Download citation
Download citation
link to html
The mol­ecule of the title compound, [Mo42-C12H10OP2)43-O)4O4], exhibits point group symmetry 2 with the twofold rotation axis passing through two opposite P atoms. Each MoV atom is bridged by three O atoms resulting in an Mo4O4 heterocubane core. In the crystal, weak C—H...O inter­actions may help to consolidate packing of the mol­ecules.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2414314616000365/sj4007sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2414314616000365/sj4007Isup2.hkl
Contains datablock I

CCDC reference: 1446068

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.039
  • wR factor = 0.090
  • Data-to-parameter ratio = 27.5

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) Range 3.9 Ratio PLAT906_ALERT_3_C Large K value in the Analysis of Variance ...... 2.256 Check PLAT975_ALERT_2_C Check Calcd Residual Density 0.93A From O2 0.55 eA-3 PLAT976_ALERT_2_C Check Calcd Residual Density 1.04A From O4 -0.90 eA-3 PLAT976_ALERT_2_C Check Calcd Residual Density 0.81A From O1 -0.63 eA-3 PLAT977_ALERT_2_C Check Negative Residual Density on ...... H3 -0.33 eA-3 PLAT977_ALERT_2_C Check Negative Residual Density on ...... H5 -0.32 eA-3 PLAT977_ALERT_2_C Check Negative Residual Density on ...... H16 -0.42 eA-3
Alert level G PLAT063_ALERT_4_G Crystal Size Likely too Large for Beam Size .... 0.61 mm PLAT083_ALERT_2_G SHELXL Second Parameter in WGHT Unusually Large 23.64 Why ? PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600 14 Note
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 8 ALERT level C = Check. Ensure it is not caused by an omission or oversight 3 ALERT level G = General information/check it is not something unexpected 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 8 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Synthesis and crystallization top

The original intention was to crystallize the compound [Mo(PNPMe—Ph)(CO)2F2] (de Aguiar et al., 2014). One equivalent of 1-fluoro-2,4,6-tri­methyl­pyridinium tetra­fluoridoborate was added to a solution of [Mo(PNPMe—Ph)(CO)3] in 10 ml CH2Cl2 and stirred for three days. After filtration, the solution was layered with pentane and left to stand for several days. Instead of the desired compound [Mo(PNPMe—Ph)(CO)2F2], the title compound crystallized in form of dark red blocks, apparently caused by the presence of larger amounts of oxygen in the reaction vessel.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1.

Experimental top

The original intention was to crystallize the compound [Mo(PNPMe—Ph)(CO)2F2] (de Aguiar et al., 2014). One equivalent of 1-fluoro-2,4,6-trimethylpyridinium tetrafluoridoborate was added to a solution of [Mo(PNPMe—Ph)(CO)3] in 10 ml CH2Cl2 and stirred for three days. After filtration, the solution was layered with pentane and left to stand for several days. Instead of the desired compound [Mo(PNPMe—Ph)(CO)2F2], the title compound crystallized in form of dark-red blocks, apparently caused by the presence of larger amounts of oxygen in the reaction vessel.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

The title compound had formed accidentally due to the presence of oxygen in a solution originally intended to crystallize the PNP pincer compound [Mo(PNPMe—Ph)(CO)2F2] [(PNPMe—Ph) = N,N'-bis(diphenylphosphino)-N,N'-methyl-2,6-diaminopyridine (de Aguiar et al., 2014). A chloroform disolvate of the title compound was reported by Schirmer et al. (1989). The molecule of the title compound, Fig. 1 [MoO(µ3-O)(µ2-C12H10PO2)]4, exhibits point group symmetry 2 with the twofold rotation axis passing through two opposite P atoms. Each molybdenum atom is bridged by three oxygen atoms resulting in a Mo4O4 heterocubane core. The distorted octahedral coordination spheres of the two unique molybdenum atoms [bond lengths range from 1.6686 (19) to 2.3982 (19) Å] are completed by a double-bonded terminal oxygen atom and two oxygen atoms of two diphenylphosphinate anions, each bridging two opposite molybdenum atoms in the heterocube. The short Mo···Mo distance of 2.6395 (3) Å indicates MoV···MoV interactions and causes a distortion of the Mo4O4 heterocubane core with O—Mo—O angles ranging from 77.94 (7) to 89.87 (7)° and Mo—O—Mo angles from 84.60 (7) to 102.02 (7) °. For characteristic bond lengths and angles of {Mo4O43-O4}4+ heterocubane cores, see: Modec et al. (2003). In the crystal, weak C—H···O interactions, Table 1, may help to consolidate packing of the molecules, Fig. 2.

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008), Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level; H atoms are shown as spheres of arbitrary radius. Non-labelled atoms are generated by the symmetry code −x + 2, y, −z + 1/2.
[Figure 2] Fig. 2. The packing of the molecules in the crystal structure of the title compound in a view approximately along [001].
Tetrakis(µ2-diphenylphosphinato-κ2O,O')tetra-µ3-oxido-tetraoxidohexamolybdenum(V) top
Crystal data top
[Mo4(C12H10O2P)4O8]Dx = 1.876 Mg m3
Mr = 1380.44Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcnCell parameters from 9220 reflections
a = 16.1061 (19) Åθ = 2.4–30.0°
b = 19.891 (2) ŵ = 1.21 mm1
c = 15.254 (3) ÅT = 100 K
V = 4887.0 (11) Å3Block, dark red
Z = 40.61 × 0.49 × 0.30 mm
F(000) = 2736
Data collection top
Bruker Kappa APEXII CCD
diffractometer
7558 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ω– and φ–scansθmax = 32.7°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 2424
Tmin = 0.45, Tmax = 0.66k = 3030
255304 measured reflectionsl = 2323
8962 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.090 w = 1/[σ2(Fo2) + 23.6442P]
where P = (Fo2 + 2Fc2)/3
S = 1.27(Δ/σ)max = 0.001
8962 reflectionsΔρmax = 0.92 e Å3
326 parametersΔρmin = 1.05 e Å3
Crystal data top
[Mo4(C12H10O2P)4O8]V = 4887.0 (11) Å3
Mr = 1380.44Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 16.1061 (19) ŵ = 1.21 mm1
b = 19.891 (2) ÅT = 100 K
c = 15.254 (3) Å0.61 × 0.49 × 0.30 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
8962 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
7558 reflections with I > 2σ(I)
Tmin = 0.45, Tmax = 0.66Rint = 0.061
255304 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.27 w = 1/[σ2(Fo2) + 23.6442P]
where P = (Fo2 + 2Fc2)/3
8962 reflectionsΔρmax = 0.92 e Å3
326 parametersΔρmin = 1.05 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.94264 (2)0.30980 (2)0.15695 (2)0.00840 (5)
Mo21.05855 (2)0.21599 (2)0.15724 (2)0.00870 (5)
P10.76853 (4)0.26945 (3)0.25500 (4)0.01124 (11)
P21.00000.45135 (4)0.25000.01029 (15)
P31.00000.07459 (5)0.25000.01125 (15)
O11.06085 (11)0.31230 (9)0.18613 (12)0.0102 (3)
O20.93968 (11)0.21393 (9)0.18558 (12)0.0095 (3)
O30.93008 (12)0.31794 (10)0.04868 (12)0.0133 (3)
O41.07105 (12)0.20672 (10)0.04932 (12)0.0142 (3)
O51.18201 (11)0.21577 (10)0.19500 (13)0.0121 (3)
O60.81967 (11)0.31237 (10)0.19196 (12)0.0120 (3)
O70.94434 (12)0.41077 (9)0.18832 (12)0.0114 (3)
O81.05526 (12)0.11516 (9)0.18828 (13)0.0133 (3)
C10.69240 (16)0.22699 (13)0.19004 (18)0.0136 (4)
C20.72255 (18)0.17894 (16)0.1312 (2)0.0199 (5)
H20.77910.16960.12890.024*
C30.6680 (2)0.14529 (17)0.0762 (2)0.0226 (6)
H30.68800.11340.03690.027*
C40.58371 (19)0.15910 (17)0.0796 (2)0.0218 (6)
H40.54710.13610.04330.026*
C50.5542 (2)0.20701 (18)0.1370 (2)0.0260 (6)
H50.49760.21620.13890.031*
C60.60803 (18)0.24191 (17)0.1924 (2)0.0212 (5)
H60.58780.27470.23030.025*
C70.71892 (16)0.32266 (13)0.33376 (17)0.0128 (4)
C80.66756 (17)0.29415 (14)0.39712 (19)0.0166 (5)
H80.65890.24790.39770.020*
C90.62922 (19)0.33445 (16)0.4595 (2)0.0208 (5)
H90.59420.31530.50100.025*
C100.64329 (19)0.40329 (16)0.4597 (2)0.0207 (5)
H100.61790.43030.50170.025*
C110.6953 (2)0.43199 (15)0.3972 (2)0.0215 (5)
H110.70450.47820.39750.026*
C120.73355 (18)0.39208 (14)0.3343 (2)0.0175 (5)
H120.76860.41130.29280.021*
C131.06447 (16)0.50353 (13)0.18254 (17)0.0130 (4)
C141.1143 (2)0.55275 (15)0.2199 (2)0.0220 (6)
H141.11330.55970.28020.026*
C151.1655 (2)0.59151 (16)0.1671 (2)0.0254 (6)
H151.19980.62380.19220.031*
C161.1659 (2)0.58250 (16)0.0774 (2)0.0226 (6)
H161.19890.60980.04220.027*
C171.1175 (2)0.53317 (18)0.0397 (2)0.0245 (6)
H171.11870.52650.02060.029*
C181.0667 (2)0.49336 (16)0.09217 (19)0.0210 (5)
H181.03420.45990.06690.025*
C191.06746 (18)0.02056 (14)0.31128 (19)0.0167 (5)
C201.0336 (2)0.0317 (2)0.3592 (3)0.0397 (10)
H200.97620.03710.36140.048*
C211.0845 (3)0.0761 (2)0.4042 (4)0.0500 (13)
H211.06130.11090.43660.060*
C221.1683 (3)0.0686 (2)0.4008 (3)0.0392 (10)
H221.20230.09880.43030.047*
C231.2032 (2)0.0169 (2)0.3543 (3)0.0347 (9)
H231.26050.01170.35340.042*
C241.1529 (2)0.02794 (18)0.3083 (2)0.0240 (6)
H241.17660.06260.27590.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.00826 (8)0.00886 (8)0.00810 (8)0.00049 (6)0.00012 (6)0.00068 (6)
Mo20.00835 (8)0.00926 (9)0.00849 (8)0.00033 (6)0.00031 (6)0.00117 (6)
P10.0070 (2)0.0143 (3)0.0124 (3)0.0001 (2)0.0006 (2)0.0027 (2)
P20.0124 (4)0.0087 (3)0.0099 (4)0.0000.0000 (3)0.000
P30.0108 (4)0.0090 (3)0.0140 (4)0.0000.0004 (3)0.000
O10.0085 (7)0.0114 (7)0.0107 (7)0.0012 (6)0.0007 (6)0.0018 (6)
O20.0082 (7)0.0090 (7)0.0113 (7)0.0008 (6)0.0015 (6)0.0006 (6)
O30.0136 (8)0.0160 (8)0.0102 (8)0.0018 (7)0.0002 (6)0.0013 (6)
O40.0156 (8)0.0163 (8)0.0106 (8)0.0012 (7)0.0007 (6)0.0023 (7)
O50.0086 (7)0.0138 (8)0.0140 (8)0.0000 (6)0.0006 (6)0.0045 (6)
O60.0082 (7)0.0150 (8)0.0128 (8)0.0016 (6)0.0006 (6)0.0036 (6)
O70.0134 (8)0.0093 (7)0.0116 (7)0.0009 (6)0.0026 (6)0.0012 (6)
O80.0144 (8)0.0104 (8)0.0151 (8)0.0001 (6)0.0030 (7)0.0005 (6)
C10.0104 (10)0.0141 (10)0.0161 (11)0.0001 (8)0.0012 (8)0.0021 (9)
C20.0151 (11)0.0237 (13)0.0209 (13)0.0016 (10)0.0005 (10)0.0026 (11)
C30.0228 (14)0.0254 (14)0.0196 (13)0.0006 (11)0.0033 (11)0.0058 (11)
C40.0189 (13)0.0261 (14)0.0204 (13)0.0030 (11)0.0072 (10)0.0008 (11)
C50.0151 (12)0.0329 (16)0.0300 (16)0.0029 (12)0.0070 (11)0.0062 (13)
C60.0126 (11)0.0276 (14)0.0233 (13)0.0030 (10)0.0019 (10)0.0052 (11)
C70.0112 (10)0.0141 (10)0.0130 (10)0.0000 (8)0.0007 (8)0.0006 (8)
C80.0159 (11)0.0167 (11)0.0174 (11)0.0026 (9)0.0039 (9)0.0014 (9)
C90.0192 (12)0.0248 (14)0.0182 (12)0.0009 (11)0.0053 (10)0.0011 (11)
C100.0186 (12)0.0250 (14)0.0184 (12)0.0014 (11)0.0017 (10)0.0048 (11)
C110.0226 (13)0.0171 (12)0.0247 (14)0.0005 (10)0.0015 (11)0.0031 (11)
C120.0160 (11)0.0153 (11)0.0212 (12)0.0007 (9)0.0028 (10)0.0019 (10)
C130.0143 (10)0.0099 (9)0.0149 (10)0.0003 (8)0.0018 (8)0.0014 (8)
C140.0251 (14)0.0185 (12)0.0223 (13)0.0083 (11)0.0022 (11)0.0047 (10)
C150.0308 (16)0.0184 (13)0.0271 (15)0.0106 (12)0.0056 (12)0.0028 (11)
C160.0207 (13)0.0182 (12)0.0289 (15)0.0008 (10)0.0083 (11)0.0060 (11)
C170.0263 (15)0.0329 (16)0.0144 (12)0.0008 (12)0.0057 (11)0.0023 (11)
C180.0246 (13)0.0247 (14)0.0138 (11)0.0064 (11)0.0036 (10)0.0017 (10)
C190.0164 (11)0.0139 (11)0.0197 (12)0.0007 (9)0.0033 (9)0.0027 (9)
C200.0243 (16)0.039 (2)0.055 (3)0.0017 (15)0.0042 (16)0.0294 (19)
C210.048 (3)0.040 (2)0.062 (3)0.0002 (19)0.014 (2)0.032 (2)
C220.044 (2)0.0339 (19)0.039 (2)0.0173 (17)0.0218 (18)0.0018 (16)
C230.0236 (15)0.050 (2)0.0302 (17)0.0138 (15)0.0116 (13)0.0103 (16)
C240.0177 (13)0.0319 (16)0.0226 (14)0.0053 (11)0.0051 (11)0.0037 (12)
Geometric parameters (Å, º) top
Mo1—O31.6717 (19)C5—C61.396 (4)
Mo1—O11.9559 (18)C5—H50.9300
Mo1—O21.9569 (18)C6—H60.9300
Mo1—O62.0519 (18)C7—C81.393 (4)
Mo1—O72.0648 (18)C7—C121.401 (4)
Mo1—O1i2.3950 (19)C8—C91.389 (4)
Mo1—Mo22.6395 (3)C8—H80.9300
Mo2—O41.6686 (19)C9—C101.388 (4)
Mo2—O21.9632 (18)C9—H90.9300
Mo2—O11.9661 (18)C10—C111.392 (4)
Mo2—O82.0615 (19)C10—H100.9300
Mo2—O52.0701 (19)C11—C121.390 (4)
Mo2—O2i2.3982 (19)C11—H110.9300
P1—O61.527 (2)C12—H120.9300
P1—O5i1.5351 (19)C13—C141.389 (4)
P1—C11.789 (3)C13—C181.394 (4)
P1—C71.789 (3)C14—C151.388 (4)
P2—O71.5298 (19)C14—H140.9300
P2—O7i1.5298 (19)C15—C161.379 (5)
P2—C13i1.793 (3)C15—H150.9300
P2—C131.793 (3)C16—C171.379 (5)
P3—O8i1.526 (2)C16—H160.9300
P3—O81.526 (2)C17—C181.391 (4)
P3—C191.791 (3)C17—H170.9300
P3—C19i1.791 (3)C18—H180.9300
O1—Mo1i2.3950 (19)C19—C201.383 (5)
O2—Mo2i2.3982 (19)C19—C241.385 (4)
O5—P1i1.5351 (19)C20—C211.386 (5)
C1—C61.391 (4)C20—H200.9300
C1—C21.398 (4)C21—C221.360 (7)
C2—C31.387 (4)C21—H210.9300
C2—H20.9300C22—C231.369 (7)
C3—C41.386 (4)C22—H220.9300
C3—H30.9300C23—C241.393 (5)
C4—C51.379 (5)C23—H230.9300
C4—H40.9300C24—H240.9300
O3—Mo1—O1109.88 (9)C6—C1—P1123.7 (2)
O3—Mo1—O2108.17 (9)C2—C1—P1116.1 (2)
O1—Mo1—O289.87 (7)C3—C2—C1119.9 (3)
O3—Mo1—O697.93 (9)C3—C2—H2120.1
O1—Mo1—O6151.61 (7)C1—C2—H2120.1
O2—Mo1—O686.71 (7)C4—C3—C2120.1 (3)
O3—Mo1—O797.84 (8)C4—C3—H3119.9
O1—Mo1—O784.81 (7)C2—C3—H3119.9
O2—Mo1—O7153.70 (7)C5—C4—C3119.9 (3)
O6—Mo1—O785.89 (8)C5—C4—H4120.0
O3—Mo1—O1i169.29 (8)C3—C4—H4120.0
O1—Mo1—O1i78.16 (7)C4—C5—C6120.9 (3)
O2—Mo1—O1i78.27 (7)C4—C5—H5119.6
O6—Mo1—O1i73.54 (7)C6—C5—H5119.6
O7—Mo1—O1i75.43 (7)C1—C6—C5119.0 (3)
O3—Mo1—Mo298.95 (7)C1—C6—H6120.5
O1—Mo1—Mo247.86 (5)C5—C6—H6120.5
O2—Mo1—Mo247.78 (5)C8—C7—C12119.8 (3)
O6—Mo1—Mo2134.41 (5)C8—C7—P1119.4 (2)
O7—Mo1—Mo2132.67 (5)C12—C7—P1120.8 (2)
O1i—Mo1—Mo291.70 (4)C9—C8—C7120.3 (3)
O4—Mo2—O2109.42 (9)C9—C8—H8119.9
O4—Mo2—O1109.06 (9)C7—C8—H8119.9
O2—Mo2—O189.39 (7)C10—C9—C8119.9 (3)
O4—Mo2—O897.02 (9)C10—C9—H9120.1
O2—Mo2—O884.49 (7)C8—C9—H9120.1
O1—Mo2—O8153.77 (8)C9—C10—C11120.1 (3)
O4—Mo2—O599.12 (9)C9—C10—H10120.0
O2—Mo2—O5151.09 (7)C11—C10—H10120.0
O1—Mo2—O585.51 (7)C12—C11—C10120.4 (3)
O8—Mo2—O587.63 (8)C12—C11—H11119.8
O4—Mo2—O2i169.42 (8)C10—C11—H11119.8
O2—Mo2—O2i77.94 (7)C11—C12—C7119.5 (3)
O1—Mo2—O2i78.02 (7)C11—C12—H12120.2
O8—Mo2—O2i75.76 (7)C7—C12—H12120.2
O5—Mo2—O2i73.16 (7)C14—C13—C18119.6 (3)
O4—Mo2—Mo199.31 (7)C14—C13—P2120.5 (2)
O2—Mo2—Mo147.57 (5)C18—C13—P2119.9 (2)
O1—Mo2—Mo147.54 (5)C15—C14—C13119.8 (3)
O8—Mo2—Mo1132.06 (5)C15—C14—H14120.1
O5—Mo2—Mo1132.95 (5)C13—C14—H14120.1
O2i—Mo2—Mo191.27 (4)C16—C15—C14120.4 (3)
O6—P1—O5i114.95 (10)C16—C15—H15119.8
O6—P1—C1106.55 (12)C14—C15—H15119.8
O5i—P1—C1107.61 (12)C17—C16—C15120.2 (3)
O6—P1—C7109.45 (12)C17—C16—H16119.9
O5i—P1—C7108.04 (12)C15—C16—H16119.9
C1—P1—C7110.19 (12)C16—C17—C18119.8 (3)
O7—P2—O7i116.31 (15)C16—C17—H17120.1
O7—P2—C13i108.61 (11)C18—C17—H17120.1
O7i—P2—C13i106.97 (11)C17—C18—C13120.1 (3)
O7—P2—C13106.97 (11)C17—C18—H18119.9
O7i—P2—C13108.61 (11)C13—C18—H18119.9
C13i—P2—C13109.25 (17)C20—C19—C24119.3 (3)
O8i—P3—O8116.17 (15)C20—C19—P3119.2 (2)
O8i—P3—C19110.42 (12)C24—C19—P3121.5 (2)
O8—P3—C19106.58 (12)C19—C20—C21120.4 (4)
O8i—P3—C19i106.58 (12)C19—C20—H20119.8
O8—P3—C19i110.42 (12)C21—C20—H20119.8
C19—P3—C19i106.27 (19)C22—C21—C20119.9 (4)
Mo1—O1—Mo284.60 (7)C22—C21—H21120.0
Mo1—O1—Mo1i101.77 (7)C20—C21—H21120.0
Mo2—O1—Mo1i101.73 (8)C21—C22—C23120.6 (3)
Mo1—O2—Mo284.65 (7)C21—C22—H22119.7
Mo1—O2—Mo2i101.90 (7)C23—C22—H22119.7
Mo2—O2—Mo2i102.02 (7)C22—C23—C24120.2 (4)
P1i—O5—Mo2129.43 (11)C22—C23—H23119.9
P1—O6—Mo1132.12 (11)C24—C23—H23119.9
P2—O7—Mo1131.57 (11)C19—C24—C23119.5 (3)
P3—O8—Mo2132.15 (12)C19—C24—H24120.2
C6—C1—C2120.1 (3)C23—C24—H24120.2
Symmetry code: (i) x+2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O3ii0.932.523.188 (4)129
C21—H21···O4iii0.932.573.420 (5)152
Symmetry codes: (ii) x1/2, y+1/2, z; (iii) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O3i0.932.523.188 (4)129
C21—H21···O4ii0.932.573.420 (5)152
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Mo4(C12H10O2P)4O8]
Mr1380.44
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)100
a, b, c (Å)16.1061 (19), 19.891 (2), 15.254 (3)
V3)4887.0 (11)
Z4
Radiation typeMo Kα
µ (mm1)1.21
Crystal size (mm)0.61 × 0.49 × 0.30
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2014)
Tmin, Tmax0.45, 0.66
No. of measured, independent and
observed [I > 2σ(I)] reflections
255304, 8962, 7558
Rint0.061
(sin θ/λ)max1)0.760
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.090, 1.27
No. of reflections8962
No. of parameters326
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + 23.6442P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.92, 1.05

Computer programs: APEX2 (Bruker, 2014), SAINT (Bruker, 2014), SUPERFLIP (Palatinus & Chapuis, 2007), SHELXL2014 (Sheldrick, 2015), XP in SHELXTL (Sheldrick, 2008), Mercury (Macrae et al., 2006), publCIF (Westrip, 2010).

 

Follow IUCrData
Sign up for e-alerts
Follow IUCrData on Twitter
Follow us on facebook
Sign up for RSS feeds