Download citation
Download citation
link to html
The asymmetric unit of the title compound, [ZnBr2(C14H20N2O)]·H2O, consists of a mononuclear Schiff base zinc(II) complex mol­ecule and a solvent water mol­ecule. The ZnII atom is four-coordinated in an approximately tetra­hedral geometry, binding to the imine N and phenolate O atoms of the neutral zwitterionic Schiff base ligand and to two terminal Br anions. In the crystal structure, mol­ecules are linked through inter­molecular O—H...Br and O—H...O hydrogen bonds, forming chains running along the b axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536808015730/sj2508sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536808015730/sj2508Isup2.hkl
Contains datablock I

CCDC reference: 654614

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.038
  • wR factor = 0.091
  • Data-to-parameter ratio = 20.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.96 PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.53 Ratio PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N2 PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 7 PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.83 PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 200 Deg.
Alert level G ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.835 Tmax scaled 0.352 Tmin scaled 0.326 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 4
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 6 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Zinc(II) complexes derived from Schiff base ligands have been studied extensively due to their interesting structures and wide applications (Lacroix et al., 1996; Chisholm et al., 2001; Jian et al., 2004; Tatar et al., 2002; Bhosekar et al., 2006). Recently, we have reported two Schiff base zinc(II) complexes with bromide ligands (Wei et al., 2007; Zhu et al., 2007). As a continuation of our work on the structures of such complexes, we report herein the crystal structure of the new title complex, (I), which is isostructural with the zinc(II) complex with chloride ligands (Zhang et al., 2008).

The tetrahedral coordination sphere of ZnII atom in (I) is formed by the imine N and phenolate O atoms of the Schiff base ligand and by two terminal Br- anions (Fig. 1). The coordinate bond distances (Table 1) are typical and comparable with the values in other similar zinc(II) complexes (Peng & Hou, 2006; Peng et al., 2006; Ma, Gu et al., 2006; Ma, Lv et al., 2006). The O1—Zn1—N1 and O1—Zn1—Br1 bond angles deviate most from ideal tetrahedral geometry with values of 93.91 (11) and 116.12 (8)°, respectively. The other angles in the coordination sphere are in the range 108.84 (9)–113.42 (2)° (Table 1).

In the crystal structure of (I), molecules are linked through intermolecular O—H···Br and O—H···O hydrogen bonds (Table 2), forming chains running along the b axis (Fig. 2).

Related literature top

For the background of Schiff base zinc(II) complexes, see: Bhosekar et al. (2006); Chisholm et al. (2001); Jian et al. (2004); Lacroix et al. (1996); Tatar et al. (2002). For related structures, see: Ma, Gu et al. (2006); Ma, Lv et al. (2006); Peng & Hou (2006); Peng et al. (2006); Wei et al. (2007); Zhang et al. (2008); Zhu et al. (2007).

Experimental top

Compound (I) was obtained by stirring of salicylaldehyde (0.1 mmol, 12.2 mg), 2-piperidin-1-ylethylamine (0.1 mmol, 12.8 mg), and zinc(II) bromide (0.1 mmol, 22.5 mg) in methanol (20 ml) for 30 min at room temperature. The reaction mixture was fitered. Yellow block-shaped single crystals suitable for X-ray diffraction formed from the filtrate after one day.

Refinement top

Atoms H2, H2A and H2B were located in a difference Fourier map and refined isotropically, with the N—H, O—H, and H···H distances restrained to 0.90 (1), 0.85 (1), and 1.37 (2) Å, respectively. Other H atom positions were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding, with Uiso(H) values set at 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), shown with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Molecular packing of (I), viewed along the a axis. Intermolecular hydrogen bonds are shown as dashed lines.
Dibromido{2-[2-(piperidinium-1-yl)ethyliminomethyl]phenolato}zinc(II) monohydrate top
Crystal data top
[ZnBr2(C14H20N2O)]·H2OZ = 2
Mr = 475.53F(000) = 472
Triclinic, P1Dx = 1.751 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.2997 (18) ÅCell parameters from 1797 reflections
b = 10.1776 (17) Åθ = 2.2–25.4°
c = 11.1667 (18) ŵ = 5.80 mm1
α = 71.510 (2)°T = 298 K
β = 71.215 (2)°Block, yellow
γ = 67.571 (2)°0.20 × 0.20 × 0.18 mm
V = 901.8 (3) Å3
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3983 independent reflections
Radiation source: fine-focus sealed tube2891 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 129
Tmin = 0.390, Tmax = 0.422k = 1312
5468 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0405P)2 + 0.3508P]
where P = (Fo2 + 2Fc2)/3
3983 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.72 e Å3
4 restraintsΔρmin = 0.55 e Å3
Crystal data top
[ZnBr2(C14H20N2O)]·H2Oγ = 67.571 (2)°
Mr = 475.53V = 901.8 (3) Å3
Triclinic, P1Z = 2
a = 9.2997 (18) ÅMo Kα radiation
b = 10.1776 (17) ŵ = 5.80 mm1
c = 11.1667 (18) ÅT = 298 K
α = 71.510 (2)°0.20 × 0.20 × 0.18 mm
β = 71.215 (2)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3983 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2891 reflections with I > 2σ(I)
Tmin = 0.390, Tmax = 0.422Rint = 0.016
5468 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0374 restraints
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.72 e Å3
3983 reflectionsΔρmin = 0.55 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.82333 (5)0.20793 (4)0.11443 (4)0.03909 (13)
Br10.93736 (6)0.24561 (5)0.28619 (4)0.06059 (15)
Br20.56849 (5)0.24885 (5)0.18395 (4)0.05682 (14)
O10.9582 (3)0.3089 (3)0.0226 (2)0.0451 (6)
O20.7190 (3)0.4568 (3)0.0481 (3)0.0515 (7)
N10.8013 (4)0.0074 (3)0.0039 (3)0.0406 (7)
N20.5644 (4)0.2574 (3)0.2120 (3)0.0420 (7)
C10.8738 (4)0.1069 (4)0.1951 (3)0.0378 (8)
C20.9415 (4)0.2555 (4)0.1434 (3)0.0379 (8)
C30.9993 (5)0.3518 (4)0.2277 (4)0.0451 (9)
H31.04510.45080.19600.054*
C40.9897 (5)0.3031 (5)0.3550 (4)0.0555 (11)
H41.02830.36960.40770.067*
C50.9234 (6)0.1561 (5)0.4069 (4)0.0594 (12)
H50.91760.12360.49350.071*
C60.8668 (5)0.0600 (5)0.3273 (4)0.0513 (10)
H60.82250.03870.36110.062*
C70.8178 (4)0.0091 (4)0.1258 (4)0.0409 (8)
H70.79150.10430.17450.049*
C80.7581 (5)0.1241 (4)0.0443 (4)0.0552 (11)
H8A0.75600.20800.02790.066*
H8B0.83740.11400.08840.066*
C90.5982 (5)0.1467 (5)0.1357 (5)0.0633 (12)
H9A0.59280.05470.19520.076*
H9B0.51660.17900.08700.076*
C100.3889 (5)0.3298 (5)0.2454 (5)0.0594 (11)
H10A0.33590.25730.29620.071*
H10B0.35020.37610.16640.071*
C110.3486 (6)0.4435 (6)0.3223 (6)0.0836 (17)
H11A0.39150.52160.26770.100*
H11B0.23340.48480.34760.100*
C120.4153 (7)0.3795 (7)0.4409 (6)0.094 (2)
H12A0.39250.45560.48530.113*
H12B0.36510.30770.49970.113*
C130.5908 (6)0.3095 (7)0.4042 (5)0.0835 (17)
H13A0.63250.26530.48190.100*
H13B0.64140.38300.35100.100*
C140.6302 (6)0.1951 (5)0.3306 (5)0.0701 (13)
H14A0.74530.15280.30590.084*
H14B0.58620.11790.38620.084*
H2B0.8210 (13)0.423 (5)0.029 (5)0.080*
H2A0.699 (4)0.524 (4)0.086 (4)0.080*
H20.611 (5)0.327 (4)0.168 (4)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0453 (3)0.0381 (2)0.0358 (2)0.01543 (19)0.00516 (18)0.01193 (18)
Br10.0684 (3)0.0803 (3)0.0459 (2)0.0337 (3)0.0178 (2)0.0131 (2)
Br20.0462 (3)0.0559 (3)0.0720 (3)0.0217 (2)0.0069 (2)0.0184 (2)
O10.0509 (16)0.0409 (14)0.0377 (14)0.0066 (12)0.0070 (12)0.0138 (11)
O20.0503 (17)0.0479 (16)0.0572 (18)0.0181 (14)0.0049 (14)0.0170 (13)
N10.0497 (19)0.0346 (16)0.0412 (17)0.0198 (14)0.0023 (14)0.0134 (13)
N20.0438 (19)0.0411 (18)0.0415 (17)0.0163 (15)0.0001 (14)0.0157 (14)
C10.041 (2)0.041 (2)0.0329 (18)0.0188 (17)0.0024 (15)0.0099 (15)
C20.033 (2)0.044 (2)0.0387 (19)0.0167 (16)0.0012 (15)0.0128 (16)
C30.046 (2)0.044 (2)0.049 (2)0.0169 (18)0.0028 (18)0.0200 (18)
C40.059 (3)0.071 (3)0.049 (2)0.030 (2)0.001 (2)0.031 (2)
C50.071 (3)0.081 (3)0.034 (2)0.040 (3)0.002 (2)0.013 (2)
C60.057 (3)0.054 (2)0.042 (2)0.023 (2)0.0084 (19)0.0033 (18)
C70.039 (2)0.0348 (19)0.047 (2)0.0154 (16)0.0043 (17)0.0070 (16)
C80.064 (3)0.043 (2)0.059 (3)0.022 (2)0.001 (2)0.0222 (19)
C90.061 (3)0.063 (3)0.076 (3)0.026 (2)0.001 (2)0.037 (2)
C100.046 (3)0.062 (3)0.074 (3)0.018 (2)0.011 (2)0.022 (2)
C110.040 (3)0.071 (3)0.140 (5)0.011 (2)0.002 (3)0.056 (4)
C120.083 (4)0.141 (5)0.084 (4)0.056 (4)0.023 (3)0.073 (4)
C130.077 (4)0.140 (5)0.050 (3)0.045 (4)0.013 (3)0.030 (3)
C140.055 (3)0.074 (3)0.065 (3)0.011 (3)0.019 (2)0.002 (3)
Geometric parameters (Å, º) top
Zn1—O11.936 (2)C5—H50.9300
Zn1—N12.024 (3)C6—H60.9300
Zn1—Br12.3417 (7)C7—H70.9300
Zn1—Br22.3991 (7)C8—C91.488 (6)
O1—C21.321 (4)C8—H8A0.9700
O2—H2B0.86 (3)C8—H8B0.9700
O2—H2A0.85 (4)C9—H9A0.9700
N1—C71.282 (5)C9—H9B0.9700
N1—C81.467 (4)C10—C111.519 (6)
N2—C101.487 (5)C10—H10A0.9700
N2—C141.491 (5)C10—H10B0.9700
N2—C91.503 (5)C11—C121.496 (8)
N2—H20.90 (4)C11—H11A0.9700
C1—C21.404 (5)C11—H11B0.9700
C1—C61.415 (5)C12—C131.485 (7)
C1—C71.454 (5)C12—H12A0.9700
C2—C31.411 (5)C12—H12B0.9700
C3—C41.370 (6)C13—C141.502 (7)
C3—H30.9300C13—H13A0.9700
C4—C51.389 (6)C13—H13B0.9700
C4—H40.9300C14—H14A0.9700
C5—C61.371 (6)C14—H14B0.9700
O1—Zn1—N193.91 (11)C9—C8—H8A109.7
O1—Zn1—Br1116.12 (8)N1—C8—H8B109.7
N1—Zn1—Br1113.04 (8)C9—C8—H8B109.7
O1—Zn1—Br2109.78 (8)H8A—C8—H8B108.2
N1—Zn1—Br2108.84 (9)C8—C9—N2112.2 (3)
Br1—Zn1—Br2113.42 (2)C8—C9—H9A109.2
C2—O1—Zn1121.6 (2)N2—C9—H9A109.2
H2B—O2—H2A105 (2)C8—C9—H9B109.2
C7—N1—C8117.3 (3)N2—C9—H9B109.2
C7—N1—Zn1119.8 (2)H9A—C9—H9B107.9
C8—N1—Zn1122.8 (2)N2—C10—C11110.8 (3)
C10—N2—C14111.0 (3)N2—C10—H10A109.5
C10—N2—C9108.7 (3)C11—C10—H10A109.5
C14—N2—C9113.6 (3)N2—C10—H10B109.5
C10—N2—H2108 (3)C11—C10—H10B109.5
C14—N2—H2102 (3)H10A—C10—H10B108.1
C9—N2—H2113 (3)C12—C11—C10111.6 (4)
C2—C1—C6119.5 (3)C12—C11—H11A109.3
C2—C1—C7125.2 (3)C10—C11—H11A109.3
C6—C1—C7115.1 (3)C12—C11—H11B109.3
O1—C2—C1123.9 (3)C10—C11—H11B109.3
O1—C2—C3118.6 (3)H11A—C11—H11B108.0
C1—C2—C3117.4 (3)C13—C12—C11110.0 (4)
C4—C3—C2121.6 (4)C13—C12—H12A109.7
C4—C3—H3119.2C11—C12—H12A109.7
C2—C3—H3119.2C13—C12—H12B109.7
C3—C4—C5121.2 (4)C11—C12—H12B109.7
C3—C4—H4119.4H12A—C12—H12B108.2
C5—C4—H4119.4C12—C13—C14110.9 (4)
C6—C5—C4118.4 (4)C12—C13—H13A109.5
C6—C5—H5120.8C14—C13—H13A109.5
C4—C5—H5120.8C12—C13—H13B109.5
C5—C6—C1121.8 (4)C14—C13—H13B109.5
C5—C6—H6119.1H13A—C13—H13B108.0
C1—C6—H6119.1N2—C14—C13111.4 (4)
N1—C7—C1126.2 (3)N2—C14—H14A109.4
N1—C7—H7116.9C13—C14—H14A109.4
C1—C7—H7116.9N2—C14—H14B109.4
N1—C8—C9109.9 (3)C13—C14—H14B109.4
N1—C8—H8A109.7H14A—C14—H14B108.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.90 (4)1.89 (4)2.777 (4)169 (4)
O2—H2A···Br2i0.85 (4)2.57 (4)3.399 (3)165 (4)
O2—H2B···O1ii0.86 (3)1.93 (4)2.762 (4)165 (5)
Symmetry codes: (i) x, y+1, z; (ii) x+2, y, z.

Experimental details

Crystal data
Chemical formula[ZnBr2(C14H20N2O)]·H2O
Mr475.53
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.2997 (18), 10.1776 (17), 11.1667 (18)
α, β, γ (°)71.510 (2), 71.215 (2), 67.571 (2)
V3)901.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)5.80
Crystal size (mm)0.20 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.390, 0.422
No. of measured, independent and
observed [I > 2σ(I)] reflections
5468, 3983, 2891
Rint0.016
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.091, 1.03
No. of reflections3983
No. of parameters199
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.72, 0.55

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Zn1—O11.936 (2)Zn1—Br12.3417 (7)
Zn1—N12.024 (3)Zn1—Br22.3991 (7)
O1—Zn1—N193.91 (11)O1—Zn1—Br2109.78 (8)
O1—Zn1—Br1116.12 (8)N1—Zn1—Br2108.84 (9)
N1—Zn1—Br1113.04 (8)Br1—Zn1—Br2113.42 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.90 (4)1.89 (4)2.777 (4)169 (4)
O2—H2A···Br2i0.85 (4)2.57 (4)3.399 (3)165 (4)
O2—H2B···O1ii0.86 (3)1.93 (4)2.762 (4)165 (5)
Symmetry codes: (i) x, y+1, z; (ii) x+2, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds