Download citation
Download citation
link to html
The title compound, C26H21NO2S2, which consists of a benzo­thia­zole skeleton with [alpha]-naphthyl­vinyl and tosyl groups at positions 2 and 3, respectively, was prepared by palladium-copper-catalyzed heteroannulation. The E configuration of the mol­ecule about the vinyl C=C bond is established by the benzothiazole-naphthyl C-C-C-C torsion angle of 177.5 (4)°. The five-membered heterocyclic ring adopts an envelope conformation with the Csp3 atom 0.380 (6) Å from the C2NS plane. The two S-C [1.751 (4) and 1.838 (4) Å] and two N-C [1.426 (5) and 1.482 (5) Å] bond lengths in the thia­zole ring differ significantly.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100006259/sk1385sup1.cif
Contains datablocks global, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100006259/sk1385IIsup2.hkl
Contains datablock II

CCDC reference: 150341

Comment top

The benzothiazole system, (I), containing a heterocyclic ring with sulfur and nitrogen as heteroatoms, is often used as an antihypertensive, an anticoagulant and a calcium agonist (Yamamoto et al., 1998). Substituted benzothiazolines find wide-ranging applications as efficient anticonvulsant, vasodilator and blood platelet aggregation inhibitors (Ucar et al., 1998) and as antifungal agents (Kanoongo et al., 1990). As part of our ongoing program on the synthesis and characterization of new heterocyclic compounds of biological importance (Kundu et al., 1999; Nandi et al., 2000) and to build up a hierarchy for such systems, the structure determination of (E)-2-[2-(1-naphthyl)vinyl]-3-tosyl-2,3-dihydro-1H-benzothiazole, (II), was undertaken.

The E configuration of the molecule of (II), which contains a benzothiazole moiety (A) with α-naphthylvinyl (B) and tosyl (C) substituents at the 2 and 3 positions, respectively, is established by the torsion angle C14—C15—C16—C17 of 177.5 (4)°. The five-membered thiazole ring (N, C8, C13, S2 and C14) displays an envelope conformation with the C14 atom 0.380 (6) Å from the least-squares plane through the remaining endocyclic atoms (r.m.s deviation 0.006 Å). The dihedral angles between the planar parts of A (atoms N, C8–C13 and S2), B (atoms C17–C26) and C (atoms C1—C7) are A/B 82 (1), A/C 112 (1) and B/C 131.5 (4)°. The maximum deviation for an in-plane atom (C9) from the corresponding least-squares plane is 0.04 (8) Å. The bond lengths and angles observed for the heterocyclic ring in (II) are similar to those reported for related structures (Miler-Srenger, 1973; Yeap et al., 1999). The C13—S2—C14 angle of 91.0 (2)° indicates that the S2 atom uses only the p orbital to form bonds with the C13 and C14 atoms, of which C13 is a part of an aromatic ring and C14 is sp3 hybridized. Consequently, the S—C bond distances in the heterocyclic ring [S2—C13 1.751 (4) and S2—C14 1.838 (4) Å] differ significantly. The asymmetric nature of bonding of the C atoms (C8 and C14) is also reflected in the difference between the two N—C distances; N—C8 1.426 (5) and N—C14 1.482 (5) Å. The bond distances and angles for the tosyl and α-naphthylvinyl groups are within expected ranges (Chiaroni et al., 1994; Dobson et al., 1996). A comparison of the geometrical parameters of various heterocyclic derivatives (Table 3) reveals that the conformation of the five-membered C3NS ring has a profound influence on the molecular dimensions. In compounds with a non-planar C3NS ring, the S—C and N—C bond distances show greater assymmetry compared with those having a planar C3NS ring.

Both sulfonyl-O atoms are involved in weak (C—H···O) intermolecular hydrogen bonds with benzothiazole and naphthyl C atoms (Table 2). In the solid state, the crystal packing is stabilized by van der Waals interactions and a weak intermolecular hydrogen bond.

Experimental top

A mixture of 3-(2-aminophenylthio)prop-1-yne (3.67 mmol) and 1-iodonaphthalene (4.4 mmol) in acetonitrile (5 ml) was stirred at room temperature for 24 h under a nitrogen atmosphere in the presence of (PPh3)2PdCl2 (0.11 mmol), CuI (0.22 mmol) and triethylamine (14.68 mmol). The resultant product after tosylation with p-TsCl (1.2 equivalents) in the presence of pyridine (2.0 equivalents) in dichloromethane was cyclized with CuI (40 mole %) in triethylamine (4 equivalents) by refluxing in tetrahydrofuran (10 ml) for 36 h under an argon atmosphere to afford (II), which was purified by column chromatography on silica gel (60–120 mesh) using 5% ethylacetate as eluant in light petroleum (333–353 K) in 63% yield (m.p. 452–453 K). Single crystals suitable for X-ray analysis were obtained by slow crystallization from a solution of (II) in a light petroleum (333–353 K) and ether mixture (3:1).

Refinement top

The H atoms were refined using a riding model and their isotropic displacement parameters were set to 1.2 times (1.5 times for CH3 groups) the equivalent displacement parameters of their parent atoms.

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1994); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1995); program(s) used to solve structure: MULTAN88 (Debaerdemaeker et al., 1988); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1995); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. ZORTEP (Zsolnai, 1995) view (50% probability level) of (II).
(E)-2-(2-α-Naphthyl)vinyl-3-p-tosyl benzothiazoline top
Crystal data top
C26H21NO2S2F(000) = 928
Mr = 443.56Dx = 1.336 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54180 Å
a = 10.006 (4) ÅCell parameters from 20 reflections
b = 8.543 (3) Åθ = 14.4–16.4°
c = 26.09 (1) ŵ = 2.37 mm1
β = 98.52 (4)°T = 296 K
V = 2205 (1) Å3Prismatic, colourless
Z = 40.30 × 0.30 × 0.20 mm
Data collection top
Rigaku AFC-5R
diffractometer
2609 reflections with I > 2σ(I)
Radiation source: Rigaku rotating anodeRint = 0.039
Graphite monochromatorθmax = 78.3°, θmin = 3.4°
ω–2θ scansh = 1211
Absorption correction: empirical (using intensity measurements)
(North et al., 1968)
k = 810
Tmin = 0.537, Tmax = 0.649l = 3332
4742 measured reflections3 standard reflections every 150 reflections
4476 independent reflections intensity decay: 4.2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.225H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.130P)2]
where P = (Fo2 + 2Fc2)/3
4476 reflections(Δ/σ)max = 0.021
282 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.70 e Å3
Crystal data top
C26H21NO2S2V = 2205 (1) Å3
Mr = 443.56Z = 4
Monoclinic, P21/nCu Kα radiation
a = 10.006 (4) ŵ = 2.37 mm1
b = 8.543 (3) ÅT = 296 K
c = 26.09 (1) Å0.30 × 0.30 × 0.20 mm
β = 98.52 (4)°
Data collection top
Rigaku AFC-5R
diffractometer
2609 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements)
(North et al., 1968)
Rint = 0.039
Tmin = 0.537, Tmax = 0.6493 standard reflections every 150 reflections
4742 measured reflections intensity decay: 4.2%
4476 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.225H-atom parameters constrained
S = 1.01Δρmax = 0.44 e Å3
4476 reflectionsΔρmin = 0.70 e Å3
282 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.68306 (12)0.12191 (12)0.13897 (4)0.0418 (3)
S20.72636 (13)0.31393 (14)0.19327 (4)0.0487 (3)
N0.6235 (4)0.0549 (4)0.14712 (12)0.0394 (8)
O10.5988 (4)0.1867 (4)0.09521 (12)0.0561 (9)
O20.6927 (4)0.1978 (4)0.18794 (12)0.0545 (9)
C10.9521 (6)0.0613 (7)0.1587 (2)0.0624 (14)
H10.93820.04180.19260.075*
C21.0811 (6)0.0500 (7)0.1455 (3)0.0713 (16)
H21.15250.02000.17060.086*
C31.1052 (7)0.0822 (7)0.0964 (3)0.0737 (17)
C41.2456 (7)0.0734 (10)0.0824 (3)0.118 (4)
H4A1.291 (3)0.161 (6)0.093 (2)0.176*
H4B1.2406 (8)0.064 (8)0.0478 (19)0.176*
H4C1.289 (3)0.010 (6)0.098 (2)0.176*
C50.9983 (8)0.1224 (9)0.0605 (3)0.093 (2)
H51.01340.14400.02690.112*
C60.8674 (6)0.1325 (8)0.0720 (2)0.0724 (17)
H60.79620.15970.04640.087*
C70.8447 (5)0.1014 (5)0.12186 (16)0.0425 (10)
C80.6233 (4)0.1704 (5)0.10762 (14)0.0367 (9)
C90.5751 (5)0.1500 (6)0.05554 (16)0.0518 (12)
H90.53570.05580.04350.062*
C100.5865 (6)0.2721 (6)0.02197 (17)0.0591 (14)
H100.55620.25950.01320.071*
C110.6420 (5)0.4117 (6)0.0399 (2)0.0568 (13)
H110.65070.49200.01650.068*
C120.6859 (5)0.4355 (6)0.09261 (19)0.0500 (12)
H120.72040.53180.10480.060*
C130.6767 (4)0.3126 (5)0.12603 (15)0.0369 (9)
C140.6411 (4)0.1258 (5)0.19956 (16)0.0395 (10)
H140.69910.05830.22380.047*
C150.5076 (5)0.1458 (6)0.21776 (16)0.0453 (11)
H150.43980.19880.19640.054*
C160.4810 (5)0.0932 (6)0.26178 (17)0.0460 (11)
H160.55240.04460.28270.055*
C170.3535 (5)0.1002 (5)0.28294 (17)0.0429 (10)
C180.2433 (5)0.1782 (7)0.2576 (2)0.0590 (13)
H180.25160.23220.22730.071*
C190.1185 (5)0.1788 (7)0.2760 (2)0.0661 (15)
H190.04490.23020.25740.079*
C200.1049 (6)0.1052 (7)0.3207 (2)0.0632 (14)
H200.02200.10730.33270.076*
C210.2130 (5)0.0261 (6)0.3491 (2)0.0515 (12)
C220.2014 (7)0.0518 (7)0.3966 (2)0.0725 (17)
H220.11900.05100.40900.087*
C230.3057 (7)0.1254 (9)0.4234 (2)0.088 (2)
H230.29510.17470.45430.106*
C240.4305 (7)0.1304 (9)0.4062 (2)0.090 (2)
H240.50290.18130.42580.108*
C250.4465 (6)0.0597 (7)0.3602 (2)0.0630 (15)
H250.52960.06660.34850.076*
C260.3403 (5)0.0231 (5)0.33032 (17)0.0422 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0519 (7)0.0315 (5)0.0425 (6)0.0052 (5)0.0091 (5)0.0003 (4)
S20.0608 (8)0.0507 (7)0.0350 (5)0.0172 (6)0.0087 (5)0.0079 (5)
N0.054 (2)0.0349 (18)0.0311 (17)0.0020 (16)0.0113 (16)0.0013 (14)
O10.066 (2)0.0441 (18)0.0560 (19)0.0105 (17)0.0009 (17)0.0132 (16)
O20.074 (2)0.0434 (18)0.0487 (18)0.0032 (17)0.0161 (17)0.0155 (14)
C10.059 (4)0.071 (4)0.058 (3)0.000 (3)0.013 (3)0.002 (3)
C20.053 (4)0.081 (4)0.079 (4)0.005 (3)0.008 (3)0.005 (3)
C30.070 (4)0.068 (4)0.089 (5)0.016 (3)0.033 (4)0.021 (3)
C40.082 (5)0.128 (7)0.158 (8)0.024 (5)0.069 (5)0.031 (6)
C50.099 (5)0.123 (6)0.068 (4)0.013 (5)0.048 (4)0.003 (4)
C60.079 (4)0.094 (4)0.049 (3)0.000 (4)0.022 (3)0.011 (3)
C70.049 (3)0.042 (2)0.039 (2)0.006 (2)0.014 (2)0.0035 (19)
C80.042 (2)0.040 (2)0.0288 (18)0.0053 (19)0.0054 (17)0.0001 (17)
C90.068 (3)0.049 (3)0.036 (2)0.003 (2)0.002 (2)0.004 (2)
C100.079 (4)0.066 (4)0.031 (2)0.015 (3)0.005 (2)0.006 (2)
C110.061 (3)0.056 (3)0.054 (3)0.013 (3)0.013 (2)0.026 (2)
C120.054 (3)0.041 (2)0.057 (3)0.001 (2)0.013 (2)0.007 (2)
C130.042 (2)0.036 (2)0.0335 (19)0.0030 (19)0.0072 (17)0.0002 (17)
C140.044 (3)0.036 (2)0.040 (2)0.0005 (19)0.0126 (19)0.0006 (18)
C150.047 (3)0.051 (3)0.038 (2)0.001 (2)0.008 (2)0.0041 (19)
C160.043 (3)0.053 (3)0.044 (2)0.008 (2)0.013 (2)0.007 (2)
C170.041 (3)0.044 (2)0.046 (2)0.002 (2)0.015 (2)0.000 (2)
C180.049 (3)0.069 (3)0.062 (3)0.015 (3)0.017 (2)0.011 (3)
C190.044 (3)0.076 (4)0.079 (4)0.021 (3)0.012 (3)0.003 (3)
C200.052 (3)0.065 (3)0.078 (4)0.009 (3)0.024 (3)0.001 (3)
C210.052 (3)0.050 (3)0.058 (3)0.001 (2)0.027 (2)0.007 (2)
C220.078 (4)0.085 (4)0.065 (4)0.001 (3)0.046 (3)0.005 (3)
C230.103 (5)0.104 (5)0.068 (4)0.012 (5)0.046 (4)0.030 (4)
C240.081 (4)0.119 (6)0.076 (4)0.029 (4)0.032 (3)0.050 (4)
C250.057 (3)0.079 (4)0.059 (3)0.006 (3)0.028 (3)0.017 (3)
C260.042 (3)0.045 (2)0.043 (2)0.002 (2)0.017 (2)0.0029 (19)
Geometric parameters (Å, º) top
S1—O21.423 (3)C11—C121.396 (7)
S1—O11.426 (3)C11—H110.9300
S1—N1.649 (4)C12—C131.377 (6)
S1—C71.750 (5)C12—H120.9300
S2—C131.751 (4)C14—C151.492 (6)
S2—C141.838 (4)C14—H140.9800
N—C81.426 (5)C15—C161.297 (6)
N—C141.482 (5)C15—H150.9300
C1—C71.375 (7)C16—C171.465 (6)
C1—C21.388 (7)C16—H160.9300
C1—H10.9300C17—C181.371 (6)
C2—C31.365 (9)C17—C261.424 (6)
C2—H20.9300C18—C191.403 (7)
C3—C51.357 (9)C18—H180.9300
C3—C41.506 (9)C19—C201.349 (7)
C4—H4A0.8987C19—H190.9300
C4—H4B0.8987C20—C211.392 (7)
C4—H4C0.8987C20—H200.9300
C5—C61.389 (9)C21—C221.425 (7)
C5—H50.9300C21—C261.431 (6)
C6—C71.379 (6)C22—C231.326 (8)
C6—H60.9300C22—H220.9300
C8—C91.384 (5)C23—C241.388 (8)
C8—C131.384 (6)C23—H230.9300
C9—C101.378 (7)C24—C251.374 (7)
C9—H90.9300C24—H240.9300
C10—C111.368 (7)C25—C261.412 (7)
C10—H100.9300C25—H250.9300
O2—S1—O1119.7 (2)C13—C12—H12120.9
O2—S1—N106.2 (2)C11—C12—H12120.9
O1—S1—N106.1 (2)C12—C13—C8120.6 (4)
O2—S1—C7109.4 (2)C12—C13—S2126.4 (4)
O1—S1—C7107.1 (2)C8—C13—S2113.0 (3)
N—S1—C7107.9 (2)N—C14—C15110.5 (4)
C13—S2—C1491.0 (2)N—C14—S2105.5 (3)
C8—N—C14111.8 (3)C15—C14—S2112.2 (3)
C8—N—S1120.1 (3)N—C14—H14109.5
C14—N—S1119.8 (3)C15—C14—H14109.5
C7—C1—C2120.2 (5)S2—C14—H14109.5
C7—C1—H1119.9C16—C15—C14123.6 (4)
C2—C1—H1119.9C16—C15—H15118.2
C3—C2—C1121.3 (6)C14—C15—H15118.2
C3—C2—H2119.4C15—C16—C17128.6 (4)
C1—C2—H2119.4C15—C16—H16115.7
C5—C3—C2117.9 (6)C17—C16—H16115.7
C5—C3—C4120.8 (7)C18—C17—C26118.2 (4)
C2—C3—C4121.3 (7)C18—C17—C16121.4 (4)
C3—C4—H4A109.5C26—C17—C16120.4 (4)
C3—C4—H4B109.5C17—C18—C19122.0 (5)
H4A—C4—H4B109.5C17—C18—H18119.0
C3—C4—H4C109.5C19—C18—H18119.0
H4A—C4—H4C109.5C20—C19—C18120.2 (5)
H4B—C4—H4C109.5C20—C19—H19119.9
C3—C5—C6122.6 (6)C18—C19—H19119.9
C3—C5—H5118.7C19—C20—C21121.1 (5)
C6—C5—H5118.7C19—C20—H20119.4
C7—C6—C5118.9 (6)C21—C20—H20119.4
C7—C6—H6120.6C20—C21—C22122.2 (5)
C5—C6—H6120.6C20—C21—C26119.1 (5)
C1—C7—C6119.2 (5)C22—C21—C26118.7 (5)
C1—C7—S1120.2 (4)C23—C22—C21121.4 (5)
C6—C7—S1120.6 (4)C23—C22—H22119.3
C9—C8—C13120.8 (4)C21—C22—H22119.3
C9—C8—N125.8 (4)C22—C23—C24121.3 (6)
C13—C8—N113.4 (3)C22—C23—H23119.3
C10—C9—C8118.6 (5)C24—C23—H23119.3
C10—C9—H9120.7C25—C24—C23119.7 (6)
C8—C9—H9120.7C25—C24—H24120.2
C11—C10—C9120.7 (4)C23—C24—H24120.2
C11—C10—H10119.7C24—C25—C26121.8 (5)
C9—C10—H10119.7C24—C25—H25119.1
C10—C11—C12121.1 (4)C26—C25—H25119.1
C10—C11—H11119.4C25—C26—C17123.5 (4)
C12—C11—H11119.4C25—C26—C21117.0 (4)
C13—C12—C11118.2 (4)C17—C26—C21119.4 (4)
O2—S1—N—C8169.4 (3)N—C8—C13—S21.5 (5)
O1—S1—N—C862.3 (4)C14—S2—C13—C12168.6 (4)
C7—S1—N—C852.2 (4)C14—S2—C13—C811.0 (3)
O2—S1—N—C1423.4 (4)C8—N—C14—C1597.6 (4)
O1—S1—N—C14151.8 (3)S1—N—C14—C15113.9 (4)
C7—S1—N—C1493.8 (3)C8—N—C14—S223.9 (4)
C7—C1—C2—C31.8 (9)S1—N—C14—S2124.6 (3)
C1—C2—C3—C51.4 (10)C13—S2—C14—N19.3 (3)
C1—C2—C3—C4178.6 (6)C13—S2—C14—C15101.1 (3)
C2—C3—C5—C60.3 (11)N—C14—C15—C16127.0 (5)
C4—C3—C5—C6179.7 (7)S2—C14—C15—C16115.5 (5)
C3—C5—C6—C70.4 (11)C14—C15—C16—C17177.5 (4)
C2—C1—C7—C61.0 (8)C15—C16—C17—C184.5 (8)
C2—C1—C7—S1177.9 (4)C15—C16—C17—C26174.3 (5)
C5—C6—C7—C10.0 (9)C26—C17—C18—C192.3 (8)
C5—C6—C7—S1176.8 (5)C16—C17—C18—C19176.5 (5)
O2—S1—C7—C140.1 (5)C17—C18—C19—C202.0 (9)
O1—S1—C7—C1171.2 (4)C18—C19—C20—C210.6 (9)
N—S1—C7—C175.0 (4)C19—C20—C21—C22179.6 (6)
O2—S1—C7—C6136.8 (4)C19—C20—C21—C260.1 (8)
O1—S1—C7—C65.6 (5)C20—C21—C22—C23179.4 (6)
N—S1—C7—C6108.1 (5)C26—C21—C22—C230.4 (9)
C14—N—C8—C9162.1 (4)C21—C22—C23—C240.3 (11)
S1—N—C8—C949.4 (6)C22—C23—C24—C250.9 (12)
C14—N—C8—C1317.4 (5)C23—C24—C25—C262.1 (11)
S1—N—C8—C13131.0 (3)C24—C25—C26—C17178.8 (6)
C13—C8—C9—C102.7 (7)C24—C25—C26—C212.0 (8)
N—C8—C9—C10177.8 (4)C18—C17—C26—C25179.4 (5)
C8—C9—C10—C111.2 (8)C16—C17—C26—C251.7 (7)
C9—C10—C11—C121.4 (8)C18—C17—C26—C211.5 (7)
C10—C11—C12—C132.5 (7)C16—C17—C26—C21177.4 (4)
C11—C12—C13—C81.0 (7)C20—C21—C26—C25179.4 (5)
C11—C12—C13—S2179.4 (4)C22—C21—C26—C250.8 (7)
C9—C8—C13—C121.6 (7)C20—C21—C26—C170.3 (7)
N—C8—C13—C12178.9 (4)C22—C21—C26—C17179.9 (5)
C9—C8—C13—S2178.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O1i0.932.533.411 (6)159
C12—H12···O1ii0.932.693.346 (6)128
C20—H20···O2iii0.932.713.399 (6)132
Symmetry codes: (i) x+1, y, z; (ii) x, y1, z; (iii) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC26H21NO2S2
Mr443.56
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)10.006 (4), 8.543 (3), 26.09 (1)
β (°) 98.52 (4)
V3)2205 (1)
Z4
Radiation typeCu Kα
µ (mm1)2.37
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerRigaku AFC-5R
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(North et al., 1968)
Tmin, Tmax0.537, 0.649
No. of measured, independent and
observed [I > 2σ(I)] reflections
4742, 4476, 2609
Rint0.039
(sin θ/λ)max1)0.635
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.225, 1.01
No. of reflections4476
No. of parameters282
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.70

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1994), MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation, 1995), MULTAN88 (Debaerdemaeker et al., 1988), SHELXL97 (Sheldrick, 1997), ZORTEP (Zsolnai, 1995), SHELXL97.

Selected geometric parameters (Å, º) top
S1—O21.423 (3)N—C81.426 (5)
S1—O11.426 (3)N—C141.482 (5)
S1—N1.649 (4)C14—C151.492 (6)
S1—C71.750 (5)C15—C161.297 (6)
S2—C131.751 (4)C16—C171.465 (6)
S2—C141.838 (4)
O2—S1—O1119.7 (2)C13—C8—N113.4 (3)
O2—S1—N106.2 (2)C8—C13—S2113.0 (3)
O1—S1—N106.1 (2)N—C14—C15110.5 (4)
O2—S1—C7109.4 (2)N—C14—S2105.5 (3)
O1—S1—C7107.1 (2)C15—C14—S2112.2 (3)
N—S1—C7107.9 (2)C16—C15—C14123.6 (4)
C13—S2—C1491.0 (2)C15—C16—C17128.6 (4)
C8—N—C14111.8 (3)
C14—C15—C16—C17177.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O1i0.932.533.411 (6)159.1
C12—H12···O1ii0.932.693.346 (6)128.3
C20—H20···O2iii0.932.713.399 (6)131.8
Symmetry codes: (i) x+1, y, z; (ii) x, y1, z; (iii) x+1/2, y1/2, z+1/2.
Geometric parameters (Å) of heterocyclic compounds containing the C3NS ring top
CompoundC3NS ringD\dagS—CN—C
conformation
C15H9Cl2NS2aplanar1.739 (4)1.297 (5)
1.760 (4)1.384 (5)
C13H9NOSbplanar1.732 (2)1.397 (2)
1.747 (2)1.297 (2)
C11H8N2Scplanar1.739 (3)1.398 (3)
1.754 (3)1.299 (3)
C18H18N2S2denvelope0.409 (12)1.751 (8)1.370 (9)
1.861 (9)1.490 (9)
C18H20N2S2eenvelope0.288 (1)1.751 (8)1.370 (3)
1.861 (9)1.464 (4)
C11H13NOSfenvelope0.322 (2)1.748 (2)1.388 (3)
1.846 (2)1.463 (3)
C26H21NO2S2genvelope0.380 (6)1.751 (4)1.426 (5)
1.838 (4)1.482 (5)
\dag Deviation of C atom bonded to S and N atoms from C2NS plane.

Notes: (a) Yang et al. (1995); (b) Teo et al. (1995); (c) Davidović et al. (1999); (d) Miler-Srenger (1969); (e) Miler-Srenger (1973); (f) Yeap et al. (1991); (g) present work.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds