Download citation
Download citation
link to html
In the title compound, [Cr2Ni(C16H14N2O2)2(CN)4(C10H24N4)]·2CH3OH, each [Cr(salen)(CN)2] unit {salen is 2,2′-[ethane-1,2-diylbis(nitrilo­methyl­idyne)]diphenolate} acts as a monodentate ligand through one of its two cyanide groups N bound to a central [Ni(cyclam)]2+ core (cyclam is 1,4,8,11-tetra­azacyclo­tetra­deca­ne). Each CrIII ion is coordinated by two N and two O atoms from a salen ligand situated in the equatorial plane with two trans cyanide C atoms, yielding a distorted octa­hedral coordination geometry. The NiII atom lies on an inversion center and is octa­hedrally coordinated by a cyclam ligand lying in the equatorial plane and by two cyanide N atoms. The asymmetric unit contains one half of the complex mol­ecule and a methanol solvent mol­ecule. In the crystal structure, the complex mol­ecule is linked to the methanol solvent mol­ecules via O—H...O and N—H...O hydrogen bonds. Individual complex mol­ecules are linked by C—H...N hydrogen bonds, forming chains along b.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536810016995/sj2793sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536810016995/sj2793Isup2.hkl
Contains datablock I

CCDC reference: 781213

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.054
  • wR factor = 0.132
  • Data-to-parameter ratio = 17.1

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT230_ALERT_2_B Hirshfeld Test Diff for N3 -- C9 .. 10.16 su
Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.97 PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Ni1 -- N3 .. 9.08 su PLAT420_ALERT_2_C D-H Without Acceptor N6 - H22 ... ? PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ..... 9 PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 40 PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 100
Alert level G PLAT083_ALERT_2_G SHELXL Second Parameter in WGHT Unusually Large. 5.77 PLAT793_ALERT_4_G The Model has Chirality at N5 (Verify) .... R PLAT793_ALERT_4_G The Model has Chirality at N6 (Verify) .... R
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 6 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Cyanide-bridged infinite systems (or Prussian blue analogues) and high-spin clusters have attracted great research interest due to their unique magnetic properties, including high-Tc superconducting magnets and photoinduced magnetization. Among these interesting researches, low-dimensional complexes as well as polynuclear clusters have attracted special attention, because they can be used to investigate the inter-metallic magnetic coupling quantitatively (Lescouëzec et al., 2005).

Recently, a new cyanide-containing building block K[Cr(salen)(CN)2] (salen2- = N,N'- bis(salicyl)ethylenediaminate) with two trans cyanide groups has been exploited to assemble cyanide-bridged low-dimensional complexes (Ni et al., 2008). By using this new building block, we report here the synthesis and crystal structure of the title compound, [Cr(salen)(CN)2]2[Ni(cyclam)].CH3OH.

Complex I consists of a trinuclear cluster and one methanol solvate molecule. As shown in Fig. 1, in this trinuclear cluster, the [Cr(salen)(CN)2] unit acts as a monodentate ligand through one of its two cyanide groups toward a central [Ni(cyclam)]2+ core. The nickel atom is in an axially elongated octahedral environment. Four nitrogen atoms from the cyclam ligand form the equatorial plane. Two cyanide nitrogen atoms occupy the axial positions. The complex are linked with the methanol solvate molecules via O—H···O and N—H···O hydrogen bonds (Fig. 2). The individual complex molecules are linked by C—H···N hydrogen bonds to form chains along b.

Related literature top

For general background to cyanide-bridged low-dimensional complexes and polynuclear clusters, see: Lescouëzec et al. (2005). For a related structure, see: Ni et al. (2008). For synthesis of the complex components, see: Yamada et al. (1969); Bosnich et al. (1965).

Experimental top

K[Cr(salen)(CN)2].H2O was synthesized according to the procedure described in the literature (Yamada et al., 1969). Ni(cyclam)(ClO4)2 was synthesized as described previously (Bosnich et al., (1965).

A solution of K[Cr(salen)(CN)2].H2O (79.6 mg, 0.2 mmol) in methanol (5 ml) was added dropwise to a solution of Ni(cyclam)(ClO4)2 (45.5 mg, 0.1 mmol) in water (3 ml). The mixture was stirred at room temperature for 5 min s and then filtered. Orange block crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of the filtrate.

Refinement top

Aromatic H atoms were placed in calculated positions with C—H = 0.93 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Structure description top

Cyanide-bridged infinite systems (or Prussian blue analogues) and high-spin clusters have attracted great research interest due to their unique magnetic properties, including high-Tc superconducting magnets and photoinduced magnetization. Among these interesting researches, low-dimensional complexes as well as polynuclear clusters have attracted special attention, because they can be used to investigate the inter-metallic magnetic coupling quantitatively (Lescouëzec et al., 2005).

Recently, a new cyanide-containing building block K[Cr(salen)(CN)2] (salen2- = N,N'- bis(salicyl)ethylenediaminate) with two trans cyanide groups has been exploited to assemble cyanide-bridged low-dimensional complexes (Ni et al., 2008). By using this new building block, we report here the synthesis and crystal structure of the title compound, [Cr(salen)(CN)2]2[Ni(cyclam)].CH3OH.

Complex I consists of a trinuclear cluster and one methanol solvate molecule. As shown in Fig. 1, in this trinuclear cluster, the [Cr(salen)(CN)2] unit acts as a monodentate ligand through one of its two cyanide groups toward a central [Ni(cyclam)]2+ core. The nickel atom is in an axially elongated octahedral environment. Four nitrogen atoms from the cyclam ligand form the equatorial plane. Two cyanide nitrogen atoms occupy the axial positions. The complex are linked with the methanol solvate molecules via O—H···O and N—H···O hydrogen bonds (Fig. 2). The individual complex molecules are linked by C—H···N hydrogen bonds to form chains along b.

For general background to cyanide-bridged low-dimensional complexes and polynuclear clusters, see: Lescouëzec et al. (2005). For a related structure, see: Ni et al. (2008). For synthesis of the complex components, see: Yamada et al. (1969); Bosnich et al. (1965).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), shown with 50% probability displacement ellipsoids.The unlabeled atoms are derived from the reference atoms by means of the (2-x, -y, 2-z) symmetry transformation.
[Figure 2] Fig. 2. Packing diagram viewed down the c axis, The O—H···O and N—H···O hydrogen bonds are shown as dotted lines.
Di-µ2-cyanido-dicyanidobis{2,2'-[ethane-1,2- diylbis(nitrilomethylidyne)]diphenolato}(1,4,8,11- tetraazacyclotetradecane)dichromium(III)nickel(II) methanol disolvate top
Crystal data top
[Cr2Ni(C16H14N2O2)2(CN)4(C10H24N4)]·2CH4OF(000) = 1112
Mr = 1063.77Dx = 1.477 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7889 reflections
a = 9.5711 (19) Åθ = 2.2–27.9°
b = 18.936 (4) ŵ = 0.90 mm1
c = 13.593 (3) ÅT = 100 K
β = 103.93 (3)°Block, orange
V = 2391.1 (9) Å30.25 × 0.15 × 0.09 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
5363 independent reflections
Radiation source: fine-focus sealed tube5077 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
Detector resolution: 8.366 pixels mm-1θmax = 27.5°, θmin = 3.2°
φ and ω scansh = 012
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 024
Tmin = 0.851, Tmax = 0.922l = 1717
5363 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.0531P)2 + 5.7746P]
where P = (Fo2 + 2Fc2)/3
5363 reflections(Δ/σ)max = 0.001
314 parametersΔρmax = 0.76 e Å3
0 restraintsΔρmin = 0.76 e Å3
Crystal data top
[Cr2Ni(C16H14N2O2)2(CN)4(C10H24N4)]·2CH4OV = 2391.1 (9) Å3
Mr = 1063.77Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.5711 (19) ŵ = 0.90 mm1
b = 18.936 (4) ÅT = 100 K
c = 13.593 (3) Å0.25 × 0.15 × 0.09 mm
β = 103.93 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5363 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5077 reflections with I > 2σ(I)
Tmin = 0.851, Tmax = 0.922Rint = 0.000
5363 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.16Δρmax = 0.76 e Å3
5363 reflectionsΔρmin = 0.76 e Å3
314 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.2639 (2)0.12757 (10)1.40979 (14)0.0198 (4)
C11.3690 (3)0.10694 (14)1.4854 (2)0.0196 (5)
C21.3393 (3)0.09542 (15)1.5811 (2)0.0238 (6)
H11.24660.10311.58890.029*
C31.4453 (4)0.07288 (16)1.6633 (2)0.0292 (6)
H21.42310.06711.72580.035*
C41.5836 (4)0.05875 (17)1.6546 (2)0.0302 (7)
H31.65320.04241.71000.036*
C51.6166 (3)0.06930 (15)1.5626 (2)0.0249 (6)
H41.70950.06001.55630.030*
C61.5121 (3)0.09400 (14)1.4777 (2)0.0205 (5)
C71.5585 (3)0.10267 (15)1.3849 (2)0.0211 (5)
H51.65030.08711.38400.025*
N11.4815 (2)0.13043 (12)1.30349 (17)0.0181 (4)
Cr11.28346 (4)0.17173 (2)1.28585 (3)0.01505 (12)
C81.3751 (3)0.26188 (15)1.3624 (2)0.0211 (5)
N21.4268 (3)0.31239 (15)1.4018 (2)0.0315 (6)
C91.1978 (3)0.08685 (13)1.19052 (19)0.0150 (5)
N31.1395 (3)0.05280 (14)1.1224 (2)0.0262 (5)
O21.08976 (19)0.21092 (10)1.25226 (14)0.0174 (4)
C101.0208 (3)0.23457 (13)1.1621 (2)0.0171 (5)
C110.8713 (3)0.24589 (14)1.1438 (2)0.0201 (5)
H60.82540.23721.19550.024*
C120.7910 (3)0.26948 (15)1.0515 (2)0.0230 (6)
H70.69240.27601.04200.028*
C130.8559 (3)0.28365 (16)0.9720 (2)0.0263 (6)
H80.80130.29890.90950.032*
C141.0025 (3)0.27454 (15)0.9879 (2)0.0226 (5)
H91.04690.28520.93590.027*
C151.0869 (3)0.24956 (14)1.0807 (2)0.0183 (5)
C161.2394 (3)0.24080 (14)1.0865 (2)0.0205 (5)
H101.27360.25601.03160.025*
N41.3299 (2)0.21365 (12)1.16162 (17)0.0179 (4)
C171.4833 (3)0.20758 (16)1.1619 (2)0.0231 (6)
H111.53740.24631.19970.028*
H121.49560.20891.09320.028*
C181.5359 (3)0.13719 (16)1.2118 (2)0.0222 (5)
H131.50060.09861.16560.027*
H141.64030.13581.22940.027*
Ni11.00000.00001.00000.01755 (13)
C191.2881 (3)0.00106 (16)0.9439 (2)0.0234 (6)
H151.32930.02851.00190.028*
H161.34130.00730.89260.028*
N51.1361 (2)0.01852 (13)0.90325 (18)0.0207 (5)
H171.10260.00780.84650.025*
C201.1149 (3)0.09359 (15)0.8731 (2)0.0240 (6)
H181.14850.10180.81220.029*
H191.16980.12350.92650.029*
C210.9557 (3)0.11151 (16)0.8536 (2)0.0250 (6)
H200.94090.16110.83610.030*
H210.90140.08370.79730.030*
N60.9049 (3)0.09605 (13)0.94632 (17)0.0211 (5)
H220.94180.12980.99310.025*
C220.7465 (3)0.09755 (16)0.9297 (2)0.0239 (6)
H230.70450.06460.87620.029*
H240.71180.14440.90740.029*
C230.6967 (3)0.07874 (16)1.0240 (2)0.0251 (6)
H250.59620.09191.01310.030*
H260.75070.10711.07970.030*
C240.9633 (4)0.04217 (18)0.3659 (3)0.0322 (7)
H271.05370.02350.35900.048*
H280.89670.00410.36490.048*
H290.97730.06720.42890.048*
O30.9074 (2)0.08903 (12)0.28438 (17)0.0290 (5)
H300.96660.12010.28300.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0190 (9)0.0243 (9)0.0166 (9)0.0000 (7)0.0051 (7)0.0010 (7)
C10.0251 (13)0.0169 (12)0.0168 (12)0.0006 (10)0.0047 (10)0.0012 (9)
C20.0291 (14)0.0225 (13)0.0217 (13)0.0005 (11)0.0098 (11)0.0008 (10)
C30.0450 (18)0.0252 (14)0.0165 (13)0.0004 (13)0.0057 (12)0.0009 (11)
C40.0352 (16)0.0289 (15)0.0213 (14)0.0003 (12)0.0035 (12)0.0014 (11)
C50.0224 (13)0.0236 (13)0.0252 (14)0.0003 (11)0.0009 (11)0.0004 (11)
C60.0221 (13)0.0190 (12)0.0187 (12)0.0047 (10)0.0018 (10)0.0033 (10)
C70.0165 (12)0.0234 (13)0.0233 (13)0.0001 (10)0.0047 (10)0.0046 (10)
N10.0161 (10)0.0236 (11)0.0163 (10)0.0017 (8)0.0073 (8)0.0038 (8)
Cr10.0139 (2)0.0187 (2)0.0133 (2)0.00180 (14)0.00477 (15)0.00241 (14)
C80.0179 (12)0.0277 (14)0.0182 (12)0.0023 (10)0.0055 (10)0.0047 (10)
N20.0283 (13)0.0338 (14)0.0339 (14)0.0063 (11)0.0102 (11)0.0067 (11)
C90.0132 (10)0.0153 (11)0.0165 (11)0.0002 (9)0.0035 (9)0.0035 (9)
N30.0231 (12)0.0284 (13)0.0282 (13)0.0007 (10)0.0083 (10)0.0018 (10)
O20.0157 (8)0.0225 (9)0.0151 (9)0.0011 (7)0.0056 (7)0.0000 (7)
C100.0179 (12)0.0165 (11)0.0167 (12)0.0006 (9)0.0038 (9)0.0032 (9)
C110.0189 (12)0.0195 (12)0.0239 (13)0.0014 (10)0.0091 (10)0.0020 (10)
C120.0171 (12)0.0222 (13)0.0295 (15)0.0033 (10)0.0049 (11)0.0042 (11)
C130.0261 (14)0.0271 (14)0.0253 (14)0.0058 (11)0.0057 (11)0.0074 (11)
C140.0241 (13)0.0227 (13)0.0219 (13)0.0020 (10)0.0071 (11)0.0031 (10)
C150.0194 (12)0.0178 (12)0.0192 (12)0.0003 (9)0.0077 (10)0.0005 (9)
C160.0234 (13)0.0211 (12)0.0203 (13)0.0021 (10)0.0121 (11)0.0000 (10)
N40.0155 (10)0.0221 (11)0.0188 (11)0.0031 (8)0.0092 (8)0.0009 (8)
C170.0155 (12)0.0356 (15)0.0204 (13)0.0018 (11)0.0084 (10)0.0014 (11)
C180.0185 (12)0.0295 (14)0.0205 (13)0.0013 (10)0.0082 (10)0.0025 (11)
Ni10.0168 (2)0.0196 (2)0.0167 (2)0.00043 (17)0.00499 (18)0.00011 (17)
C190.0179 (13)0.0315 (15)0.0223 (14)0.0001 (10)0.0077 (11)0.0021 (11)
N50.0202 (11)0.0236 (11)0.0187 (11)0.0001 (9)0.0053 (9)0.0027 (9)
C200.0256 (13)0.0237 (13)0.0241 (13)0.0018 (11)0.0089 (11)0.0020 (11)
C210.0316 (15)0.0248 (14)0.0198 (13)0.0036 (11)0.0087 (11)0.0025 (10)
N60.0221 (11)0.0230 (11)0.0176 (11)0.0009 (9)0.0038 (9)0.0010 (9)
C220.0224 (13)0.0257 (14)0.0227 (13)0.0042 (11)0.0041 (11)0.0007 (11)
C230.0218 (13)0.0303 (15)0.0235 (14)0.0040 (11)0.0060 (11)0.0025 (11)
C240.0296 (15)0.0342 (17)0.0319 (16)0.0043 (13)0.0059 (13)0.0031 (13)
O30.0240 (10)0.0339 (11)0.0288 (11)0.0053 (9)0.0058 (9)0.0000 (9)
Geometric parameters (Å, º) top
O1—C11.313 (3)C16—H100.9300
O1—Cr11.930 (2)N4—C171.472 (3)
C1—C21.413 (4)C17—C181.525 (4)
C1—C61.420 (4)C17—H110.9700
C2—C31.384 (4)C17—H120.9700
C2—H10.9300C18—H130.9700
C3—C41.383 (5)C18—H140.9700
C3—H20.9300Ni1—N6i2.086 (2)
C4—C51.376 (5)Ni1—N62.086 (2)
C4—H30.9300Ni1—N5i2.092 (2)
C5—C61.413 (4)Ni1—N52.092 (2)
C5—H40.9300Ni1—N3i2.117 (3)
C6—C71.443 (4)C19—N51.473 (4)
C7—N11.285 (4)C19—C23i1.531 (4)
C7—H50.9300C19—H150.9700
N1—C181.467 (3)C19—H160.9700
N1—Cr12.011 (2)N5—C201.480 (4)
Cr1—O21.9464 (19)N5—H170.9100
Cr1—N42.010 (2)C20—C211.521 (4)
Cr1—C82.080 (3)C20—H180.9700
Cr1—C92.103 (2)C20—H190.9700
C8—N21.148 (4)C21—N61.485 (4)
C9—N31.156 (4)C21—H200.9700
N3—Ni12.117 (3)C21—H210.9700
O2—C101.322 (3)N6—C221.478 (4)
C10—C111.408 (4)N6—H220.9100
C10—C151.429 (4)C22—C231.513 (4)
C11—C121.379 (4)C22—H230.9700
C11—H60.9300C22—H240.9700
C12—C131.396 (4)C23—C19i1.531 (4)
C12—H70.9300C23—H250.9700
C13—C141.378 (4)C23—H260.9700
C13—H80.9300C24—O31.420 (4)
C14—C151.406 (4)C24—H270.9600
C14—H90.9300C24—H280.9600
C15—C161.453 (4)C24—H290.9600
C16—N41.277 (4)O3—H300.8200
C1—O1—Cr1126.52 (18)C18—C17—H12110.3
O1—C1—C2118.7 (3)H11—C17—H12108.6
O1—C1—C6124.3 (2)N1—C18—C17107.9 (2)
C2—C1—C6117.0 (3)N1—C18—H13110.1
C3—C2—C1121.3 (3)C17—C18—H13110.1
C3—C2—H1119.4N1—C18—H14110.1
C1—C2—H1119.4C17—C18—H14110.1
C4—C3—C2121.4 (3)H13—C18—H14108.4
C4—C3—H2119.3N6i—Ni1—N6180.000 (1)
C2—C3—H2119.3N6i—Ni1—N5i85.37 (9)
C5—C4—C3118.9 (3)N6—Ni1—N5i94.63 (9)
C5—C4—H3120.6N6i—Ni1—N594.63 (9)
C3—C4—H3120.6N6—Ni1—N585.37 (9)
C4—C5—C6121.2 (3)N5i—Ni1—N5180.0
C4—C5—H4119.4N6i—Ni1—N3i90.15 (10)
C6—C5—H4119.4N6—Ni1—N3i89.85 (10)
C5—C6—C1120.1 (3)N5i—Ni1—N3i92.54 (10)
C5—C6—C7116.4 (3)N5—Ni1—N3i87.46 (9)
C1—C6—C7123.4 (2)N6i—Ni1—N389.85 (10)
N1—C7—C6124.4 (3)N6—Ni1—N390.15 (10)
N1—C7—H5117.8N5i—Ni1—N387.46 (9)
C6—C7—H5117.8N5—Ni1—N392.54 (10)
C7—N1—C18121.3 (2)N3i—Ni1—N3180.0
C7—N1—Cr1126.18 (19)N5—C19—C23i111.5 (2)
C18—N1—Cr1112.47 (17)N5—C19—H15109.3
O1—Cr1—O294.74 (8)C23i—C19—H15109.3
O1—Cr1—N4172.76 (9)N5—C19—H16109.3
O2—Cr1—N492.47 (9)C23i—C19—H16109.3
O1—Cr1—N190.82 (9)H15—C19—H16108.0
O2—Cr1—N1173.49 (9)C19—N5—C20113.8 (2)
N4—Cr1—N182.02 (10)C19—N5—Ni1115.47 (18)
O1—Cr1—C892.10 (10)C20—N5—Ni1105.70 (17)
O2—Cr1—C893.88 (10)C19—N5—H17107.2
N4—Cr1—C886.81 (10)C20—N5—H17107.2
N1—Cr1—C889.29 (10)Ni1—N5—H17107.2
O1—Cr1—C995.82 (9)N5—C20—C21109.1 (2)
O2—Cr1—C986.51 (9)N5—C20—H18109.9
N4—Cr1—C985.20 (10)C21—C20—H18109.9
N1—Cr1—C989.57 (9)N5—C20—H19109.9
C8—Cr1—C9172.01 (11)C21—C20—H19109.9
N2—C8—Cr1177.7 (3)H18—C20—H19108.3
N3—C9—Cr1164.0 (2)N6—C21—C20109.1 (2)
C9—N3—Ni1170.0 (2)N6—C21—H20109.9
C10—O2—Cr1125.54 (16)C20—C21—H20109.9
O2—C10—C11118.3 (2)N6—C21—H21109.9
O2—C10—C15124.7 (2)C20—C21—H21109.9
C11—C10—C15117.0 (2)H20—C21—H21108.3
C12—C11—C10122.0 (3)C22—N6—C21113.6 (2)
C12—C11—H6119.0C22—N6—Ni1114.53 (18)
C10—C11—H6119.0C21—N6—Ni1105.33 (17)
C11—C12—C13120.8 (3)C22—N6—H22107.7
C11—C12—H7119.6C21—N6—H22107.7
C13—C12—H7119.6Ni1—N6—H22107.7
C14—C13—C12118.7 (3)N6—C22—C23112.8 (2)
C14—C13—H8120.6N6—C22—H23109.0
C12—C13—H8120.6C23—C22—H23109.0
C13—C14—C15121.7 (3)N6—C22—H24109.0
C13—C14—H9119.1C23—C22—H24109.0
C15—C14—H9119.1H23—C22—H24107.8
C14—C15—C10119.7 (2)C22—C23—C19i116.1 (2)
C14—C15—C16116.1 (2)C22—C23—H25108.3
C10—C15—C16124.2 (2)C19i—C23—H25108.3
N4—C16—C15124.6 (2)C22—C23—H26108.3
N4—C16—H10117.7C19i—C23—H26108.3
C15—C16—H10117.7H25—C23—H26107.4
C16—N4—C17121.2 (2)O3—C24—H27109.5
C16—N4—Cr1125.90 (19)O3—C24—H28109.5
C17—N4—Cr1112.89 (17)H27—C24—H28109.5
N4—C17—C18107.0 (2)O3—C24—H29109.5
N4—C17—H11110.3H27—C24—H29109.5
C18—C17—H11110.3H28—C24—H29109.5
N4—C17—H12110.3C24—O3—H30109.5
Symmetry code: (i) x+2, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H30···O2ii0.822.182.989 (3)168
N5—H17···O3iii0.912.343.212 (3)161
C17—H12···N2iv0.972.563.467 (4)156
Symmetry codes: (ii) x, y, z1; (iii) x+2, y, z+1; (iv) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cr2Ni(C16H14N2O2)2(CN)4(C10H24N4)]·2CH4O
Mr1063.77
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.5711 (19), 18.936 (4), 13.593 (3)
β (°) 103.93 (3)
V3)2391.1 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.90
Crystal size (mm)0.25 × 0.15 × 0.09
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.851, 0.922
No. of measured, independent and
observed [I > 2σ(I)] reflections
5363, 5363, 5077
Rint0.000
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.132, 1.16
No. of reflections5363
No. of parameters314
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.76, 0.76

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H30···O2i0.822.182.989 (3)168.0
N5—H17···O3ii0.912.343.212 (3)161.4
C17—H12···N2iii0.972.563.467 (4)156.2
Symmetry codes: (i) x, y, z1; (ii) x+2, y, z+1; (iii) x, y+1/2, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds