Download citation
Download citation
link to html
The title compound, [Cd(C9H10NS2)2(C5H5N)], features a five-coordinate CdII atom, being coordinated by two nearly symmetrically chelating di­thio­carbamate ligands and a pyridine N atom. The resulting NS4 donor set defines a distorted coordination geometry tending toward square pyramidal. In the mol­ecular packing, centrosymmetric ten-membered {...HCNCS}2 synthons arise as a result of methyl­ene-C—H...S inter­actions. These are connected into layers parallel to (10-2) via weak methyl-C—H...π(phen­yl) inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2414314615024293/sj4002sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2414314615024293/sj4002Isup2.hkl
Contains datablock I

CCDC reference: 851623

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.020
  • wR factor = 0.051
  • Data-to-parameter ratio = 20.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 11 Report
Alert level G PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600 2 Note
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 1 ALERT level C = Check. Ensure it is not caused by an omission or oversight 1 ALERT level G = General information/check it is not something unexpected 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Synthesis and crystallization top

Sodium N-benzyl, N-methyl­dithio­carbamate (2.00 g, 9.13 mmol) was dissolved in acetone (25 mL) and placed in a 250 mL round bottom flask fitted with a dropping funnel, reflux condenser and an inert gas line. Cd(NO3)2·3H2O (1.32 g, 4.54 mmol) was added, and the milky white solution was stirred for 30 min. At this point, pyridine (30 mL) was added to give a clear and colourless solution, and stirring was continued for a further 1 h. Filtration and slow evaporation of the reaction mixture afforded the title compound, Cd[S2CNMe(CH2Ph)]2(NC5H5), as colourless crystals. Yield 87%, M.pt: 135 °C. Anal. Calc. for C23H25CdN3S4 (MW 584.10): C 47.25, H 4.28, N 7.19, S 21.91; Found C 46.54, H 5.25, N 7.74, S 23.31 %. 1H NMR (400 MHz, CDCl3): δ = 3.40 [s, 6H, 2(CH3)], 5.19 [s, 4H, 2(CH2)], 7.25–7.37 ppm [complex pattern, 10H, aromatic 2(C6H5)], 7.48-9.03 [complex pattern, 5H, C5H5N]. TGA: 84–138°C (5.2% wt. loss); 138–156°C (2.9%); 146–210°C (5.5%); 210–260°C (1.1%); 260–400°C (59.1%) 26.2% residue. Calc. for CdS, 24.7%.

Refinement top

The carbon-bound H-atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2–1.5Uequiv(C).

Experimental top

Sodium N-benzyl, N-methyldithiocarbamate (2.00 g, 9.13 mmol) was dissolved in acetone (25 mL) and placed in a 250 mL round-bottom flask fitted with a dropping funnel, reflux condenser and an inert gas line. Cd(NO3)2·3H2O (1.32 g, 4.54 mmol) was added, and the milky white solution was stirred for 30 min. At this point, pyridine (30 mL) was added to give a clear and colourless solution, and stirring was continued for a further 1 h. Filtration and slow evaporation of the reaction mixture afforded the title compound, Cd[S2CNMe(CH2Ph)]2(NC5H5), as colourless crystals. Yield 87%, M.p. 135°C. Anal. calc. for C23H25CdN3S4 (MW 584.10): C 47.25, H 4.28, N 7.19, S 21.91; found C 46.54, H 5.25, N 7.74, S 23.31 %. 1H NMR (400 MHz, CDCl3): δ = 3.40 [s, 6H, 2(CH3)], 5.19 [s, 4H, 2(CH2)], 7.25–7.37 p.p.m. [complex pattern, 10H, aromatic 2(C6H5)], 7.48–9.03 [complex pattern, 5H, C5H5N]. TGA: 84–138°C (5.2% wt. loss); 138–156°C (2.9%); 146–210°C (5.5%); 210–260°C (1.1%); 260–400°C (59.1%) 26.2% residue. calc. for CdS, 24.7%.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

Binary cadmium dithiocarbamates self-assemble via secondary Cd···S interactions in their crystal structures (Tiekink, 2003) but, the addition of base can disrupt these networks. A practical application of this is that the compounds become more suitable as synthetic precursors for the generation of CdS nanoparticles (Ehsan et al., 2012; Tan et al. 2013; Mlowe et al., 2014). It was in this connection that the title compound was synthesized.

The cadmium atom in Cd[S2CNMe(CH2Ph)]2(NC5H5), Fig. 1, is chelated by two almost symmetrically chelating dithiocarbamate ligands and the pyridine-N atom. The near equivalence in the Cd—S bond lengths [i.e. Cd—S1–S4 = 2.5868 (5), 2.6421 (5), 2.5908 (4) and 2.6473 (5) Å, respectively] is reflected in the experimental equivalence in the associated C—S bond lengths that span the narrow range 1.7191 (17) –1.7284 (16) Å. The dihedral angle between the chelate rings is 43.36 (3)°, and the dihedral angles formed between the S1- and S3-chelate rings and the least-squares plane through the pyridine ring are 75.55 (6) and 75.99 (6)°, indicating that the pyridine molecule is symmetrically disposed with respect to each chelate ring. An indicator of coordination geometry in five-coordinate structures is the value of τ (Addison et al., 1984). In the present structure τ computes to 0.41 which is nearer to an ideal square pyramidal geometry (τ = 0) than to an ideal trigonal bipyramidal geometry with τ = 1.0. The presence acute ligand bite angles [i.e. S1—Cd—S2 is 69.295 (13)° and S3—Cd—S4 is 69.094 (13)°] is partially responsible for the observed distortion. The gross structural features just described, match literature precedents (Wei et al. 2005; Ehsan et al., 2012; Mlowe et al., 2014).

The most prominent feature of the molecular packing is the formation of supramolecular layers parallel to (102), Fig. 2. Thus, centrosymmetrically related molecules are connected via methylene-C—H···S interactions (Table 1) resulting in 10-membered {···HCNCS}2 synthons. The dimers are connected into a two-dimensional array via methyl-C—H···π(phenyl) interactions.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of Cd[S2CNMe(CH2Ph)]2(NC5H5) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the supramolecular layer parallel to (102) in the crystal structure of the title compound. The layers are sustained by C—H···S and C—H···π interactions, shown as orange and purple dashed lines, respectively.
Bis(N-benzyl-N-methyldithiocarbamato-κ2S,S')(pyridine-κN)cadmium(II) top
Crystal data top
[Cd(C9H10NS2)2(C5H5N)]F(000) = 1184
Mr = 584.10Dx = 1.575 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.9361 (6) ÅCell parameters from 9940 reflections
b = 14.832 (1) Åθ = 4.7–56.6°
c = 18.9680 (13) ŵ = 1.24 mm1
β = 101.613 (1)°T = 100 K
V = 2462.6 (3) Å3Block, yellow
Z = 40.40 × 0.40 × 0.40 mm
Data collection top
Bruker SMART APEX
diffractometer
5650 independent reflections
Radiation source: fine-focus sealed tube5201 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.636, Tmax = 0.636k = 1919
30058 measured reflectionsl = 2424
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.020H-atom parameters constrained
wR(F2) = 0.051 w = 1/[σ2(Fo2) + (0.0237P)2 + 1.412P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
5650 reflectionsΔρmax = 0.41 e Å3
282 parametersΔρmin = 0.31 e Å3
Crystal data top
[Cd(C9H10NS2)2(C5H5N)]V = 2462.6 (3) Å3
Mr = 584.10Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.9361 (6) ŵ = 1.24 mm1
b = 14.832 (1) ÅT = 100 K
c = 18.9680 (13) Å0.40 × 0.40 × 0.40 mm
β = 101.613 (1)°
Data collection top
Bruker SMART APEX
diffractometer
5650 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5201 reflections with I > 2σ(I)
Tmin = 0.636, Tmax = 0.636Rint = 0.026
30058 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0200 restraints
wR(F2) = 0.051H-atom parameters constrained
S = 1.04Δρmax = 0.41 e Å3
5650 reflectionsΔρmin = 0.31 e Å3
282 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd0.22879 (2)0.27114 (2)0.48001 (2)0.01746 (4)
S10.11972 (5)0.22882 (3)0.34732 (2)0.01997 (9)
S20.11154 (5)0.10701 (3)0.47097 (2)0.02111 (9)
S30.12935 (5)0.33548 (3)0.58899 (2)0.01989 (9)
S40.25719 (4)0.44878 (3)0.48621 (2)0.01675 (8)
N10.01535 (16)0.06902 (9)0.33438 (7)0.0186 (3)
N20.14132 (15)0.51358 (9)0.59553 (7)0.0156 (3)
N30.48097 (16)0.23716 (9)0.51799 (8)0.0183 (3)
C10.06310 (17)0.12864 (11)0.38019 (9)0.0166 (3)
C20.0497 (2)0.08587 (13)0.25657 (9)0.0251 (4)
H2A0.12290.13560.24580.038*
H2B0.09380.03140.23130.038*
H2C0.04450.10180.24060.038*
C30.07418 (19)0.01537 (11)0.35810 (9)0.0213 (3)
H3A0.03050.02430.40990.026*
H3B0.03980.06610.33140.026*
C40.24685 (19)0.01729 (11)0.34673 (8)0.0192 (3)
C50.3330 (2)0.06057 (12)0.34563 (9)0.0222 (3)
H50.28310.11740.35230.027*
C60.4916 (2)0.05665 (13)0.33482 (10)0.0269 (4)
H60.54950.11060.33350.032*
C70.5647 (2)0.02603 (15)0.32604 (10)0.0301 (4)
H70.67300.02900.31860.036*
C80.4798 (2)0.10468 (13)0.32808 (10)0.0281 (4)
H80.52980.16150.32250.034*
C90.3221 (2)0.10036 (12)0.33824 (9)0.0232 (4)
H90.26460.15440.33950.028*
C100.17278 (17)0.44101 (11)0.56036 (8)0.0151 (3)
C110.06478 (19)0.50691 (12)0.65699 (9)0.0208 (3)
H11A0.03900.48360.64060.031*
H11B0.05990.56670.67830.031*
H11C0.12240.46600.69310.031*
C120.18704 (19)0.60540 (11)0.57864 (9)0.0187 (3)
H12A0.10290.64810.58080.022*
H12B0.20700.60670.52920.022*
C130.32917 (18)0.63419 (11)0.63151 (9)0.0168 (3)
C140.47127 (19)0.59832 (11)0.62688 (9)0.0199 (3)
H140.47930.55740.58930.024*
C150.60061 (19)0.62210 (12)0.67682 (9)0.0221 (3)
H150.69680.59720.67340.026*
C160.5905 (2)0.68217 (12)0.73185 (9)0.0235 (4)
H160.67950.69830.76600.028*
C170.4501 (2)0.71837 (12)0.73662 (10)0.0241 (4)
H170.44270.75980.77400.029*
C180.3198 (2)0.69417 (11)0.68669 (9)0.0206 (3)
H180.22370.71890.69040.025*
C190.5383 (2)0.15745 (12)0.50318 (9)0.0223 (3)
H190.47100.11360.47760.027*
C200.6921 (2)0.13664 (13)0.52385 (10)0.0255 (4)
H200.72970.07990.51210.031*
C210.7892 (2)0.19962 (13)0.56167 (10)0.0255 (4)
H210.89520.18720.57610.031*
C220.7303 (2)0.28154 (12)0.57855 (10)0.0240 (4)
H220.79490.32550.60560.029*
C230.57606 (19)0.29799 (12)0.55539 (9)0.0211 (3)
H230.53600.35440.56640.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd0.01342 (6)0.01678 (7)0.02104 (7)0.00078 (4)0.00073 (4)0.00360 (4)
S10.0214 (2)0.0189 (2)0.01913 (19)0.00597 (16)0.00304 (15)0.00025 (15)
S20.0254 (2)0.01795 (19)0.01831 (19)0.00568 (16)0.00052 (16)0.00007 (15)
S30.02097 (19)0.01831 (19)0.0215 (2)0.00438 (15)0.00700 (16)0.00030 (16)
S40.01800 (18)0.01699 (19)0.01633 (18)0.00039 (14)0.00602 (14)0.00006 (14)
N10.0186 (7)0.0169 (7)0.0195 (7)0.0030 (5)0.0019 (5)0.0024 (5)
N20.0136 (6)0.0177 (7)0.0157 (6)0.0006 (5)0.0035 (5)0.0013 (5)
N30.0158 (7)0.0186 (7)0.0201 (7)0.0001 (5)0.0024 (5)0.0002 (5)
C10.0129 (7)0.0167 (8)0.0203 (8)0.0011 (6)0.0036 (6)0.0021 (6)
C20.0276 (9)0.0283 (9)0.0188 (8)0.0064 (7)0.0033 (7)0.0054 (7)
C30.0225 (8)0.0141 (8)0.0253 (9)0.0027 (6)0.0000 (7)0.0022 (6)
C40.0229 (8)0.0193 (8)0.0145 (7)0.0036 (6)0.0017 (6)0.0003 (6)
C50.0255 (9)0.0206 (8)0.0206 (8)0.0025 (7)0.0047 (7)0.0014 (7)
C60.0276 (9)0.0312 (10)0.0230 (9)0.0029 (8)0.0081 (7)0.0012 (7)
C70.0228 (9)0.0444 (12)0.0239 (9)0.0064 (8)0.0063 (7)0.0046 (8)
C80.0310 (10)0.0298 (10)0.0229 (9)0.0140 (8)0.0038 (7)0.0033 (7)
C90.0294 (9)0.0193 (8)0.0197 (8)0.0039 (7)0.0021 (7)0.0015 (7)
C100.0101 (7)0.0186 (8)0.0153 (7)0.0003 (6)0.0002 (5)0.0006 (6)
C110.0196 (8)0.0266 (9)0.0175 (8)0.0003 (7)0.0070 (6)0.0047 (7)
C120.0197 (8)0.0162 (8)0.0197 (8)0.0026 (6)0.0024 (6)0.0005 (6)
C130.0192 (8)0.0134 (7)0.0180 (7)0.0003 (6)0.0046 (6)0.0022 (6)
C140.0215 (8)0.0182 (8)0.0214 (8)0.0018 (6)0.0076 (6)0.0013 (6)
C150.0176 (8)0.0242 (9)0.0255 (9)0.0019 (7)0.0070 (7)0.0022 (7)
C160.0231 (8)0.0259 (9)0.0213 (8)0.0089 (7)0.0038 (7)0.0002 (7)
C170.0308 (9)0.0206 (8)0.0219 (8)0.0052 (7)0.0079 (7)0.0058 (7)
C180.0222 (8)0.0164 (8)0.0243 (8)0.0010 (6)0.0075 (7)0.0009 (7)
C190.0214 (8)0.0219 (9)0.0240 (8)0.0012 (7)0.0053 (7)0.0027 (7)
C200.0243 (9)0.0246 (9)0.0293 (9)0.0081 (7)0.0096 (7)0.0019 (7)
C210.0155 (8)0.0308 (9)0.0304 (10)0.0036 (7)0.0054 (7)0.0094 (8)
C220.0174 (8)0.0233 (9)0.0294 (9)0.0040 (7)0.0000 (7)0.0042 (7)
C230.0183 (8)0.0186 (8)0.0254 (9)0.0004 (6)0.0023 (7)0.0008 (7)
Geometric parameters (Å, º) top
Cd—N32.2799 (14)C7—H70.9500
Cd—S12.5868 (5)C8—C91.384 (3)
Cd—S32.5908 (4)C8—H80.9500
Cd—S22.6421 (5)C9—H90.9500
Cd—S42.6473 (5)C11—H11A0.9800
S1—C11.7262 (17)C11—H11B0.9800
S2—C11.7191 (17)C11—H11C0.9800
S3—C101.7264 (17)C12—C131.513 (2)
S4—C101.7284 (16)C12—H12A0.9900
N1—C11.335 (2)C12—H12B0.9900
N1—C31.463 (2)C13—C181.389 (2)
N1—C21.467 (2)C13—C141.396 (2)
N2—C101.326 (2)C14—C151.385 (2)
N2—C111.469 (2)C14—H140.9500
N2—C121.475 (2)C15—C161.389 (2)
N3—C231.340 (2)C15—H150.9500
N3—C191.340 (2)C16—C171.384 (3)
C2—H2A0.9800C16—H160.9500
C2—H2B0.9800C17—C181.392 (2)
C2—H2C0.9800C17—H170.9500
C3—C41.515 (2)C18—H180.9500
C3—H3A0.9900C19—C201.386 (2)
C3—H3B0.9900C19—H190.9500
C4—C51.386 (2)C20—C211.375 (3)
C4—C91.397 (2)C20—H200.9500
C5—C61.392 (3)C21—C221.387 (3)
C5—H50.9500C21—H210.9500
C6—C71.384 (3)C22—C231.381 (2)
C6—H60.9500C22—H220.9500
C7—C81.388 (3)C23—H230.9500
N3—Cd—S1114.12 (4)C7—C8—H8120.0
N3—Cd—S3107.77 (4)C8—C9—C4120.63 (17)
S1—Cd—S3137.998 (15)C8—C9—H9119.7
N3—Cd—S299.83 (4)C4—C9—H9119.7
S1—Cd—S269.295 (13)N2—C10—S3119.60 (12)
S3—Cd—S2101.303 (14)N2—C10—S4121.79 (12)
N3—Cd—S497.24 (4)S3—C10—S4118.61 (9)
S1—Cd—S4107.379 (13)N2—C11—H11A109.5
S3—Cd—S469.094 (13)N2—C11—H11B109.5
S2—Cd—S4162.384 (14)H11A—C11—H11B109.5
C1—S1—Cd86.44 (6)N2—C11—H11C109.5
C1—S2—Cd84.82 (6)H11A—C11—H11C109.5
C10—S3—Cd87.02 (5)H11B—C11—H11C109.5
C10—S4—Cd85.19 (6)N2—C12—C13110.41 (13)
C1—N1—C3122.72 (14)N2—C12—H12A109.6
C1—N1—C2121.19 (14)C13—C12—H12A109.6
C3—N1—C2116.08 (13)N2—C12—H12B109.6
C10—N2—C11121.63 (14)C13—C12—H12B109.6
C10—N2—C12122.96 (13)H12A—C12—H12B108.1
C11—N2—C12115.34 (13)C18—C13—C14119.01 (15)
C23—N3—C19118.46 (15)C18—C13—C12120.71 (15)
C23—N3—Cd119.97 (11)C14—C13—C12120.24 (15)
C19—N3—Cd121.57 (11)C15—C14—C13120.30 (16)
N1—C1—S2121.43 (12)C15—C14—H14119.8
N1—C1—S1119.26 (12)C13—C14—H14119.8
S2—C1—S1119.30 (9)C14—C15—C16120.40 (16)
N1—C2—H2A109.5C14—C15—H15119.8
N1—C2—H2B109.5C16—C15—H15119.8
H2A—C2—H2B109.5C17—C16—C15119.65 (16)
N1—C2—H2C109.5C17—C16—H16120.2
H2A—C2—H2C109.5C15—C16—H16120.2
H2B—C2—H2C109.5C16—C17—C18120.03 (16)
N1—C3—C4113.03 (14)C16—C17—H17120.0
N1—C3—H3A109.0C18—C17—H17120.0
C4—C3—H3A109.0C13—C18—C17120.60 (16)
N1—C3—H3B109.0C13—C18—H18119.7
C4—C3—H3B109.0C17—C18—H18119.7
H3A—C3—H3B107.8N3—C19—C20122.40 (16)
C5—C4—C9118.70 (16)N3—C19—H19118.8
C5—C4—C3122.22 (15)C20—C19—H19118.8
C9—C4—C3119.08 (15)C21—C20—C19118.82 (17)
C4—C5—C6120.89 (16)C21—C20—H20120.6
C4—C5—H5119.6C19—C20—H20120.6
C6—C5—H5119.6C20—C21—C22119.14 (16)
C7—C6—C5119.79 (18)C20—C21—H21120.4
C7—C6—H6120.1C22—C21—H21120.4
C5—C6—H6120.1C23—C22—C21118.80 (17)
C6—C7—C8119.95 (18)C23—C22—H22120.6
C6—C7—H7120.0C21—C22—H22120.6
C8—C7—H7120.0N3—C23—C22122.35 (16)
C9—C8—C7120.04 (17)N3—C23—H23118.8
C9—C8—H8120.0C22—C23—H23118.8
C3—N1—C1—S24.2 (2)Cd—S3—C10—N2177.56 (12)
C2—N1—C1—S2176.90 (12)Cd—S3—C10—S42.63 (8)
C3—N1—C1—S1176.86 (12)Cd—S4—C10—N2177.61 (13)
C2—N1—C1—S12.0 (2)Cd—S4—C10—S32.58 (8)
Cd—S2—C1—N1177.38 (13)C10—N2—C12—C13100.13 (17)
Cd—S2—C1—S13.67 (9)C11—N2—C12—C1376.79 (17)
Cd—S1—C1—N1177.29 (13)N2—C12—C13—C18103.51 (17)
Cd—S1—C1—S23.74 (9)N2—C12—C13—C1474.33 (19)
C1—N1—C3—C4111.20 (17)C18—C13—C14—C150.2 (2)
C2—N1—C3—C467.76 (19)C12—C13—C14—C15177.64 (15)
N1—C3—C4—C527.0 (2)C13—C14—C15—C160.3 (3)
N1—C3—C4—C9154.03 (15)C14—C15—C16—C170.0 (3)
C9—C4—C5—C61.3 (3)C15—C16—C17—C180.4 (3)
C3—C4—C5—C6179.78 (16)C14—C13—C18—C170.1 (2)
C4—C5—C6—C70.9 (3)C12—C13—C18—C17177.98 (15)
C5—C6—C7—C80.0 (3)C16—C17—C18—C130.4 (3)
C6—C7—C8—C90.6 (3)C23—N3—C19—C201.3 (3)
C7—C8—C9—C40.2 (3)Cd—N3—C19—C20177.92 (13)
C5—C4—C9—C80.7 (3)N3—C19—C20—C210.8 (3)
C3—C4—C9—C8179.71 (16)C19—C20—C21—C220.6 (3)
C11—N2—C10—S32.3 (2)C20—C21—C22—C231.4 (3)
C12—N2—C10—S3174.39 (11)C19—N3—C23—C220.5 (3)
C11—N2—C10—S4177.86 (11)Cd—N3—C23—C22178.80 (13)
C12—N2—C10—S45.4 (2)C21—C22—C23—N30.9 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C4–C9 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3A···S2i0.992.793.5926 (17)138
C11—H11C···Cg1ii0.982.913.3715 (18)110
Symmetry codes: (i) x, y, z+1; (ii) x1/2, y1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C4–C9 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3A···S2i0.992.793.5926 (17)138
C11—H11C···Cg1ii0.982.913.3715 (18)110
Symmetry codes: (i) x, y, z+1; (ii) x1/2, y1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cd(C9H10NS2)2(C5H5N)]
Mr584.10
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)8.9361 (6), 14.832 (1), 18.9680 (13)
β (°) 101.613 (1)
V3)2462.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.24
Crystal size (mm)0.40 × 0.40 × 0.40
Data collection
DiffractometerBruker SMART APEX
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.636, 0.636
No. of measured, independent and
observed [I > 2σ(I)] reflections
30058, 5650, 5201
Rint0.026
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.051, 1.04
No. of reflections5650
No. of parameters282
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.31

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

 

Follow IUCrData
Sign up for e-alerts
Follow IUCrData on Twitter
Follow us on facebook
Sign up for RSS feeds