Download citation
Download citation
link to html
In the title compound, C22H20ClN3O4, the central pyrrolidine ring adopts an envelope conformation on the N atom. The indolinone systems are individually roughly planar, with maximum deviations from their mean planes of 0.130 Å for the spiro C atom of the indolinone unit and 0.172 Å for the carbonyl C atom of the 5-chloro-1-methyl­indolinone unit. They make dihedral angles of 77.7 (8) and 86.1 (8)° with the mean plane through the central pyrrolidine ring. In the crystal, mol­ecules are linked by N—H...O hydrogen bonds supported by C—H...O contacts into chains along the ab diagonal. The structure also features C—H...O hydrogen bonds, forming R22(8) and R22(16) rings and generating a three-dimensional array.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536813011501/sj5312sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536813011501/sj5312Isup2.hkl
Contains datablock I

CCDC reference: 954871

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.041
  • wR factor = 0.125
  • Data-to-parameter ratio = 18.1

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT230_ALERT_2_C Hirshfeld Test Diff for O3 -- C20 .. 6.1 su PLAT480_ALERT_4_C Long H...A H-Bond Reported H5 .. O3 .. 2.61 Ang. PLAT905_ALERT_3_C Negative K value in the Analysis of Variance ... -2.350
Alert level G PLAT005_ALERT_5_G No _iucr_refine_instructions_details in the CIF ? PLAT128_ALERT_4_G Alternate Setting of Space-group P21/c ....... P21/n PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature 293 K PLAT793_ALERT_4_G The Model has Chirality at C7 (Verify) .... S PLAT793_ALERT_4_G The Model has Chirality at C9 (Verify) .... R PLAT793_ALERT_4_G The Model has Chirality at C12 (Verify) .... R PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600 39
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 3 ALERT level C = Check. Ensure it is not caused by an omission or oversight 8 ALERT level G = General information/check it is not something unexpected 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 6 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Spiro-pyrrolidine derivatives are unique tetracyclic 5-HT(2A) receptor antagonists (Obniska et al., 2003; Peddi et al., 2004). These derivatives possess anticonvulsant (Kaminski & Obniska, 2008) and anti-influenza virus (Stylianakis et al., 2003) activities. Highly functionalized pyrrolidines have gained much interest in the past few years as they constitute the main structural element of many natural and synthetic pharmacologically active compounds (Waldmann, 1995). Optically active pyrrolidines have also been used as intermediates, chiral ligands or auxiliaries in controlled asymmetric synthesis (Suzuki et al., 1994; Huryn et al., 1991).

X-Ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The geometries of the pyrrolidine and indole systems are comparable with those in related structures (Wei et al., 2011; Ganesh et al., 2012). The sum of the angles at N2 [336.9 (1)°] of the pyrrolidine rings is typical of sp3 hybridization. The indoline ring systems [N1/C1-C8 and N3/C12-C19] make dihedral angles of 77.7 (8) ° and 86.1(68° with respect to the mean plane of the central pyrrolidine ring system [N2/C7/C9/C10/C12]. This clearly shows that the indoline ring (N3/C12-C19) and the central pyrrolidine ring system are almost perpendicular to one another. The indole ring systems are essentially planar, with maximum deviations from the mean planes of 0.130 Å for the C12 and -0.172 Å for the C8 atoms, respectively.

The central pyrrolidine ring adopts an envelope conformation on the N2 atom, with puckering parameters q2 = 0.419 (2) Å, ϕ = 1.555 (2)(Cremer & Pople, 1975 ). The pyrrolidine ring in the chloro-indole ring system adopts a twisted conformation on the C7 and C8 atoms, with puckering parameters of q2 = 0.124 (2) Å, ϕ = 306.8 (7). The pyrrolidine ring in the indole ring system adopts an envelope conformation on the C12 atom, with puckering parameters q2 = 0.113 (2) Å, ϕ = 251.6 (9).

In the crystal, six hydrogen bonds formed by each molecule. These include the formation of three inversion related contacts and atom O3 acting as a trifurcated acceptor. The molecules are stabilized by intermolecular C–H···O hydrogen bonds forming R22(8)rings from C9-H9···O3, contacts (Bernstein et al., 1995) while C5–H5···O3 contacts and C22-H22B···O3, H bonds generate R22(16) rings resulting in a three dimensional array Figure 2.

Related literature top

For the biological activity of spiro-pyrrolidine derivatives, see: Obniska et al. (2003); Peddi et al. (2004); Kaminski & Obniska (2008); Stylianakis et al. (2003); Waldmann (1995). For the use of optically active pyrrolidines as intermediates, chiral ligands or auxiliaries in controlled asymmetric synthesis, see: Suzuki et al. (1994); Huryn et al. (1991). For related structures, see: Ganesh et al. (2012); Wei et al. (2011). For puckering parameters, see: Cremer & Pople (1975) and for hydrogen-bond motifs see Bernstein et al. (1995).

Experimental top

A mixture of 1 equivalent of (E)-methyl 2-(5-chloro-1-methyl-2-oxoindolin-3-ylidene) acetate, 1 equivalent of isatin, 1H-indole-2,3-dione, and 1.5 equivalent of sarcosine, N-methylglycine were dissolved in acetonitrile. This reaction mixture was refluxed at 80°C for 8 hours. Progress of the reaction was monitored by thin layer chromatography. The product was dried and purified by column chromatography using ethyl acetate and hexane (1:9) as eluent to afford the title compound. (Yield = 90%). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution in ethyl acetate at room temperature.

Refinement top

The H atom bound to N3 was located in a difference Fourier map and its coordinates and atomic displacement parameter were refined freely. All H atoms bound to C were fixed geometrically and allowed to ride on their parent atoms, with C—H distances fixed in the range 0.93–0.97 Å and with Uiso(H) = 1.5Ueq(C) for methyl H 1.2Ueq(C) for other H atoms. The positions of methyl hydrogens were optimized rotationally.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of showing the atom-numbering scheme. The displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecular packing viewed along a. Dashed lines show the intermolecular N–H···O and C–H···O hydrogen bonds.
Methyl 5''-chloro-1',1''-dimethyl-2,2''-dioxodispiro[indoline-3,2'-pyrrolidine-3',3''-indoline]-4'-carboxylate top
Crystal data top
C22H20ClN3O4F(000) = 888
Mr = 425.86Dx = 1.394 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5021 reflections
a = 9.2543 (4) Åθ = 2.0–28.3°
b = 18.1387 (7) ŵ = 0.22 mm1
c = 12.5147 (5) ÅT = 293 K
β = 105.026 (2)°Block, colourless
V = 2028.90 (14) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD area detector
diffractometer
5021 independent reflections
Radiation source: fine-focus sealed tube3789 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω and ϕ scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1212
Tmin = 0.936, Tmax = 0.957k = 2424
18586 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0572P)2 + 0.6292P]
where P = (Fo2 + 2Fc2)/3
5021 reflections(Δ/σ)max < 0.001
278 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C22H20ClN3O4V = 2028.90 (14) Å3
Mr = 425.86Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.2543 (4) ŵ = 0.22 mm1
b = 18.1387 (7) ÅT = 293 K
c = 12.5147 (5) Å0.30 × 0.25 × 0.20 mm
β = 105.026 (2)°
Data collection top
Bruker APEXII CCD area detector
diffractometer
5021 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3789 reflections with I > 2σ(I)
Tmin = 0.936, Tmax = 0.957Rint = 0.030
18586 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.33 e Å3
5021 reflectionsΔρmin = 0.21 e Å3
278 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.59371 (19)0.05207 (9)0.28439 (13)0.0423 (4)
C20.45435 (17)0.08424 (8)0.24338 (12)0.0358 (3)
H20.38910.09080.28800.043*
C30.41592 (15)0.10629 (8)0.13379 (12)0.0301 (3)
C40.51723 (16)0.09636 (8)0.06936 (12)0.0334 (3)
C50.65753 (18)0.06619 (10)0.11172 (15)0.0446 (4)
H50.72470.06120.06830.053*
C60.69446 (19)0.04367 (10)0.22136 (16)0.0486 (4)
H60.78770.02280.25250.058*
C70.27545 (15)0.14084 (8)0.06175 (11)0.0294 (3)
C80.30532 (17)0.13446 (8)0.05324 (12)0.0340 (3)
C90.11746 (16)0.10891 (9)0.05792 (13)0.0365 (3)
H90.07260.09540.01940.044*
C100.02656 (18)0.17386 (9)0.08235 (17)0.0473 (4)
H10A0.07770.16980.04170.057*
H10B0.03310.17750.16080.057*
C110.0415 (2)0.30826 (11)0.0677 (2)0.0601 (5)
H11A0.05510.31340.14600.090*
H11B0.06310.31170.03080.090*
H11C0.09490.34670.04170.090*
C120.25861 (16)0.22640 (8)0.08568 (12)0.0319 (3)
C130.32532 (18)0.24031 (8)0.21214 (13)0.0361 (3)
C140.47566 (18)0.30011 (8)0.12068 (13)0.0362 (3)
C150.5915 (2)0.34053 (11)0.09938 (15)0.0489 (4)
H150.67220.35570.15630.059*
C160.5830 (2)0.35771 (11)0.00992 (16)0.0536 (5)
H160.66090.38370.02670.064*
C170.4617 (2)0.33718 (11)0.09432 (15)0.0507 (4)
H170.45720.35080.16680.061*
C180.3457 (2)0.29619 (9)0.07182 (14)0.0426 (4)
H180.26300.28280.12840.051*
C190.35598 (16)0.27576 (8)0.03628 (12)0.0333 (3)
C200.12538 (16)0.03924 (9)0.12354 (14)0.0397 (4)
C210.1033 (3)0.01945 (12)0.2852 (2)0.0683 (6)
H21A0.03310.05560.24670.102*
H21B0.08280.00820.35480.102*
H21C0.20300.03850.29800.102*
C220.5254 (2)0.11715 (12)0.12913 (15)0.0528 (5)
H22A0.45330.12650.19820.079*
H22B0.57170.07010.13220.079*
H22C0.60040.15500.11580.079*
N10.45105 (15)0.11694 (7)0.04029 (10)0.0367 (3)
N20.09833 (14)0.23692 (7)0.04428 (12)0.0406 (3)
N30.45486 (16)0.27829 (8)0.22362 (12)0.0406 (3)
O10.21387 (13)0.14407 (7)0.14168 (9)0.0467 (3)
O20.27254 (15)0.22036 (7)0.28633 (10)0.0516 (3)
O30.16251 (15)0.01881 (7)0.09239 (12)0.0535 (3)
O40.08942 (15)0.04712 (7)0.21895 (11)0.0513 (3)
Cl10.63981 (7)0.01829 (3)0.41915 (4)0.07053 (19)
H30.513 (2)0.2916 (11)0.2850 (18)0.049 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0456 (9)0.0388 (8)0.0358 (8)0.0052 (7)0.0016 (7)0.0025 (6)
C20.0376 (8)0.0349 (7)0.0336 (8)0.0014 (6)0.0071 (6)0.0003 (6)
C30.0270 (6)0.0294 (7)0.0325 (7)0.0002 (5)0.0053 (5)0.0014 (5)
C40.0305 (7)0.0335 (7)0.0356 (8)0.0014 (6)0.0076 (6)0.0012 (6)
C50.0316 (8)0.0501 (9)0.0524 (10)0.0058 (7)0.0117 (7)0.0023 (8)
C60.0341 (8)0.0506 (10)0.0540 (10)0.0111 (7)0.0014 (7)0.0009 (8)
C70.0263 (7)0.0323 (7)0.0286 (7)0.0005 (5)0.0052 (5)0.0001 (5)
C80.0367 (8)0.0330 (7)0.0310 (7)0.0001 (6)0.0067 (6)0.0023 (6)
C90.0269 (7)0.0396 (8)0.0411 (8)0.0036 (6)0.0054 (6)0.0015 (6)
C100.0304 (8)0.0446 (9)0.0689 (12)0.0030 (7)0.0162 (8)0.0085 (8)
C110.0521 (11)0.0455 (10)0.0865 (15)0.0154 (8)0.0250 (10)0.0088 (10)
C120.0308 (7)0.0327 (7)0.0323 (7)0.0014 (6)0.0082 (6)0.0022 (6)
C130.0410 (8)0.0346 (7)0.0343 (8)0.0038 (6)0.0130 (6)0.0011 (6)
C140.0392 (8)0.0342 (7)0.0354 (8)0.0014 (6)0.0099 (6)0.0026 (6)
C150.0441 (9)0.0532 (10)0.0481 (10)0.0141 (8)0.0093 (8)0.0031 (8)
C160.0530 (11)0.0557 (11)0.0569 (11)0.0133 (8)0.0231 (9)0.0038 (9)
C170.0635 (11)0.0524 (10)0.0403 (9)0.0060 (9)0.0206 (8)0.0075 (8)
C180.0465 (9)0.0432 (9)0.0353 (8)0.0043 (7)0.0057 (7)0.0043 (7)
C190.0350 (7)0.0313 (7)0.0340 (7)0.0006 (6)0.0100 (6)0.0004 (6)
C200.0264 (7)0.0416 (8)0.0490 (9)0.0062 (6)0.0059 (6)0.0003 (7)
C210.0829 (16)0.0602 (13)0.0651 (14)0.0020 (11)0.0252 (12)0.0181 (10)
C220.0556 (11)0.0664 (12)0.0441 (10)0.0031 (9)0.0265 (8)0.0001 (8)
N10.0373 (7)0.0425 (7)0.0319 (6)0.0029 (5)0.0122 (5)0.0009 (5)
N20.0295 (6)0.0379 (7)0.0538 (8)0.0059 (5)0.0096 (6)0.0070 (6)
N30.0455 (8)0.0442 (8)0.0300 (7)0.0070 (6)0.0060 (6)0.0053 (6)
O10.0484 (7)0.0567 (7)0.0291 (6)0.0048 (6)0.0004 (5)0.0010 (5)
O20.0606 (8)0.0612 (8)0.0394 (6)0.0015 (6)0.0243 (6)0.0023 (6)
O30.0497 (7)0.0394 (7)0.0746 (9)0.0012 (5)0.0218 (7)0.0042 (6)
O40.0610 (8)0.0437 (7)0.0529 (7)0.0004 (6)0.0213 (6)0.0059 (6)
Cl10.0869 (4)0.0727 (4)0.0425 (3)0.0259 (3)0.0003 (2)0.0164 (2)
Geometric parameters (Å, º) top
C1—C61.377 (3)C12—N21.4514 (18)
C1—C21.387 (2)C12—C191.511 (2)
C1—Cl11.7403 (17)C12—C131.563 (2)
C2—C31.384 (2)C13—O21.2110 (19)
C2—H20.9300C13—N31.358 (2)
C3—C41.398 (2)C14—C151.381 (2)
C3—C71.5125 (19)C14—C191.390 (2)
C4—C51.382 (2)C14—N31.408 (2)
C4—N11.401 (2)C15—C161.385 (3)
C5—C61.387 (3)C15—H150.9300
C5—H50.9300C16—C171.378 (3)
C6—H60.9300C16—H160.9300
C7—C81.539 (2)C17—C181.393 (2)
C7—C91.5617 (19)C17—H170.9300
C7—C121.596 (2)C18—C191.382 (2)
C8—O11.2190 (18)C18—H180.9300
C8—N11.354 (2)C20—O31.203 (2)
C9—C201.499 (2)C20—O41.328 (2)
C9—C101.524 (2)C21—O41.452 (2)
C9—H90.9800C21—H21A0.9600
C10—N21.463 (2)C21—H21B0.9600
C10—H10A0.9700C21—H21C0.9600
C10—H10B0.9700C22—N11.451 (2)
C11—N21.455 (2)C22—H22A0.9600
C11—H11A0.9600C22—H22B0.9600
C11—H11B0.9600C22—H22C0.9600
C11—H11C0.9600N3—H30.85 (2)
C6—C1—C2122.50 (15)C19—C12—C7113.69 (12)
C6—C1—Cl1118.94 (13)C13—C12—C7108.35 (11)
C2—C1—Cl1118.52 (14)O2—C13—N3126.24 (15)
C3—C2—C1117.63 (15)O2—C13—C12126.59 (15)
C3—C2—H2121.2N3—C13—C12107.17 (13)
C1—C2—H2121.2C15—C14—C19121.86 (15)
C2—C3—C4119.74 (13)C15—C14—N3128.56 (15)
C2—C3—C7132.13 (13)C19—C14—N3109.57 (13)
C4—C3—C7108.12 (12)C14—C15—C16117.50 (16)
C5—C4—C3122.27 (14)C14—C15—H15121.2
C5—C4—N1127.60 (14)C16—C15—H15121.2
C3—C4—N1110.03 (13)C17—C16—C15121.52 (17)
C4—C5—C6117.53 (15)C17—C16—H16119.2
C4—C5—H5121.2C15—C16—H16119.2
C6—C5—H5121.2C16—C17—C18120.42 (16)
C1—C6—C5120.29 (15)C16—C17—H17119.8
C1—C6—H6119.9C18—C17—H17119.8
C5—C6—H6119.9C19—C18—C17118.67 (16)
C3—C7—C8101.03 (11)C19—C18—H18120.7
C3—C7—C9121.19 (12)C17—C18—H18120.7
C8—C7—C9109.70 (12)C18—C19—C14119.87 (14)
C3—C7—C12113.69 (11)C18—C19—C12131.46 (14)
C8—C7—C12107.37 (11)C14—C19—C12108.64 (13)
C9—C7—C12103.31 (11)O3—C20—O4123.00 (16)
O1—C8—N1125.30 (14)O3—C20—C9122.54 (16)
O1—C8—C7126.00 (14)O4—C20—C9114.46 (14)
N1—C8—C7108.70 (12)O4—C21—H21A109.5
C20—C9—C10119.54 (14)O4—C21—H21B109.5
C20—C9—C7112.55 (12)H21A—C21—H21B109.5
C10—C9—C7105.56 (12)O4—C21—H21C109.5
C20—C9—H9106.1H21A—C21—H21C109.5
C10—C9—H9106.1H21B—C21—H21C109.5
C7—C9—H9106.1N1—C22—H22A109.5
N2—C10—C9102.60 (13)N1—C22—H22B109.5
N2—C10—H10A111.2H22A—C22—H22B109.5
C9—C10—H10A111.2N1—C22—H22C109.5
N2—C10—H10B111.2H22A—C22—H22C109.5
C9—C10—H10B111.2H22B—C22—H22C109.5
H10A—C10—H10B109.2C8—N1—C4110.42 (12)
N2—C11—H11A109.5C8—N1—C22124.27 (14)
N2—C11—H11B109.5C4—N1—C22125.28 (14)
H11A—C11—H11B109.5C12—N2—C11115.75 (14)
N2—C11—H11C109.5C12—N2—C10106.81 (12)
H11A—C11—H11C109.5C11—N2—C10114.29 (14)
H11B—C11—H11C109.5C13—N3—C14111.86 (14)
N2—C12—C19116.02 (12)C13—N3—H3125.2 (13)
N2—C12—C13116.05 (12)C14—N3—H3122.7 (13)
C19—C12—C13101.40 (12)C20—O4—C21114.76 (15)
N2—C12—C7101.61 (11)
C6—C1—C2—C32.0 (2)C19—C12—C13—N311.00 (15)
Cl1—C1—C2—C3175.78 (11)C7—C12—C13—N3108.91 (13)
C1—C2—C3—C40.6 (2)C19—C14—C15—C161.4 (3)
C1—C2—C3—C7178.34 (15)N3—C14—C15—C16177.23 (17)
C2—C3—C4—C51.2 (2)C14—C15—C16—C171.8 (3)
C7—C3—C4—C5179.57 (14)C15—C16—C17—C182.1 (3)
C2—C3—C4—N1175.27 (13)C16—C17—C18—C190.9 (3)
C7—C3—C4—N13.92 (16)C17—C18—C19—C144.1 (2)
C3—C4—C5—C61.8 (2)C17—C18—C19—C12173.57 (16)
N1—C4—C5—C6174.09 (15)C15—C14—C19—C184.4 (2)
C2—C1—C6—C51.4 (3)N3—C14—C19—C18174.48 (14)
Cl1—C1—C6—C5176.30 (14)C15—C14—C19—C12173.71 (16)
C4—C5—C6—C10.5 (3)N3—C14—C19—C127.39 (17)
C2—C3—C7—C8169.10 (15)N2—C12—C19—C1844.6 (2)
C4—C3—C7—C89.95 (15)C13—C12—C19—C18171.21 (16)
C2—C3—C7—C947.8 (2)C7—C12—C19—C1872.7 (2)
C4—C3—C7—C9131.25 (14)N2—C12—C19—C14137.60 (14)
C2—C3—C7—C1276.21 (19)C13—C12—C19—C1410.95 (15)
C4—C3—C7—C12104.73 (13)C7—C12—C19—C14105.10 (14)
C3—C7—C8—O1167.44 (15)C10—C9—C20—O3161.37 (16)
C9—C7—C8—O138.4 (2)C7—C9—C20—O373.93 (19)
C12—C7—C8—O173.23 (18)C10—C9—C20—O419.2 (2)
C3—C7—C8—N113.09 (15)C7—C9—C20—O4105.49 (15)
C9—C7—C8—N1142.15 (13)O1—C8—N1—C4168.84 (15)
C12—C7—C8—N1106.24 (13)C7—C8—N1—C411.68 (16)
C3—C7—C9—C205.1 (2)O1—C8—N1—C229.1 (3)
C8—C7—C9—C20111.93 (14)C7—C8—N1—C22170.33 (15)
C12—C7—C9—C20133.82 (13)C5—C4—N1—C8171.24 (16)
C3—C7—C9—C10126.97 (15)C3—C4—N1—C85.04 (17)
C8—C7—C9—C10116.01 (14)C5—C4—N1—C226.7 (3)
C12—C7—C9—C101.77 (15)C3—C4—N1—C22177.01 (15)
C20—C9—C10—N2154.82 (14)C19—C12—N2—C1164.38 (19)
C7—C9—C10—N226.84 (17)C13—C12—N2—C1154.53 (19)
C3—C7—C12—N2157.26 (12)C7—C12—N2—C11171.79 (14)
C8—C7—C12—N291.88 (13)C19—C12—N2—C10167.10 (14)
C9—C7—C12—N224.03 (14)C13—C12—N2—C1073.99 (17)
C3—C7—C12—C1977.35 (15)C7—C12—N2—C1043.27 (15)
C8—C7—C12—C1933.51 (15)C9—C10—N2—C1245.11 (17)
C9—C7—C12—C19149.42 (12)C9—C10—N2—C11174.47 (15)
C3—C7—C12—C1334.55 (16)O2—C13—N3—C14173.29 (16)
C8—C7—C12—C13145.41 (12)C12—C13—N3—C147.43 (17)
C9—C7—C12—C1398.68 (13)C15—C14—N3—C13178.58 (17)
N2—C12—C13—O243.1 (2)C19—C14—N3—C130.23 (19)
C19—C12—C13—O2169.72 (16)O3—C20—O4—C212.0 (2)
C7—C12—C13—O270.37 (19)C9—C20—O4—C21177.38 (16)
N2—C12—C13—N3137.63 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.85 (2)2.18 (2)2.9112 (18)143.3 (18)
C15—H15···O1i0.932.463.156 (2)132
C22—H22B···O3ii0.962.563.324 (2)137
C5—H5···O3ii0.932.613.499 (2)160
C9—H9···O3iii0.982.543.224 (2)127
C9—H9···O10.982.422.932 (2)112
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x, y, z.

Experimental details

Crystal data
Chemical formulaC22H20ClN3O4
Mr425.86
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.2543 (4), 18.1387 (7), 12.5147 (5)
β (°) 105.026 (2)
V3)2028.90 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker APEXII CCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.936, 0.957
No. of measured, independent and
observed [I > 2σ(I)] reflections
18586, 5021, 3789
Rint0.030
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.125, 1.06
No. of reflections5021
No. of parameters278
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.21

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.85 (2)2.18 (2)2.9112 (18)143.3 (18)
C15—H15···O1i0.932.463.156 (2)132.0
C22—H22B···O3ii0.962.563.324 (2)137.1
C5—H5···O3ii0.932.613.499 (2)160.1
C9—H9···O3iii0.982.543.224 (2)126.6
C9—H9···O10.982.422.932 (2)112
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds