −12→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.061 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.164 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0999P)2 + 0.3477P] where P = (Fo2 + 2Fc2)/3 |
2532 reflections | (Δ/σ)max < 0.001 |
172 parameters | Δρmax = 1.66 e Å−3 |
0 restraints | Δρmin = −0.43 e Å−3 |
[Ni2(N3)4(C5H5N)4] | γ = 65.36 (3)° |
Mr = 300.97 | V = 649.8 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.1354 (16) Å | Mo Kα radiation |
b = 9.4770 (19) Å | µ = 1.49 mm−1 |
c = 10.094 (2) Å | T = 293 K |
α = 84.66 (3)° | 0.30 × 0.10 × 0.08 mm |
β = 67.17 (3)° |
Bruker SMART 1000 CCD area-detector diffractometer | 2532 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | 2127 reflections with I > 2σ(I) |
Tmin = 0.913, Tmax = 1.000 | Rint = 0.037 |
6061 measured reflections |
R[F2 > 2σ(F2)] = 0.061 | 0 restraints |
wR(F2) = 0.164 | H-atom parameters constrained |
S = 1.08 | Δρmax = 1.66 e Å−3 |
2532 reflections | Δρmin = −0.43 e Å−3 |
172 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.69698 (7) | 0.51940 (6) | 0.47848 (5) | 0.0358 (2) | |
N1 | 0.7466 (6) | 0.3698 (5) | 0.6423 (4) | 0.0435 (9) | |
N2 | 0.6740 (6) | 0.6716 (5) | 0.3143 (4) | 0.0453 (9) | |
N3 | 0.3937 (5) | 0.6239 (5) | 0.5965 (4) | 0.0423 (9) | |
N4 | 0.3021 (5) | 0.7109 (4) | 0.7033 (4) | 0.0392 (8) | |
N5 | 0.2148 (8) | 0.7941 (6) | 0.8059 (5) | 0.0725 (14) | |
N6 | 0.7515 (6) | 0.6794 (5) | 0.5723 (5) | 0.0498 (10) | |
N7 | 0.8790 (5) | 0.6417 (4) | 0.6133 (4) | 0.0423 (9) | |
N8 | 1.0035 (5) | 0.6082 (5) | 0.6582 (4) | 0.0501 (10) | |
C1 | 0.6961 (8) | 0.4251 (7) | 0.7757 (5) | 0.0545 (13) | |
H1A | 0.6229 | 0.5315 | 0.8003 | 0.065* | |
C2 | 0.7475 (9) | 0.3319 (7) | 0.8788 (6) | 0.0622 (14) | |
H2A | 0.7078 | 0.3749 | 0.9710 | 0.075* | |
C3 | 0.8581 (9) | 0.1744 (7) | 0.8438 (6) | 0.0687 (16) | |
H3A | 0.8990 | 0.1093 | 0.9102 | 0.082* | |
C4 | 0.9060 (11) | 0.1169 (7) | 0.7085 (7) | 0.085 (2) | |
H4A | 0.9752 | 0.0104 | 0.6824 | 0.101* | |
C5 | 0.8511 (10) | 0.2176 (7) | 0.6114 (6) | 0.0696 (17) | |
H5A | 0.8893 | 0.1767 | 0.5187 | 0.084* | |
C6 | 0.5810 (9) | 0.8266 (7) | 0.3467 (7) | 0.0645 (15) | |
H6A | 0.5188 | 0.8644 | 0.4432 | 0.077* | |
C7 | 0.5738 (11) | 0.9323 (8) | 0.2428 (9) | 0.086 (2) | |
H7A | 0.5109 | 1.0390 | 0.2685 | 0.104* | |
C8 | 0.6626 (11) | 0.8754 (9) | 0.0997 (9) | 0.085 (2) | |
H8A | 0.6603 | 0.9436 | 0.0272 | 0.102* | |
C9 | 0.7538 (9) | 0.7183 (9) | 0.0657 (7) | 0.0781 (19) | |
H9A | 0.8133 | 0.6778 | −0.0299 | 0.094* | |
C10 | 0.7559 (8) | 0.6207 (7) | 0.1759 (5) | 0.0556 (13) | |
H10A | 0.8180 | 0.5138 | 0.1520 | 0.067* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0275 (3) | 0.0467 (4) | 0.0376 (4) | −0.0149 (3) | −0.0162 (2) | −0.0014 (2) |
N1 | 0.036 (2) | 0.055 (2) | 0.044 (2) | −0.0173 (18) | −0.0219 (17) | 0.0041 (18) |
N2 | 0.043 (2) | 0.048 (2) | 0.048 (2) | −0.0200 (18) | −0.0191 (18) | 0.0057 (18) |
N3 | 0.0319 (19) | 0.054 (2) | 0.042 (2) | −0.0158 (17) | −0.0140 (17) | −0.0113 (18) |
N4 | 0.040 (2) | 0.041 (2) | 0.042 (2) | −0.0144 (17) | −0.0242 (18) | 0.0033 (18) |
N5 | 0.081 (3) | 0.066 (3) | 0.053 (3) | −0.017 (3) | −0.018 (3) | −0.018 (2) |
N6 | 0.042 (2) | 0.053 (2) | 0.065 (3) | −0.0164 (19) | −0.032 (2) | −0.005 (2) |
N7 | 0.035 (2) | 0.046 (2) | 0.046 (2) | −0.0158 (17) | −0.0142 (17) | −0.0091 (17) |
N8 | 0.0293 (19) | 0.075 (3) | 0.046 (2) | −0.0179 (19) | −0.0166 (18) | −0.008 (2) |
C1 | 0.047 (3) | 0.068 (3) | 0.044 (3) | −0.021 (3) | −0.016 (2) | 0.002 (2) |
C2 | 0.064 (3) | 0.083 (4) | 0.041 (3) | −0.030 (3) | −0.021 (3) | 0.007 (3) |
C3 | 0.079 (4) | 0.075 (4) | 0.054 (3) | −0.022 (3) | −0.041 (3) | 0.016 (3) |
C4 | 0.110 (6) | 0.057 (4) | 0.078 (4) | −0.009 (4) | −0.056 (4) | 0.005 (3) |
C5 | 0.095 (5) | 0.057 (3) | 0.058 (3) | −0.017 (3) | −0.044 (3) | −0.005 (3) |
C6 | 0.077 (4) | 0.058 (3) | 0.076 (4) | −0.032 (3) | −0.043 (3) | 0.012 (3) |
C7 | 0.099 (5) | 0.063 (4) | 0.120 (6) | −0.038 (4) | −0.066 (5) | 0.034 (4) |
C8 | 0.093 (5) | 0.093 (5) | 0.094 (5) | −0.051 (4) | −0.056 (4) | 0.047 (4) |
C9 | 0.064 (4) | 0.108 (5) | 0.056 (4) | −0.035 (4) | −0.022 (3) | 0.024 (4) |
C10 | 0.052 (3) | 0.070 (3) | 0.047 (3) | −0.026 (3) | −0.022 (2) | 0.008 (3) |
Ni1—N1 | 2.124 (4) | C1—H1A | 0.9300 |
Ni1—N2 | 2.105 (4) | C2—C3 | 1.376 (8) |
Ni1—N3 | 2.095 (4) | C2—H2A | 0.9300 |
Ni1—N3i | 2.103 (4) | C3—C4 | 1.365 (8) |
Ni1—N6 | 2.132 (4) | C3—H3A | 0.9300 |
Ni1—N8ii | 2.133 (4) | C4—C5 | 1.371 (8) |
N3—N4 | 1.195 (5) | C4—H4A | 0.9300 |
N4—N5 | 1.145 (6) | C5—H5A | 0.9300 |
N6—N7 | 1.172 (5) | C6—C7 | 1.382 (8) |
N7—N8 | 1.179 (5) | C6—H6A | 0.9300 |
N1—C5 | 1.325 (7) | C7—C8 | 1.382 (11) |
N1—C1 | 1.334 (6) | C7—H7A | 0.9300 |
N2—C10 | 1.328 (7) | C8—C9 | 1.364 (10) |
N2—C6 | 1.345 (7) | C8—H8A | 0.9300 |
N3—Ni1i | 2.103 (4) | C9—C10 | 1.379 (8) |
N8—Ni1ii | 2.133 (4) | C9—H9A | 0.9300 |
C1—C2 | 1.377 (7) | C10—H10A | 0.9300 |
N1—Ni1—N6 | 88.38 (16) | N1—C1—H1A | 118.5 |
N1—Ni1—N8ii | 88.52 (16) | C2—C1—H1A | 118.5 |
N2—Ni1—N1 | 173.88 (14) | C3—C2—C1 | 119.3 (5) |
N2—Ni1—N6 | 87.15 (16) | C3—C2—H2A | 120.4 |
N2—Ni1—N8ii | 87.70 (16) | C1—C2—H2A | 120.4 |
N3—Ni1—N1 | 92.67 (15) | C4—C3—C2 | 117.8 (5) |
N3i—Ni1—N1 | 91.49 (15) | C4—C3—H3A | 121.1 |
N3—Ni1—N2 | 91.78 (16) | C2—C3—H3A | 121.1 |
N3i—Ni1—N2 | 93.47 (16) | C3—C4—C5 | 119.3 (6) |
N3—Ni1—N3i | 79.16 (16) | C3—C4—H4A | 120.3 |
N3—Ni1—N6 | 93.68 (15) | C5—C4—H4A | 120.3 |
N3i—Ni1—N6 | 172.83 (14) | N1—C5—C4 | 123.8 (5) |
N3—Ni1—N8ii | 171.42 (14) | N1—C5—H5A | 118.1 |
N3i—Ni1—N8ii | 92.31 (15) | C4—C5—H5A | 118.1 |
N6—Ni1—N8ii | 94.85 (16) | N2—C6—C7 | 122.9 (6) |
N7—N6—Ni1 | 123.5 (3) | N2—C6—H6A | 118.5 |
N7—N8—Ni1ii | 120.3 (3) | C7—C6—H6A | 118.5 |
Ni1—N3—Ni1i | 100.84 (16) | C6—C7—C8 | 118.2 (7) |
C5—N1—C1 | 116.7 (4) | C6—C7—H7A | 120.9 |
C5—N1—Ni1 | 120.9 (3) | C8—C7—H7A | 120.9 |
C1—N1—Ni1 | 121.9 (3) | C9—C8—C7 | 119.4 (6) |
C10—N2—C6 | 117.3 (5) | C9—C8—H8A | 120.3 |
C10—N2—Ni1 | 122.3 (4) | C7—C8—H8A | 120.3 |
C6—N2—Ni1 | 120.3 (4) | C8—C9—C10 | 118.7 (6) |
N4—N3—Ni1 | 129.7 (3) | C8—C9—H9A | 120.6 |
N4—N3—Ni1i | 126.7 (3) | C10—C9—H9A | 120.6 |
N5—N4—N3 | 179.8 (6) | N2—C10—C9 | 123.4 (6) |
N6—N7—N8 | 177.7 (5) | N2—C10—H10A | 118.3 |
N1—C1—C2 | 123.0 (5) | C9—C10—H10A | 118.3 |
N3—Ni1—N1—C5 | 128.9 (4) | N1—Ni1—N3—Ni1i | −91.00 (17) |
N3i—Ni1—N1—C5 | 49.6 (4) | N6—Ni1—N3—Ni1i | −179.55 (16) |
N6—Ni1—N1—C5 | −137.5 (4) | N2—Ni1—N6—N7 | −132.9 (4) |
N8ii—Ni1—N1—C5 | −42.6 (4) | N1—Ni1—N6—N7 | 42.9 (4) |
N3—Ni1—N1—C1 | −59.6 (4) | N8ii—Ni1—N6—N7 | −45.5 (4) |
N3i—Ni1—N1—C1 | −138.8 (4) | C5—N1—C1—C2 | −0.1 (8) |
N6—Ni1—N1—C1 | 34.0 (4) | Ni1—N1—C1—C2 | −171.9 (4) |
N8ii—Ni1—N1—C1 | 128.9 (4) | N1—C1—C2—C3 | 0.9 (9) |
N3—Ni1—N2—C10 | −129.8 (4) | C1—C2—C3—C4 | −2.4 (10) |
N3i—Ni1—N2—C10 | −50.6 (4) | C2—C3—C4—C5 | 3.1 (11) |
N6—Ni1—N2—C10 | 136.6 (4) | C1—N1—C5—C4 | 0.8 (9) |
N8ii—Ni1—N2—C10 | 41.6 (4) | Ni1—N1—C5—C4 | 172.8 (6) |
N3—Ni1—N2—C6 | 53.0 (4) | C3—C4—C5—N1 | −2.4 (11) |
N3i—Ni1—N2—C6 | 132.3 (4) | C10—N2—C6—C7 | −2.2 (8) |
N6—Ni1—N2—C6 | −40.6 (4) | Ni1—N2—C6—C7 | 175.1 (5) |
N8ii—Ni1—N2—C6 | −135.6 (4) | N2—C6—C7—C8 | 1.5 (10) |
N3i—Ni1—N3—N4 | 161.8 (5) | C6—C7—C8—C9 | 0.0 (11) |
N2—Ni1—N3—N4 | −105.0 (4) | C7—C8—C9—C10 | −0.6 (10) |
N1—Ni1—N3—N4 | 70.8 (4) | C6—N2—C10—C9 | 1.6 (8) |
N6—Ni1—N3—N4 | −17.8 (4) | Ni1—N2—C10—C9 | −175.7 (4) |
N3i—Ni1—N3—Ni1i | 0.0 | C8—C9—C10—N2 | −0.2 (9) |
N2—Ni1—N3—Ni1i | 93.19 (17) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Ni2(N3)4(C5H5N)4] |
Mr | 300.97 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 8.1354 (16), 9.4770 (19), 10.094 (2) |
α, β, γ (°) | 84.66 (3), 67.17 (3), 65.36 (3) |
V (Å3) | 649.8 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.49 |
Crystal size (mm) | 0.30 × 0.10 × 0.08 |
Data collection | |
Diffractometer | Bruker SMART 1000 CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 1998) |
Tmin, Tmax | 0.913, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6061, 2532, 2127 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.061, 0.164, 1.08 |
No. of reflections | 2532 |
No. of parameters | 172 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.66, −0.43 |
Computer programs: SMART (Bruker, 1998), SHELXTL (Bruker, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997).
Azido-NiII compounds with mono-N donored pyridine based co-ligands have been investigated early with respect to their metal-to-ligand π-bonding features (Nelson & Shepherd, 1965), magnetic circular dichroism and crystal field (Schreiner & Hamm, 1973). Recently, the crystal structures of two relative compounds, {[Ni(4-ethylpyridine)4(N3)].(PF6)}n (Goher et al., 2002) and [Ni(pyridine)2(N3)2] (Liu et al., 2006) have been reported. The former has a single end-to-end azido-bridged cationic chain structure, but the latter is mono-nuclear. Different from them, the title compound, [Ni2(C5H5N)4(N3)4]n has a neutral chain structure of NiII atoms bridged alternately by double end-on and double end-to-end azido bridges.
As shown in Fig. 1, the NiII center located at the crystallographically general position is coordinated by four azido N and two pyridine N atoms in a slightly distorted octahedral environment, in which two pyridine ligands lie in the trans positions. Both end-on and end-to-end double azido bridges become equivalent because of the inversion centers lied on between each two adjacent NiII atoms, respectively. Based on the (Ni1—N3—Ni1A—N3A) plane, the out-of-plane deviation of the N3—N4—N5 group is ca 14.1 (4) °, and the dihedral angles between the mean plane and two pyridyl rings are 99.7 (4) ° for (C1—C5—N1) and 82.9 (4) ° for (C6—C10—N2), respectively. The end-to-end azido-bridged dinuclear unit has a chair configuration with the dihedral angle between the (N6—Ni1—N8B) and (N6—N8—N6B—N8B) mean plane is 143.5 (4) °. In the chain, the Ni—Ni distances across the end-on and end-to-end azido bridges are 3.236 (4) and 4.975 (4) Å, respectively, and the end-on azido bridging Ni1—N3—Ni1A angle is 100.8 (2) °. In addition, in the crystal structure such chains arrange in parallel along the a direction to finish the three-dimensional packing (Fig. 2).