Download citation
Download citation
link to html
The reaction of cobalt(II) nitrate with 5-amino-2,4,6-tri­iodo­isophthalic acid (ATPA) in pyridine solution leads to the formation of the title compound, {[Co(C8H2I3NO4)(C5H5N)3(H2O)]·C5H5N}n. The Co2+ ion is six-coordinated by three N atoms, one water O atom and two O atoms from two ATPA ligands to form a distorted octa­hedral geometry. The two carboxyl­ate groups of ATPA act as bridging ligands connecting the CoII metal centers to form one-dimensional zigzag chains along the c axis, with Co—O distances in the range 2.104 (4)–2.135 (4) Å. The average Co—N distance is 2.171 Å. A classical O—H...N hydrogen bond is formed by the coordinating water mol­ecule and the pyridine solvent mol­ecule. The structure was refined from a racemically twinned crystal with a twin ratio of approximately 8:1.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536808032017/si2113sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536808032017/si2113Isup2.hkl
Contains datablock I

CCDC reference: 709509

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.010 Å
  • R factor = 0.041
  • wR factor = 0.065
  • Data-to-parameter ratio = 15.9

checkCIF/PLATON results

No syntax errors found



Alert level C Value of measurement temperature given = 296.000 Value of melting point given = 0.000 PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 3.44 Ratio PLAT342_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 10
Alert level G CELLZ01_ALERT_1_G Difference between formula and atom_site contents detected. CELLZ01_ALERT_1_G ALERT: Large difference may be due to a symmetry error - see SYMMG tests From the CIF: _cell_formula_units_Z 4 From the CIF: _chemical_formula_sum C28 H24 Co I3 N5 O5 TEST: Compare cell contents of formula and atom_site data atom Z*formula cif sites diff C 112.00 112.00 0.00 H 96.00 96.00 0.00 Co 0.00 4.00 -4.00 I 12.00 12.00 0.00 N 20.00 20.00 0.00 O 20.00 20.00 0.00 REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 26.00 From the CIF: _reflns_number_total 6038 Count of symmetry unique reflns 3523 Completeness (_total/calc) 171.39% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 2515 Fraction of Friedel pairs measured 0.714 Are heavy atom types Z>Si present yes PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 3
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The crystal structure of ATPA (Beck & Sheldrick, 2008) is the precursor of the synthesis of a wide range of contrast agents with different amide-bound aliphatic side chains, which modulate their physical and physiological properties (Ziegler et al. 1997). However, to the best of our knowledge, there is no information about the structural characterization of its transition metal complexes.

The molecular structure of the title complex comprises of polymeric chains which extend along the c-axis. In the chain, each Co atom shows a distorted octahedron environment with a [3N+3O] coordination: three nitrogen atoms originate from pyridines, one oxygen from a water molecule and two oxygen atoms from two ATPA ligands. The two CO2- groups of the ATPA ligand coordinate to Co2+, bridging the Co metal centers. The bond lengths of the distorted octahedron are presented in Table 1. The average Co—N bond distance of the three pyridine ligands is 2.171 Å. The Co—O bond lengths in the title complex are slightly longer than those in the reported coordination polymers of cobalt and 1,3,5-benzenetricarboxylate (2.055 (2) Å) (Livage et al., 2001). The bond angles shown in Table 1 demonstrate the distorted octahedron in the Co coordination center. Compared with the data of the free ligand ATPA (Beck & Sheldrick, 2008), the C—O bond lengths are lengthened, the C—I and C—N bond distances are almost unchanged and the O—C—O bond angles are slightly expanded when the carboxylate groups are coordinated to central cations. The Co—N(py) and Co—O(H2O) distances are in good agreement with those in diaqua-diformato-dipyridine-cobalt(II) (Zhu et al., 2004), where they are equal to 2.159 (4) Å and 2.143 (3) Å, respectively. A classic O—H···N hydrogen bond is formed by the coordinating water and the uncoordinated pyridine molecule (Table 2).

Related literature top

For the structure of a monohydrate of ATPA, see: Beck & Sheldrick (2008). For the Co coordination polymer of 1,3,5-benzenetricarboxylate, see: Livage et al. (2001). For the structure of diaquadiformatodipyridine CoII, see: Zhu et al. (2004). For a reduction of the organic iodine contrast agents in wastewater load, see: Ziegler et al. (1997).

Experimental top

0.29 g (1 mmol) Co(NO3)2.6H2O was dissolved in 10 ml ethanol, 0.54 g (1 mmol) 5-amino-2, 4, 6-triiodoisophthalic acid was dissolved in 10 ml pyridine. To mix two solutions gave a pale purple solution which was stirred at room temperature for 2 h, then filtered. After several days well formed light purple single crystals were obtained.

Refinement top

H atoms were positioned geometrically and refined using a riding model with C—H distances = 0.93 Å, N—H distances = 0.86 Å, and O—H distances = 0.85 Å with Uiso(H) = 1.2 times Ueq(C, N, O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms. Atoms labelled with an A belong to the symmetry-related ligand ATPA with symmetry code [A = -x + 3/2, -y, z + 1/2)].
catena-Poly[[[aquatripyridinecobalt(II)]-µ-5-amino-2,4,6- triiodoisophthalato-κ2O1:O3] pyridine solvate] top
Crystal data top
[Co(C8H2I3NO4)(C5H5N)3(H2O)]·C5H5NF(000) = 1812
Mr = 950.15Dx = 1.974 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 7120 reflections
a = 9.7759 (2) Åθ = 4.7–43.0°
b = 16.9083 (4) ŵ = 3.48 mm1
c = 19.3380 (4) ÅT = 296 K
V = 3196.45 (12) Å3Sheet, light purple
Z = 40.30 × 0.25 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
6038 independent reflections
Radiation source: fine-focus sealed tube4577 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 129
Tmin = 0.38, Tmax = 0.75k = 1320
16692 measured reflectionsl = 1523
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.0243P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
6038 reflectionsΔρmax = 0.68 e Å3
379 parametersΔρmin = 0.67 e Å3
3 restraintsAbsolute structure: Flack (1983), with 2515 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.13 (2)
Crystal data top
[Co(C8H2I3NO4)(C5H5N)3(H2O)]·C5H5NV = 3196.45 (12) Å3
Mr = 950.15Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.7759 (2) ŵ = 3.48 mm1
b = 16.9083 (4) ÅT = 296 K
c = 19.3380 (4) Å0.30 × 0.25 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
6038 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
4577 reflections with I > 2σ(I)
Tmin = 0.38, Tmax = 0.75Rint = 0.027
16692 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.065Δρmax = 0.68 e Å3
S = 1.04Δρmin = 0.67 e Å3
6038 reflectionsAbsolute structure: Flack (1983), with 2515 Friedel pairs
379 parametersAbsolute structure parameter: 0.13 (2)
3 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8251 (6)0.2139 (3)0.8550 (3)0.0319 (15)
C20.8423 (6)0.2494 (3)0.7900 (3)0.0344 (16)
C30.7752 (6)0.2152 (3)0.7335 (3)0.0299 (15)
C40.6949 (6)0.1483 (3)0.7390 (3)0.0229 (14)
C50.6819 (6)0.1159 (3)0.8047 (3)0.0286 (15)
C60.7445 (6)0.1478 (3)0.8629 (3)0.0243 (14)
C70.6216 (7)0.1144 (3)0.6765 (3)0.0276 (15)
C80.7222 (7)0.1122 (3)0.9341 (3)0.0305 (15)
C90.9902 (7)0.0943 (4)1.1534 (4)0.052 (2)
H91.04680.05011.15400.063*
C101.0171 (8)0.1565 (5)1.1968 (4)0.067 (2)
H101.09090.15281.22700.080*
C110.9406 (10)0.2230 (5)1.1973 (4)0.078 (3)
H110.96070.26511.22660.093*
C120.8332 (9)0.2254 (5)1.1531 (4)0.078 (3)
H120.77680.26971.15200.093*
C130.8073 (7)0.1626 (4)1.1100 (4)0.060 (2)
H130.73420.16611.07930.072*
C141.1101 (6)0.0851 (4)1.0269 (3)0.0397 (18)
H141.06190.12791.04470.048*
C151.2437 (7)0.0963 (4)1.0090 (3)0.0488 (19)
H151.28590.14511.01510.059*
C161.3142 (7)0.0329 (5)0.9817 (3)0.053 (2)
H161.40440.03910.96740.064*
C171.2528 (6)0.0377 (4)0.9759 (3)0.0471 (19)
H171.30000.08150.95920.057*
C181.1168 (7)0.0434 (4)0.9955 (3)0.0448 (18)
H181.07330.09210.99110.054*
C190.6591 (7)0.1424 (4)0.9923 (4)0.0470 (19)
H190.61140.13051.03260.056*
C200.6061 (7)0.1985 (4)0.9494 (4)0.057 (2)
H200.52490.22400.96080.068*
C210.6717 (9)0.2166 (4)0.8905 (4)0.069 (2)
H210.63570.25360.85990.082*
C220.7916 (9)0.1797 (4)0.8766 (4)0.063 (2)
H220.84160.19250.83720.076*
C230.8384 (7)0.1222 (4)0.9223 (4)0.052 (2)
H230.91880.09560.91130.062*
C240.0436 (7)0.0013 (4)0.7430 (5)0.062 (2)
H240.13090.02020.74650.074*
C250.0132 (9)0.0325 (5)0.8004 (4)0.064 (2)
H250.03370.03210.84220.076*
C260.1384 (11)0.0640 (5)0.7959 (5)0.096 (3)
H260.18040.08550.83480.115*
C270.2020 (9)0.0641 (6)0.7351 (5)0.101 (3)
H270.28840.08670.73090.121*
C280.1404 (9)0.0313 (5)0.6790 (4)0.082 (3)
H280.18620.03110.63690.098*
Co10.83021 (7)0.00406 (5)1.04654 (4)0.0312 (2)
I10.92570 (5)0.26385 (3)0.94026 (2)0.05269 (14)
I20.78262 (5)0.27575 (3)0.63848 (2)0.05874 (16)
I30.56454 (5)0.01146 (3)0.81795 (2)0.05039 (14)
N10.9245 (6)0.3143 (3)0.7821 (3)0.0630 (17)
H1A0.93570.33490.74180.076*
H1B0.96490.33450.81740.076*
N20.8833 (5)0.0964 (3)1.1102 (2)0.0393 (14)
N31.0452 (5)0.0175 (3)1.0205 (2)0.0348 (13)
N40.7763 (6)0.1033 (3)0.9799 (3)0.0379 (14)
N50.0172 (7)0.0004 (4)0.6829 (3)0.0660 (19)
O10.6899 (4)0.0730 (2)0.6366 (2)0.0386 (11)
O20.5004 (5)0.1311 (3)0.6709 (2)0.0555 (14)
O30.8147 (4)0.0677 (2)0.95601 (19)0.0329 (10)
O40.6139 (4)0.1298 (2)0.9646 (2)0.0460 (12)
O50.6191 (3)0.0161 (2)1.05937 (18)0.0423 (11)
H5B0.59510.06031.04230.051*
H5A0.59630.01431.10180.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.041 (4)0.029 (4)0.026 (4)0.003 (3)0.003 (3)0.007 (3)
C20.043 (4)0.029 (4)0.032 (4)0.014 (3)0.003 (3)0.004 (3)
C30.038 (3)0.029 (4)0.023 (3)0.005 (3)0.004 (3)0.001 (3)
C40.026 (4)0.022 (3)0.020 (3)0.004 (3)0.001 (3)0.007 (3)
C50.032 (3)0.032 (4)0.022 (4)0.002 (3)0.003 (3)0.003 (3)
C60.033 (4)0.022 (3)0.017 (3)0.006 (3)0.004 (3)0.002 (3)
C70.041 (4)0.020 (4)0.021 (4)0.010 (3)0.005 (3)0.004 (3)
C80.045 (4)0.027 (4)0.019 (4)0.006 (3)0.005 (4)0.007 (3)
C90.050 (4)0.053 (5)0.053 (5)0.004 (4)0.023 (4)0.006 (4)
C100.078 (6)0.071 (6)0.052 (5)0.045 (5)0.022 (5)0.004 (5)
C110.122 (8)0.054 (6)0.058 (5)0.033 (6)0.009 (6)0.022 (5)
C120.103 (7)0.056 (6)0.075 (6)0.004 (5)0.025 (5)0.024 (5)
C130.067 (5)0.054 (5)0.059 (5)0.011 (5)0.006 (5)0.020 (4)
C140.042 (4)0.043 (4)0.035 (4)0.004 (4)0.001 (3)0.000 (4)
C150.046 (5)0.057 (5)0.043 (5)0.020 (4)0.002 (4)0.008 (4)
C160.028 (4)0.088 (6)0.044 (5)0.013 (4)0.003 (3)0.009 (4)
C170.032 (4)0.064 (6)0.045 (4)0.008 (4)0.001 (3)0.010 (4)
C180.046 (5)0.041 (4)0.048 (5)0.001 (4)0.003 (4)0.004 (4)
C190.048 (5)0.037 (4)0.056 (5)0.005 (4)0.003 (4)0.004 (4)
C200.047 (5)0.043 (5)0.080 (6)0.017 (4)0.010 (4)0.001 (5)
C210.088 (7)0.050 (5)0.068 (5)0.009 (5)0.026 (5)0.008 (5)
C220.085 (6)0.060 (6)0.046 (5)0.000 (5)0.004 (5)0.028 (4)
C230.055 (5)0.051 (5)0.049 (5)0.011 (4)0.006 (4)0.005 (4)
C240.041 (5)0.061 (5)0.083 (6)0.005 (4)0.005 (5)0.002 (6)
C250.078 (6)0.067 (6)0.046 (5)0.019 (5)0.010 (5)0.001 (5)
C260.115 (9)0.122 (8)0.050 (6)0.044 (7)0.034 (6)0.010 (6)
C270.059 (6)0.167 (10)0.078 (7)0.047 (6)0.011 (6)0.020 (8)
C280.063 (6)0.131 (9)0.051 (6)0.003 (6)0.014 (5)0.023 (6)
Co10.0333 (4)0.0350 (5)0.0254 (5)0.0001 (4)0.0013 (4)0.0022 (5)
I10.0737 (3)0.0481 (3)0.0363 (3)0.0171 (3)0.0127 (3)0.0058 (2)
I20.0883 (4)0.0569 (3)0.0311 (3)0.0191 (3)0.0001 (3)0.0134 (3)
I30.0633 (3)0.0495 (3)0.0384 (3)0.0231 (3)0.0053 (2)0.0067 (2)
N10.092 (4)0.062 (4)0.035 (3)0.045 (4)0.014 (4)0.007 (3)
N20.048 (4)0.042 (4)0.027 (3)0.004 (3)0.000 (3)0.001 (3)
N30.031 (3)0.038 (3)0.035 (3)0.002 (3)0.003 (2)0.006 (3)
N40.043 (3)0.039 (4)0.031 (3)0.003 (3)0.002 (3)0.002 (3)
N50.063 (4)0.089 (5)0.047 (4)0.014 (4)0.012 (4)0.011 (4)
O10.047 (3)0.041 (3)0.028 (2)0.001 (2)0.002 (2)0.013 (2)
O20.048 (3)0.075 (4)0.044 (3)0.015 (3)0.012 (3)0.020 (3)
O30.037 (3)0.036 (3)0.026 (2)0.001 (2)0.005 (2)0.007 (2)
O40.049 (3)0.064 (3)0.025 (3)0.021 (2)0.010 (2)0.001 (2)
O50.045 (3)0.048 (3)0.034 (2)0.007 (2)0.006 (2)0.010 (2)
Geometric parameters (Å, º) top
C1—C61.376 (7)C18—N31.336 (7)
C1—C21.404 (7)C18—H180.9300
C1—I12.097 (6)C19—N41.344 (7)
C2—N11.368 (7)C19—C201.363 (9)
C2—C31.400 (7)C19—H190.9300
C3—C41.381 (7)C20—C211.342 (9)
C3—I22.105 (5)C20—H200.9300
C4—C51.389 (7)C21—C221.355 (9)
C4—C71.517 (8)C21—H210.9300
C5—C61.390 (7)C22—C231.391 (8)
C5—I32.122 (6)C22—H220.9300
C6—C81.519 (4)C23—N41.309 (7)
C7—O21.223 (6)C23—H230.9300
C7—O11.238 (6)C24—N51.306 (8)
C8—O41.248 (6)C24—C251.348 (9)
C8—O31.250 (6)C24—H240.9300
C9—N21.337 (7)C25—C261.338 (10)
C9—C101.372 (9)C25—H250.9300
C9—H90.9300C26—C271.331 (11)
C10—C111.350 (10)C26—H260.9300
C10—H100.9300C27—C281.359 (11)
C11—C121.355 (10)C27—H270.9300
C11—H110.9300C28—N51.321 (9)
C12—C131.373 (9)C28—H280.9300
C12—H120.9300Co1—O1i2.104 (4)
C13—N21.345 (7)Co1—O52.106 (3)
C13—H130.9300Co1—O32.135 (4)
C14—N31.312 (7)Co1—N22.161 (5)
C14—C151.365 (8)Co1—N32.173 (5)
C14—H140.9300Co1—N42.180 (5)
C15—C161.379 (9)N1—H1A0.8600
C15—H150.9300N1—H1B0.8600
C16—C171.342 (8)O1—Co1ii2.104 (4)
C16—H160.9300O5—H5B0.8500
C17—C181.386 (8)O5—H5A0.8499
C17—H170.9300
C6—C1—C2121.0 (5)C19—C20—H20120.2
C6—C1—I1120.6 (4)C20—C21—C22118.4 (8)
C2—C1—I1118.4 (4)C20—C21—H21120.8
N1—C2—C3121.3 (5)C22—C21—H21120.8
N1—C2—C1120.9 (5)C21—C22—C23118.7 (8)
C3—C2—C1117.8 (5)C21—C22—H22120.6
C4—C3—C2123.0 (5)C23—C22—H22120.6
C4—C3—I2119.1 (4)N4—C23—C22124.0 (7)
C2—C3—I2117.7 (4)N4—C23—H23118.0
C3—C4—C5116.5 (5)C22—C23—H23118.0
C3—C4—C7121.1 (5)N5—C24—C25123.6 (7)
C5—C4—C7122.5 (5)N5—C24—H24118.2
C4—C5—C6123.2 (5)C25—C24—H24118.2
C4—C5—I3119.2 (4)C26—C25—C24118.6 (8)
C6—C5—I3117.6 (4)C26—C25—H25120.7
C1—C6—C5118.5 (5)C24—C25—H25120.7
C1—C6—C8120.3 (5)C27—C26—C25119.0 (9)
C5—C6—C8121.1 (5)C27—C26—H26120.5
O2—C7—O1126.7 (7)C25—C26—H26120.5
O2—C7—C4116.2 (6)C26—C27—C28119.9 (8)
O1—C7—C4117.2 (5)C26—C27—H27120.1
O4—C8—O3126.7 (5)C28—C27—H27120.1
O4—C8—C6117.0 (6)N5—C28—C27121.6 (8)
O3—C8—C6116.2 (5)N5—C28—H28119.2
N2—C9—C10120.7 (7)C27—C28—H28119.2
N2—C9—H9119.6O1i—Co1—O584.29 (15)
C10—C9—H9119.6O1i—Co1—O3170.52 (16)
C11—C10—C9122.5 (8)O5—Co1—O386.29 (15)
C11—C10—H10118.7O1i—Co1—N289.21 (16)
C9—C10—H10118.7O5—Co1—N292.37 (17)
C10—C11—C12116.7 (8)O3—Co1—N292.18 (17)
C10—C11—H11121.7O1i—Co1—N3102.93 (17)
C12—C11—H11121.7O5—Co1—N3172.68 (17)
C11—C12—C13120.2 (8)O3—Co1—N386.47 (17)
C11—C12—H12119.9N2—Co1—N388.95 (19)
C13—C12—H12119.9O1i—Co1—N492.29 (17)
N2—C13—C12122.7 (7)O5—Co1—N487.53 (18)
N2—C13—H13118.7O3—Co1—N486.31 (16)
C12—C13—H13118.7N2—Co1—N4178.48 (19)
N3—C14—C15124.1 (6)N3—Co1—N491.0 (2)
N3—C14—H14118.0C2—N1—H1A120.0
C15—C14—H14118.0C2—N1—H1B120.0
C14—C15—C16117.8 (7)H1A—N1—H1B120.0
C14—C15—H15121.1C9—N2—C13117.2 (6)
C16—C15—H15121.1C9—N2—Co1121.5 (5)
C17—C16—C15120.0 (6)C13—N2—Co1121.3 (5)
C17—C16—H16120.0C14—N3—C18116.9 (5)
C15—C16—H16120.0C14—N3—Co1122.5 (4)
C16—C17—C18117.9 (7)C18—N3—Co1120.7 (4)
C16—C17—H17121.0C23—N4—C19115.3 (6)
C18—C17—H17121.0C23—N4—Co1125.4 (5)
N3—C18—C17123.2 (6)C19—N4—Co1118.7 (5)
N3—C18—H18118.4C24—N5—C28117.2 (7)
C17—C18—H18118.4C7—O1—Co1ii141.2 (4)
N4—C19—C20123.9 (7)C8—O3—Co1132.1 (4)
N4—C19—H19118.0Co1—O5—H5B111.5
C20—C19—H19118.0Co1—O5—H5A111.4
C21—C20—C19119.6 (7)H5B—O5—H5A109.4
C21—C20—H20120.2
Symmetry codes: (i) x+3/2, y, z+1/2; (ii) x+3/2, y, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···N5iii0.851.942.748 (7)159
Symmetry code: (iii) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Co(C8H2I3NO4)(C5H5N)3(H2O)]·C5H5N
Mr950.15
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)9.7759 (2), 16.9083 (4), 19.3380 (4)
V3)3196.45 (12)
Z4
Radiation typeMo Kα
µ (mm1)3.48
Crystal size (mm)0.30 × 0.25 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.38, 0.75
No. of measured, independent and
observed [I > 2σ(I)] reflections
16692, 6038, 4577
Rint0.027
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.065, 1.04
No. of reflections6038
No. of parameters379
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.68, 0.67
Absolute structureFlack (1983), with 2515 Friedel pairs
Absolute structure parameter0.13 (2)

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
Co1—O1i2.104 (4)Co1—N22.161 (5)
Co1—O52.106 (3)Co1—N32.173 (5)
Co1—O32.135 (4)Co1—N42.180 (5)
O1i—Co1—O3170.52 (16)O5—Co1—N3172.68 (17)
O1i—Co1—N3102.93 (17)N2—Co1—N4178.48 (19)
Symmetry code: (i) x+3/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···N5ii0.851.942.748 (7)159
Symmetry code: (ii) x+1/2, y, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds