Download citation
Download citation
link to html
In the title compound, the imidizadoline ring adopts an envelope conformation and the nitro­gen lone pairs are oriented in a syn disposition. The crystal packing is stabilized by C—H...O hydrogen-bonding inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2056989015002212/sj5442sup1.cif
Contains datablocks I, New_Global_Publ_Block

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2056989015002212/sj5442Isup2.hkl
Contains datablock I

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2056989015002212/sj5442Isup3.cml
Supplementary material

CCDC reference: 1046907

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.035
  • wR factor = 0.082
  • Data-to-parameter ratio = 14.5

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds ............... 0.0042 Ang.
Alert level G PLAT380_ALERT_4_G Incorrectly? Oriented X(sp2)-Methyl Moiety ..... C17 Check PLAT380_ALERT_4_G Incorrectly? Oriented X(sp2)-Methyl Moiety ..... C28 Check PLAT850_ALERT_4_G Check Flack Parameter Exact Value 0.00 and su .. 0.04 Check PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Th(Min) ... 1 Report PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600 7 Note
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 1 ALERT level C = Check. Ensure it is not caused by an omission or oversight 5 ALERT level G = General information/check it is not something unexpected 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Chemical context top

As a continuation of our investigations of the Mannich reaction, we have synthesized a family of compounds of the type 2,2'-[imidazolidine-1,3-diylbis(methyl­ene)]di(hy­droxy­aryl), from reactions between 1,3,6,8-tetraza­tri­cyclo­[4.4.1.13,8]do­decane (TATD) and phenols or naphthols (Rivera et al., 1993, 2005; Rivera & Quevedo, 2013). Such compounds are known to be valuable in homogeneous catalysis (Kober et al., 2012) and for the preparation of tetra­hydro­salens (Rivera et al., 2004) and heterocalixarenes (Rivera & Quevedo, 2004). Mannich bases are also convenient models for studying the nature of hydrogen bonding and other weak non-covalent inter­actions, as they contain at least one phenolic or naphtho­lic hy­droxy group as a proton donor, as well as an ortho-amino­methyl­group as a proton acceptor in the same molecule (Koll et al., 2006). Herein, as part of our systematic investigations of di-Mannich bases as convenient model systems for the study of intra­molecular proton-transfer processes, we report the molecular and crystal structure of the title di-Mannich base, 4,4'-di­chloro-3,3',5,5'-tetra­methyl-2,2'- [imidazolidine-1,3-diylbis(methyl­ene)]diphenol (I).

In a previous report (Rivera & Quevedo, 2013), title compound (I) was obtained under solvent-free conditions by heating a 1:4 mixture of TATD and 4-chloro-3,5-di­methyl­phenol in an oil bath with stirring at 423 K for 20 min. Drawbacks of this synthesis include the long reaction time and a requirement of considerable effort to optimize the reaction conditions and temperature control. We therefore subsequently explored this reaction under solvent-free, microwave-assisted conditions. The reaction was found to proceed smoothly under microwave irradiation in only 3 min at 403 K, in modest yield.

Structural commentary top

The title molecule (I) with its atom-numbering scheme is shown in Fig 1. The imidazolidine ring adopts an envelope conformation, with C1 at the flap. The molecular structure shows two intra­molecular O—H···N hydrogen bonds (Table 1) with S(6) graph-set motifs (Bernstein et al., 1995) between the hy­droxy groups of the substituted phenol rings and the two imidazolidine N atoms. The benzyl groups are located in an unexpected 1,3-diequatorial syn arrangement on the heterocyclic ring with dihedral angles between the mean plane through the N1/C2/C3/N2 atoms of the imidazolidine ring and the C11–C16 and C21–C26 aromatic rings of 84.61 (9) and 88.54 (9)°, respectively. The non-bonding electron pairs on the imidazolidine N atoms that are involved in both intra- and inter­molecular hydrogen-bonding inter­actions adopt an unusual syn arrangement. As such, this molecule defies the well known `rabbit-ears' effect (Hutchins et al., 1968) in which N–CH2–N systems adopt anti conformations to avoid repulsions between the nitro­gen lone pairs. Although in the very similar structure of meso-4,4'-di­fluoro-2,2'-{[(3aR,7aS)-2,3,3a,4,5,6,7,7a-o­cta­hydro-1H-1,3-benzimidazole-1,3-diyl]bis­(methyl­ene)}diphenol (Rivera et al., 2013) the N-atom lone pairs are syn, molecule (I) is the first reported exception to the `rabbit-ears' effect in 2,2'-[imidazolidine-1,3-diylbis(methyl­ene)]diphenol-type compounds (Rivera et al., 2011, 2012a,b,c, 2013, 2014).

Supra­molecular features top

With both hy­droxy groups of (I) involved in intra­molecular hydrogen bonds, the packing in the crystal is stabilized solely by C13—H13···O2i inter­actions, Table 1 that link adjacent molecules in a head-to-tail fashion into zigzag chains, extending along the c-axis direction (Fig. 2).

Database survey top

A search in the Cambridge database (Groom & Allen 2014) reveals previous reports of six structures of related 2,2'-[imidazolidine-1,3-diylbis(methyl­ene)]diphenol compounds (Rivera et al., 2011, 2012a,b,c, 2013, 2014). Each of these also shows intra­molecular O—H···N hydrogen bonds between the two imidazolidine N atoms and the hy­droxy groups. In addition, the D···A distances in these compounds compare well with those observed in the title compound. As with (I), the imidazolidine ring in the p-tert-butyl­phenol derivative (Rivera et al., 2013), adopts an envelope conformation whereas, in the other five the ring adopts a twist conformation. Furthermore, unlike the title compound, the nitro­gen lone pairs in all six of the related derivatives are oriented in an anti disposition.

Synthesis and crystallization top

A mixture of 1,3,6,8-tetraza­tri­cyclo­[4.4.1.13,8]do­decane (0.100 g, 0.6 mmol) and 4-chloro-3,5-di­methyl­phenol (0.375 g, 2.4 mmol) without any solvent was exposed to microwave irradiation in a CEM Discover reactor (with 250 W as the maximum power) for 3 min at a temperature of 403 K. Once cooled to room temperature, the reaction mixture was dissolved with CHCl3 which was removed under reduced pressure to yield the crude product. This was further purified by column chromatography on silica gel using a mixture of benzene:ethyl acetate (80:20) as eluent (yield 21%, m.p. = 421–422 K). Single crystals in the form of needles shorter than 1 mm were obtained from a chloro­form:ethanol (50:50) solution by slow evaporation of the solvent at room temperature over a period of one week.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. All the H atoms were located in difference electron density maps. The hy­droxy H atoms were refined freely; however, C-bound H atoms were fixed geometrically (C—H = 0.95 to 0.99 Å) and refined using a riding model, with Uiso(H) set to 1.2Ueq (1.5Ueq for methyl groups) of the parent atoms. The methyl groups were allowed to rotate but not to tip.

Related literature top

For related literature, see: Bernstein et al. (1995); Groom & Allen (2014); Hutchins et al. (1968); Kober et al. (2012); Koll et al. (2006); Rivera & Quevedo (2004, 2013); Rivera et al. (1993, 2005, 2011, 2012a, 2012b, 2012c, 2014); Rivera, Nerio & Bolte (2013); Rivera, Quevedo, Navarro & Maldonado (2004).

Computing details top

Data collection: X-AREA and X-RED32 (Stoe & Cie, 2001); cell refinement: X-AREA and X-RED32 (Stoe & Cie, 2001); data reduction: X-AREA and X-RED32 (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS87 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. The title molecule, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. A perspective view along the a axis of the crystal packing of the title compound. The C—H···O hydrogen bonds are shown as dashed lines.
4,4'-Dichloro-3,3',5,5'-tetramethyl-2,2'-[imidazolidine-1,3-diylbis(methylene)]diphenol top
Crystal data top
C21H26Cl2N2O2Dx = 1.349 Mg m3
Mr = 409.34Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 16491 reflections
a = 20.1594 (11) Åθ = 2.1–25.9°
b = 17.8088 (12) ŵ = 0.34 mm1
c = 5.6120 (3) ÅT = 173 K
V = 2014.8 (2) Å3Needle, colourless
Z = 40.22 × 0.11 × 0.09 mm
F(000) = 864
Data collection top
Stoe IPDS II two-circle
diffractometer
3280 reflections with I > 2σ(I)
Radiation source: Genix 3D IµS microfocus X-ray sourceRint = 0.080
ω scansθmax = 25.4°, θmin = 2.0°
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
h = 2424
Tmin = 0.891, Tmax = 0.946k = 2121
17730 measured reflectionsl = 66
3708 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0492P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.082(Δ/σ)max = 0.001
S = 1.00Δρmax = 0.16 e Å3
3708 reflectionsΔρmin = 0.20 e Å3
256 parametersAbsolute structure: Flack x determined using 1338 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.00 (4)
Crystal data top
C21H26Cl2N2O2V = 2014.8 (2) Å3
Mr = 409.34Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 20.1594 (11) ŵ = 0.34 mm1
b = 17.8088 (12) ÅT = 173 K
c = 5.6120 (3) Å0.22 × 0.11 × 0.09 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
3708 independent reflections
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
3280 reflections with I > 2σ(I)
Tmin = 0.891, Tmax = 0.946Rint = 0.080
17730 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.082Δρmax = 0.16 e Å3
S = 1.00Δρmin = 0.20 e Å3
3708 reflectionsAbsolute structure: Flack x determined using 1338 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
256 parametersAbsolute structure parameter: 0.00 (4)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.71322 (3)0.87262 (4)0.49746 (17)0.04042 (19)
Cl20.63887 (4)0.04441 (4)0.5199 (2)0.0535 (2)
O10.55382 (11)0.60445 (11)0.6973 (4)0.0383 (5)
H10.574 (2)0.565 (3)0.595 (9)0.074 (13)*
O20.52557 (10)0.34212 (11)0.6988 (4)0.0368 (5)
H20.5460 (19)0.3744 (19)0.611 (7)0.044 (10)*
N10.62589 (11)0.52659 (13)0.4013 (5)0.0304 (5)
N20.61125 (12)0.40126 (13)0.4025 (5)0.0308 (5)
C10.60746 (16)0.46539 (14)0.2433 (5)0.0326 (6)
H1A0.56200.47210.17970.039*
H1B0.63900.46050.10900.039*
C20.68434 (15)0.49812 (15)0.5313 (7)0.0394 (7)
H2A0.68720.52040.69250.047*
H2B0.72580.50920.44350.047*
C30.67177 (14)0.41297 (15)0.5448 (6)0.0341 (7)
H3A0.70960.38460.47680.041*
H3B0.66490.39680.71180.041*
C40.63685 (15)0.59859 (15)0.2782 (6)0.0337 (6)
H4A0.60200.60560.15580.040*
H4B0.68030.59710.19590.040*
C50.60838 (15)0.32829 (16)0.2813 (6)0.0337 (6)
H5A0.65080.31950.19690.040*
H5B0.57250.32940.16080.040*
C110.63568 (13)0.66441 (15)0.4475 (5)0.0290 (6)
C120.59219 (13)0.66519 (15)0.6419 (6)0.0304 (6)
C130.58553 (14)0.72820 (15)0.7842 (6)0.0332 (6)
H130.55580.72690.91540.040*
C140.62147 (14)0.79335 (15)0.7393 (6)0.0326 (7)
C150.66605 (13)0.79115 (14)0.5501 (6)0.0308 (6)
C160.67502 (13)0.72850 (15)0.4053 (5)0.0296 (6)
C170.61244 (17)0.86156 (17)0.8953 (7)0.0429 (8)
H17A0.57900.85091.01750.064*
H17B0.59770.90400.79760.064*
H17C0.65470.87410.97200.064*
C180.72556 (15)0.72805 (16)0.2061 (6)0.0387 (7)
H18A0.75300.77330.21630.058*
H18B0.70260.72700.05220.058*
H18C0.75380.68350.22080.058*
C210.59596 (13)0.26437 (14)0.4523 (5)0.0299 (6)
C220.55305 (14)0.27410 (15)0.6465 (6)0.0317 (6)
C230.53458 (15)0.21404 (16)0.7892 (6)0.0351 (6)
H230.50450.22210.91690.042*
C240.55924 (16)0.14239 (16)0.7492 (6)0.0385 (7)
C250.60474 (15)0.13394 (15)0.5636 (6)0.0359 (7)
C260.62373 (14)0.19245 (16)0.4129 (6)0.0334 (7)
C270.67213 (16)0.18022 (16)0.2127 (6)0.0405 (7)
H27A0.68720.12790.21410.061*
H27B0.71030.21370.23330.061*
H27C0.65040.19110.06040.061*
C280.5373 (2)0.07780 (19)0.9026 (7)0.0534 (9)
H28A0.51610.03950.80290.080*
H28B0.50560.09581.02200.080*
H28C0.57590.05600.98290.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0421 (4)0.0336 (3)0.0456 (4)0.0080 (3)0.0053 (4)0.0003 (4)
Cl20.0674 (5)0.0306 (3)0.0625 (6)0.0073 (3)0.0007 (6)0.0026 (4)
O10.0401 (11)0.0349 (10)0.0400 (14)0.0082 (9)0.0115 (10)0.0021 (9)
O20.0379 (11)0.0373 (11)0.0353 (13)0.0040 (9)0.0028 (10)0.0014 (10)
N10.0329 (12)0.0293 (11)0.0289 (13)0.0008 (9)0.0042 (11)0.0015 (10)
N20.0352 (13)0.0284 (11)0.0287 (13)0.0008 (9)0.0056 (11)0.0000 (10)
C10.0389 (15)0.0314 (14)0.0276 (17)0.0011 (11)0.0055 (13)0.0012 (12)
C20.0415 (15)0.0360 (14)0.041 (2)0.0018 (12)0.0137 (17)0.0032 (15)
C30.0362 (15)0.0345 (13)0.0316 (18)0.0020 (11)0.0093 (13)0.0026 (13)
C40.0397 (16)0.0294 (14)0.0319 (17)0.0007 (11)0.0015 (14)0.0043 (12)
C50.0385 (15)0.0328 (14)0.0297 (17)0.0006 (12)0.0014 (13)0.0034 (13)
C110.0294 (14)0.0299 (13)0.0278 (18)0.0023 (10)0.0001 (12)0.0028 (11)
C120.0277 (14)0.0317 (13)0.0316 (17)0.0003 (11)0.0017 (12)0.0036 (12)
C130.0314 (14)0.0368 (14)0.0314 (17)0.0021 (12)0.0052 (13)0.0011 (12)
C140.0320 (14)0.0318 (14)0.0342 (19)0.0028 (10)0.0001 (13)0.0008 (13)
C150.0286 (13)0.0298 (13)0.0341 (18)0.0021 (10)0.0026 (12)0.0020 (12)
C160.0268 (13)0.0325 (14)0.0294 (16)0.0033 (11)0.0004 (12)0.0048 (11)
C170.0484 (18)0.0375 (16)0.043 (2)0.0007 (13)0.0080 (16)0.0055 (14)
C180.0394 (16)0.0375 (15)0.0392 (19)0.0023 (12)0.0099 (15)0.0007 (13)
C210.0295 (13)0.0308 (13)0.0294 (18)0.0022 (11)0.0035 (12)0.0018 (11)
C220.0309 (14)0.0345 (14)0.0297 (17)0.0005 (11)0.0053 (12)0.0020 (12)
C230.0337 (15)0.0418 (16)0.0297 (16)0.0032 (12)0.0003 (13)0.0006 (13)
C240.0450 (17)0.0352 (15)0.0352 (19)0.0093 (12)0.0069 (15)0.0043 (13)
C250.0403 (15)0.0295 (13)0.038 (2)0.0003 (11)0.0085 (13)0.0005 (12)
C260.0309 (14)0.0346 (15)0.0347 (17)0.0020 (11)0.0047 (13)0.0045 (12)
C270.0421 (17)0.0390 (16)0.040 (2)0.0014 (13)0.0049 (15)0.0065 (14)
C280.065 (2)0.0424 (18)0.053 (2)0.0127 (16)0.0006 (19)0.0101 (16)
Geometric parameters (Å, º) top
Cl1—C151.760 (3)C13—C141.391 (4)
Cl2—C251.754 (3)C13—H130.9500
O1—C121.366 (3)C14—C151.392 (4)
O1—H10.99 (5)C14—C171.508 (4)
O2—C221.364 (3)C15—C161.392 (4)
O2—H20.86 (4)C16—C181.513 (4)
N1—C11.453 (4)C17—H17A0.9800
N1—C41.473 (4)C17—H17B0.9800
N1—C21.476 (4)C17—H17C0.9800
N2—C11.452 (3)C18—H18A0.9800
N2—C51.468 (4)C18—H18B0.9800
N2—C31.473 (4)C18—H18C0.9800
C1—H1A0.9900C21—C221.402 (4)
C1—H1B0.9900C21—C261.415 (4)
C2—C31.539 (4)C22—C231.387 (4)
C2—H2A0.9900C23—C241.388 (4)
C2—H2B0.9900C23—H230.9500
C3—H3A0.9900C24—C251.396 (5)
C3—H3B0.9900C24—C281.503 (4)
C4—C111.509 (4)C25—C261.396 (4)
C4—H4A0.9900C26—C271.504 (5)
C4—H4B0.9900C27—H27A0.9800
C5—C211.510 (4)C27—H27B0.9800
C5—H5A0.9900C27—H27C0.9800
C5—H5B0.9900C28—H28A0.9800
C11—C121.399 (4)C28—H28B0.9800
C11—C161.410 (4)C28—H28C0.9800
C12—C131.384 (4)
C12—O1—H1101 (3)C15—C14—C17122.9 (3)
C22—O2—H2106 (2)C14—C15—C16123.5 (2)
C1—N1—C4113.9 (2)C14—C15—Cl1117.0 (2)
C1—N1—C2104.4 (2)C16—C15—Cl1119.5 (2)
C4—N1—C2114.3 (2)C15—C16—C11118.5 (3)
C1—N2—C5114.2 (2)C15—C16—C18121.5 (3)
C1—N2—C3105.4 (2)C11—C16—C18119.9 (3)
C5—N2—C3114.2 (2)C14—C17—H17A109.5
N2—C1—N1101.6 (2)C14—C17—H17B109.5
N2—C1—H1A111.5H17A—C17—H17B109.5
N1—C1—H1A111.5C14—C17—H17C109.5
N2—C1—H1B111.5H17A—C17—H17C109.5
N1—C1—H1B111.5H17B—C17—H17C109.5
H1A—C1—H1B109.3C16—C18—H18A109.5
N1—C2—C3103.4 (2)C16—C18—H18B109.5
N1—C2—H2A111.1H18A—C18—H18B109.5
C3—C2—H2A111.1C16—C18—H18C109.5
N1—C2—H2B111.1H18A—C18—H18C109.5
C3—C2—H2B111.1H18B—C18—H18C109.5
H2A—C2—H2B109.1C22—C21—C26118.5 (3)
N2—C3—C2104.4 (2)C22—C21—C5120.2 (2)
N2—C3—H3A110.9C26—C21—C5121.2 (3)
C2—C3—H3A110.9O2—C22—C23116.8 (3)
N2—C3—H3B110.9O2—C22—C21121.9 (3)
C2—C3—H3B110.9C23—C22—C21121.3 (3)
H3A—C3—H3B108.9C22—C23—C24121.3 (3)
N1—C4—C11112.2 (3)C22—C23—H23119.4
N1—C4—H4A109.2C24—C23—H23119.4
C11—C4—H4A109.2C23—C24—C25117.1 (3)
N1—C4—H4B109.2C23—C24—C28120.4 (3)
C11—C4—H4B109.2C25—C24—C28122.6 (3)
H4A—C4—H4B107.9C26—C25—C24123.5 (3)
N2—C5—C21112.3 (2)C26—C25—Cl2119.1 (2)
N2—C5—H5A109.1C24—C25—Cl2117.4 (2)
C21—C5—H5A109.1C25—C26—C21118.2 (3)
N2—C5—H5B109.1C25—C26—C27121.5 (3)
C21—C5—H5B109.1C21—C26—C27120.3 (3)
H5A—C5—H5B107.9C26—C27—H27A109.5
C12—C11—C16118.4 (3)C26—C27—H27B109.5
C12—C11—C4120.6 (2)H27A—C27—H27B109.5
C16—C11—C4120.9 (3)C26—C27—H27C109.5
O1—C12—C13117.1 (3)H27A—C27—H27C109.5
O1—C12—C11121.6 (3)H27B—C27—H27C109.5
C13—C12—C11121.2 (3)C24—C28—H28A109.5
C12—C13—C14121.4 (3)C24—C28—H28B109.5
C12—C13—H13119.3H28A—C28—H28B109.5
C14—C13—H13119.3C24—C28—H28C109.5
C13—C14—C15116.8 (3)H28A—C28—H28C109.5
C13—C14—C17120.3 (3)H28B—C28—H28C109.5
C5—N2—C1—N1168.1 (2)C14—C15—C16—C18178.2 (3)
C3—N2—C1—N142.0 (3)Cl1—C15—C16—C181.3 (4)
C4—N1—C1—N2170.7 (2)C12—C11—C16—C153.7 (4)
C2—N1—C1—N245.4 (3)C4—C11—C16—C15172.2 (3)
C1—N1—C2—C331.0 (3)C12—C11—C16—C18176.3 (3)
C4—N1—C2—C3156.0 (2)C4—C11—C16—C187.8 (4)
C1—N2—C3—C222.5 (3)N2—C5—C21—C2237.3 (4)
C5—N2—C3—C2148.6 (3)N2—C5—C21—C26146.7 (3)
N1—C2—C3—N25.2 (3)C26—C21—C22—O2178.5 (3)
C1—N1—C4—C11163.0 (2)C5—C21—C22—O25.4 (4)
C2—N1—C4—C1177.2 (3)C26—C21—C22—C234.0 (4)
C1—N2—C5—C21166.3 (2)C5—C21—C22—C23172.1 (3)
C3—N2—C5—C2172.3 (3)O2—C22—C23—C24179.3 (3)
N1—C4—C11—C1236.2 (4)C21—C22—C23—C241.7 (5)
N1—C4—C11—C16148.0 (2)C22—C23—C24—C251.7 (4)
C16—C11—C12—O1178.3 (3)C22—C23—C24—C28178.6 (3)
C4—C11—C12—O15.8 (4)C23—C24—C25—C263.0 (5)
C16—C11—C12—C132.7 (4)C28—C24—C25—C26177.3 (3)
C4—C11—C12—C13173.2 (3)C23—C24—C25—Cl2177.3 (2)
O1—C12—C13—C14178.7 (3)C28—C24—C25—Cl22.4 (4)
C11—C12—C13—C140.3 (5)C24—C25—C26—C210.8 (5)
C12—C13—C14—C152.2 (4)Cl2—C25—C26—C21179.5 (2)
C12—C13—C14—C17179.1 (3)C24—C25—C26—C27179.0 (3)
C13—C14—C15—C161.2 (4)Cl2—C25—C26—C270.7 (4)
C17—C14—C15—C16179.8 (3)C22—C21—C26—C252.7 (4)
C13—C14—C15—Cl1178.4 (2)C5—C21—C26—C25173.4 (3)
C17—C14—C15—Cl10.3 (4)C22—C21—C26—C27177.5 (3)
C14—C15—C16—C111.8 (4)C5—C21—C26—C276.4 (4)
Cl1—C15—C16—C11178.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.99 (5)1.66 (5)2.606 (3)158 (4)
O2—H2···N20.86 (4)1.83 (4)2.619 (3)152 (3)
C13—H13···O2i0.952.593.464 (4)152
Symmetry code: (i) x+1, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.99 (5)1.66 (5)2.606 (3)158 (4)
O2—H2···N20.86 (4)1.83 (4)2.619 (3)152 (3)
C13—H13···O2i0.952.593.464 (4)152
Symmetry code: (i) x+1, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H26Cl2N2O2
Mr409.34
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)173
a, b, c (Å)20.1594 (11), 17.8088 (12), 5.6120 (3)
V3)2014.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.22 × 0.11 × 0.09
Data collection
DiffractometerStoe IPDS II two-circle
diffractometer
Absorption correctionMulti-scan
(X-AREA; Stoe & Cie, 2001)
Tmin, Tmax0.891, 0.946
No. of measured, independent and
observed [I > 2σ(I)] reflections
17730, 3708, 3280
Rint0.080
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.082, 1.00
No. of reflections3708
No. of parameters256
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.20
Absolute structureFlack x determined using 1338 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Absolute structure parameter0.00 (4)

Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2001), SHELXS87 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), XP in SHELXTL-Plus (Sheldrick, 2008).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds