


Supporting information
![]() | Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536808028419/sj2537sup1.cif |
![]() | Structure factor file (CIF format) https://doi.org/10.1107/S1600536808028419/sj2537Isup2.hkl |
CCDC reference: 706052
Key indicators
- Single-crystal X-ray study
- T = 100 K
- Mean
(C-C) = 0.001 Å
- R factor = 0.030
- wR factor = 0.089
- Data-to-parameter ratio = 38.2
checkCIF/PLATON results
No syntax errors found
Alert level C PLAT431_ALERT_2_C Short Inter HL..A Contact Cl1 .. F1 .. 3.17 Ang. PLAT153_ALERT_1_C The su's on the Cell Axes are Equal (x 100000) 20 Ang.
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check
The synthetic method has been described earlier (Fun, Kargar & Kia, 2008). Single crystals suitable for X-ray diffraction were obtained by evaporation of an ethanol solution at room temperature.
All of the hydrogen atoms were positioned geometrically with C—H = 0.95 or 0.99 Å and refined in riding mode with Uiso (H) = 1.2 Ueq (C).
Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).
C16H12Cl2F2N2 | F(000) = 348 |
Mr = 341.18 | Dx = 1.556 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 8904 reflections |
a = 7.2249 (2) Å | θ = 2.9–41.0° |
b = 11.3676 (2) Å | µ = 0.46 mm−1 |
c = 10.3368 (2) Å | T = 100 K |
β = 120.906 (1)° | Block, colourless |
V = 728.42 (3) Å3 | 0.52 × 0.41 × 0.29 mm |
Z = 2 |
Bruker SMART APEXII CCD area-detector diffractometer | 3821 independent reflections |
Radiation source: fine-focus sealed tube | 3403 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
ϕ and ω scans | θmax = 37.5°, θmin = 2.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −11→12 |
Tmin = 0.794, Tmax = 0.878 | k = −19→19 |
16842 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.088 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0499P)2 + 0.131P] where P = (Fo2 + 2Fc2)/3 |
3821 reflections | (Δ/σ)max = 0.001 |
100 parameters | Δρmax = 0.45 e Å−3 |
0 restraints | Δρmin = −0.35 e Å−3 |
C16H12Cl2F2N2 | V = 728.42 (3) Å3 |
Mr = 341.18 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.2249 (2) Å | µ = 0.46 mm−1 |
b = 11.3676 (2) Å | T = 100 K |
c = 10.3368 (2) Å | 0.52 × 0.41 × 0.29 mm |
β = 120.906 (1)° |
Bruker SMART APEXII CCD area-detector diffractometer | 3821 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 3403 reflections with I > 2σ(I) |
Tmin = 0.794, Tmax = 0.878 | Rint = 0.025 |
16842 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 0 restraints |
wR(F2) = 0.088 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.45 e Å−3 |
3821 reflections | Δρmin = −0.35 e Å−3 |
100 parameters |
Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.65534 (3) | −0.131316 (15) | −0.342553 (18) | 0.01852 (5) | |
F1 | 0.71054 (8) | −0.18319 (4) | −0.04997 (5) | 0.01952 (9) | |
N1 | 0.83760 (10) | 0.03597 (6) | 0.29627 (6) | 0.01620 (10) | |
C1 | 0.72180 (10) | −0.06703 (6) | −0.07109 (7) | 0.01350 (10) | |
C2 | 0.69340 (10) | −0.02919 (6) | −0.20779 (7) | 0.01388 (10) | |
C3 | 0.70125 (11) | 0.09019 (6) | −0.23283 (7) | 0.01577 (11) | |
H3 | 0.6802 | 0.1170 | −0.3265 | 0.019* | |
C4 | 0.74016 (11) | 0.17052 (6) | −0.11975 (8) | 0.01704 (11) | |
H4 | 0.7457 | 0.2523 | −0.1363 | 0.020* | |
C5 | 0.77080 (11) | 0.13130 (6) | 0.01692 (8) | 0.01554 (11) | |
H5 | 0.7977 | 0.1868 | 0.0934 | 0.019* | |
C6 | 0.76267 (10) | 0.01123 (6) | 0.04403 (7) | 0.01320 (10) | |
C7 | 0.80350 (10) | −0.03353 (6) | 0.19019 (7) | 0.01486 (11) | |
H7 | 0.8043 | −0.1160 | 0.2053 | 0.018* | |
C8 | 0.88630 (11) | −0.01757 (7) | 0.43842 (7) | 0.01710 (11) | |
H8A | 0.8762 | −0.1043 | 0.4279 | 0.021* | |
H8B | 0.7805 | 0.0092 | 0.4659 | 0.021* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.02300 (8) | 0.01901 (9) | 0.01500 (8) | −0.00281 (5) | 0.01081 (6) | −0.00347 (5) |
F1 | 0.0292 (2) | 0.01227 (18) | 0.01890 (19) | −0.00308 (15) | 0.01361 (17) | 0.00007 (14) |
N1 | 0.0180 (2) | 0.0181 (2) | 0.0121 (2) | 0.00091 (18) | 0.00742 (18) | 0.00082 (17) |
C1 | 0.0142 (2) | 0.0125 (2) | 0.0135 (2) | −0.00087 (18) | 0.00691 (18) | 0.00018 (18) |
C2 | 0.0139 (2) | 0.0153 (3) | 0.0124 (2) | −0.00011 (18) | 0.00672 (18) | −0.00027 (18) |
C3 | 0.0166 (2) | 0.0165 (3) | 0.0141 (2) | 0.0015 (2) | 0.0079 (2) | 0.00275 (19) |
C4 | 0.0201 (3) | 0.0140 (3) | 0.0170 (2) | 0.0024 (2) | 0.0096 (2) | 0.0025 (2) |
C5 | 0.0183 (3) | 0.0131 (3) | 0.0151 (2) | 0.00170 (19) | 0.0085 (2) | 0.00006 (18) |
C6 | 0.0133 (2) | 0.0140 (2) | 0.0121 (2) | 0.00054 (18) | 0.00633 (18) | 0.00056 (18) |
C7 | 0.0158 (2) | 0.0161 (3) | 0.0122 (2) | −0.00085 (19) | 0.00683 (19) | 0.00053 (19) |
C8 | 0.0178 (2) | 0.0212 (3) | 0.0122 (2) | −0.0012 (2) | 0.0076 (2) | 0.0008 (2) |
Cl1—C2 | 1.7235 (7) | C4—C5 | 1.3865 (10) |
F1—C1 | 1.3476 (8) | C4—H4 | 0.9500 |
N1—C7 | 1.2687 (9) | C5—C6 | 1.4007 (9) |
N1—C8 | 1.4568 (9) | C5—H5 | 0.9500 |
C1—C2 | 1.3878 (9) | C6—C7 | 1.4733 (9) |
C1—C6 | 1.3906 (9) | C7—H7 | 0.9500 |
C2—C3 | 1.3882 (9) | C8—C8i | 1.5267 (13) |
C3—C4 | 1.3934 (10) | C8—H8A | 0.9900 |
C3—H3 | 0.9500 | C8—H8B | 0.9900 |
C7—N1—C8 | 116.79 (6) | C4—C5—H5 | 119.5 |
F1—C1—C2 | 118.62 (6) | C6—C5—H5 | 119.5 |
F1—C1—C6 | 119.48 (6) | C1—C6—C5 | 117.68 (6) |
C2—C1—C6 | 121.90 (6) | C1—C6—C7 | 119.95 (6) |
C1—C2—C3 | 119.61 (6) | C5—C6—C7 | 122.33 (6) |
C1—C2—Cl1 | 119.54 (5) | N1—C7—C6 | 121.26 (6) |
C3—C2—Cl1 | 120.84 (5) | N1—C7—H7 | 119.4 |
C2—C3—C4 | 119.62 (6) | C6—C7—H7 | 119.4 |
C2—C3—H3 | 120.2 | N1—C8—C8i | 109.32 (7) |
C4—C3—H3 | 120.2 | N1—C8—H8A | 109.8 |
C5—C4—C3 | 120.12 (6) | C8i—C8—H8A | 109.8 |
C5—C4—H4 | 119.9 | N1—C8—H8B | 109.8 |
C3—C4—H4 | 119.9 | C8i—C8—H8B | 109.8 |
C4—C5—C6 | 121.07 (6) | H8A—C8—H8B | 108.3 |
F1—C1—C2—C3 | 179.08 (6) | C2—C1—C6—C5 | 1.11 (9) |
C6—C1—C2—C3 | −1.35 (10) | F1—C1—C6—C7 | 2.90 (9) |
F1—C1—C2—Cl1 | −2.49 (8) | C2—C1—C6—C7 | −176.66 (6) |
C6—C1—C2—Cl1 | 177.08 (5) | C4—C5—C6—C1 | −0.31 (10) |
C1—C2—C3—C4 | 0.78 (10) | C4—C5—C6—C7 | 177.39 (6) |
Cl1—C2—C3—C4 | −177.63 (5) | C8—N1—C7—C6 | −177.18 (6) |
C2—C3—C4—C5 | −0.01 (10) | C1—C6—C7—N1 | −178.79 (6) |
C3—C4—C5—C6 | −0.22 (11) | C5—C6—C7—N1 | 3.55 (10) |
F1—C1—C6—C5 | −179.33 (6) | C7—N1—C8—C8i | 117.01 (8) |
Symmetry code: (i) −x+2, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C16H12Cl2F2N2 |
Mr | 341.18 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 7.2249 (2), 11.3676 (2), 10.3368 (2) |
β (°) | 120.906 (1) |
V (Å3) | 728.42 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.46 |
Crystal size (mm) | 0.52 × 0.41 × 0.29 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.794, 0.878 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 16842, 3821, 3403 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.857 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.088, 1.05 |
No. of reflections | 3821 |
No. of parameters | 100 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.45, −0.35 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).
Schiff bases are among the most prevalent mixed-donor ligands in the field of coordination chemistry in which there has been growing interest, mainly because of their wide application in areas such as biochemistry, synthesis, and catalysis (Pal et al., 2005; Hou et al., 2001; Ren et al., 2002). Many Schiff base complexes have been structurally characterized, but only a relatively small number of free Schiff bases have had their X-ray structures reported (Calligaris & Randaccio, 1987). As an extension of our work (Fun, Kargar & Kia 2008; Fun, Kia & Kargar 2008) on the structural characterization of Schiff base ligands, the title compound (I), is reported here.
The molecule of the title compound (Fig. 1), adopts an E configuration with respect to the azomethine C═N bond. The bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable with the values found in related structures (Fun & Kia 2008a,b; Fun, Kargar & Kia 2008; Fun, Kia & Kargar 2008). The two planar units are parallel but extend in opposite directions from the dimethylene bridge. The interesting feature of the crystal structure is the short intermolecular Cl···F interactions [symmetry code: x, -1/2 - y, -1/2 + z] with a distance of 3.1747 (5) Å, which is shorter than the sum of the van der Waals radii of these atoms. These interactions link neighbouring molecules along the b-axis. The crystal structure is further stabilized by π–π interactions with a centroid to centroid distance of 3.5244 (4) Å [Cg1–Cg1; symmetry code, 2 - x, -y, -z; Cg1 is the centroid of the C1–C6 benzene ring].