Download citation
Download citation
link to html
Yellow crystals of [Ni(deta)2]3[SbS4]2 (deta is diethyl­enetri­amine, C4H13N3) were synthesized under solvothermal conditions by reacting elemental Ni, Sb and S in a solution of diethyl­enetri­amine. The structure is composed of tetrahedral [SbS4]3- anions in general positions and octahedral [Ni(deta)2]2+ cations located at centres of inversion. In the crystal structure, the anions and cations are stacked in the direction of the a axis in a pseudo-hexagonal arrangement.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100014359/sk1394sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100014359/sk1394Isup2.hkl
Contains datablock I

CCDC reference: 158231

Comment top

During our systematic study of syntheses of transition metal thioantimonates in different amine solutions under solvothermal conditions, the new thioantimonate(V) [Ni(deta)2]3[SbS4]2, (I), was obtained as yellow plates. The structure is composed of [Ni(deta)2]2+ cations and [SbS4]3- anions (Fig. 1). The Sb—S distances in the tetrahedral thioantimonate(V) anion vary between 2.3205 (8) and 2.3389 (11) Å, and are typical for SbV—S distances (Schur et al., 1998). The S—Sb—S angles, which vary between 107.49 (3) and 110.80 (4)°, deviate only slightly from ideal tetrahedral geometry and are in the normal range for [SbS4]3- anions. In the crystal structure, three crystallographically independent Ni cations are located on special positions. They are in a distorted octahedral environment of six N atoms of two chelating deta molecules (Fig. 2). The Ni—N distances range between 2.097 (2) and 2.143 (2) Å, with N—Ni—N angles ranging between 81.01 (10) and 98.99 (10)°. In the crystal structure, the cations and anions form separated stacks parallel to the a axis in a pseudo-hexagonal arrangement (Fig. 2). Each anion stack is surrounded by three cation stacks and each cation stack has two next-neighbour anion stacks. This arrangement leads to the formation of large channels running parallel to the a axis, which coincides with the pseudo-sixfold axis. The three-dimensional interconnection of the cations and anions is achieved via intermolecular N—H···S hydrogen bonds. The N—H···S distances range from 2.57 to 2.87 Å and the N—H···S angles range between 138 and 167°. All four S atoms of the thioantimonate(V) anion are involved in hydrogen bonding. The results of the structure refinement reveal that small amounts of solvent molecules must be located in the channels as is evidenced by several peaks in the difference electron-density map. Because in the middle of the channels the center of symmetry is located and neither deta nor water molecules exhibit inversion symmetry, these molecules must be disordered due to symmetry reasons. Therefore, it was impossible to decide whether only deta molecules are within the channels or whether additional water molecules are present. All attempts to find a satisfactory structural model failed. Therefore, the structure was refined using the SQUEEZE option (van der Sluis & Spek, 1990) in PLATON (Spek, 2000). Applying this procedure, the reliability factors significantly decrease. The thermal stability of the compound was investigated with differential thermal analysis (DTA) combined with thermogravimetry (TG). The decomposition starts at about 520 K and proceeds in at least two steps. The weight loss observed in the TG curve corresponds to the loss of the deta ligands. After decomposition, the binary sulfides Sb2S3 and NiS are formed, which is evidenced by X-ray powder diffractometry.

Experimental top

The title compound was prepared by hydrothermal treatment of Ni (58.693 mg, 1 mmol), Sb (487.04 mg, 4 mmol) and S (256.528 mg, 8 mmol) at 413 K, in the presence of 50% diethylenetriamine (10 ml) in a Teflon-lined steel autoclave for 8 d. The yield is about 55% based on Ni.

Refinement top

The H atoms were positioned with idealized geometry and refined with fixed isotropic displacement parameters [Uiso(N—H, C—H) = 1.2Ueq(Cmethylene/Camine)] using a riding model with the parameters C—H = 0.97 Å and N—H = 0.90 Å. The C4 atom of one deta ligand is disordered over two positions and was refined using a split model. The C4 and C4' atoms were refined with anisotropic displacement parameters and varying site-occupation factors. The volume which is accessible for potential solvent molecules was calculated to be 290.4 Å3 and the total electron count per cell was calculated to be 70. Note that the calculated density, the F(000) value, the molecular weight and the formula are given without taking into account the results obtained with the SQUEEZE option (van der Sluis & Spek, 1990) in PLATON (Spek, 2000).

Computing details top

Data collection: DIF4 (Stoe & Cie, 1992); cell refinement: DIF4; data reduction: REDU4 (Stoe & Cie, 1992); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Crystal Impact GbR, 1999); software used to prepare material for publication: CIFTAB in SHELXL97.

Figures top
[Figure 1] Fig. 1. View of the [SbS4]3- anion and the [Ni(deta)2]2+ cations with labeling and displacement ellipsoids drawn at the 50% probability level [Symmetry codes: (i) 2 - x, 2 - y, -z; (ii) 1 - x, 1 - y, -z; (iii) 1 - x, -y, 1 - z.]
[Figure 2] Fig. 2. The crystal structure of the title compound viewed along the a axis.
(I) top
Crystal data top
[Ni(C4H13N2)2]3[SbS4]2Z = 1
Mr = 1295.19F(000) = 662
Triclinic, P1Dx = 1.483 Mg m3
a = 7.5259 (15) ÅMo Kα radiation, λ = 0.71073 Å
b = 14.250 (3) ÅCell parameters from 128 reflections
c = 14.565 (3) Åθ = 10–30°
α = 111.79 (3)°µ = 2.20 mm1
β = 90.72 (3)°T = 293 K
γ = 90.92 (3)°Plate, yellow
V = 1450.0 (5) Å30.3 × 0.02 × 0.02 mm
Data collection top
Stoe AED-II four-circle
diffractometer
6737 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
Graphite monochromatorθmax = 30.0°, θmin = 1.5°
ω/θ scansh = 010
Absorption correction: ψ scan
(X-SHAPE; Stoe & Cie, 1997, 1998)
k = 2020
Tmin = 0.670, Tmax = 0.777l = 2020
8715 measured reflections4 standard reflections every 120 min
8127 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0402P)2 + 0.3047P]
where P = (Fo2 + 2Fc2)/3
8127 reflections(Δ/σ)max = 0.001
263 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 1.14 e Å3
Crystal data top
[Ni(C4H13N2)2]3[SbS4]2γ = 90.92 (3)°
Mr = 1295.19V = 1450.0 (5) Å3
Triclinic, P1Z = 1
a = 7.5259 (15) ÅMo Kα radiation
b = 14.250 (3) ŵ = 2.20 mm1
c = 14.565 (3) ÅT = 293 K
α = 111.79 (3)°0.3 × 0.02 × 0.02 mm
β = 90.72 (3)°
Data collection top
Stoe AED-II four-circle
diffractometer
6737 reflections with I > 2σ(I)
Absorption correction: ψ scan
(X-SHAPE; Stoe & Cie, 1997, 1998)
Rint = 0.020
Tmin = 0.670, Tmax = 0.7774 standard reflections every 120 min
8715 measured reflections intensity decay: none
8127 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 1.05Δρmax = 0.56 e Å3
8127 reflectionsΔρmin = 1.14 e Å3
263 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sb10.857195 (17)0.805903 (10)0.200520 (10)0.02672 (4)
S10.99745 (8)0.95855 (4)0.29879 (4)0.03653 (12)
S20.59471 (8)0.84297 (5)0.13708 (5)0.04119 (13)
S31.03208 (9)0.71683 (5)0.06747 (5)0.04234 (14)
S40.79343 (10)0.70958 (5)0.29461 (5)0.04316 (14)
Ni11.00001.00000.00000.03548 (9)
N11.2026 (3)0.96153 (19)0.08280 (19)0.0497 (6)
H1N1.15320.93910.12700.060*
H2N1.26950.91210.04200.060*
C11.3096 (5)1.0486 (3)0.1323 (4)0.0901 (15)
H1A1.43271.02880.12190.108*
H1B1.28881.06880.20260.108*
C21.2899 (5)1.1355 (3)0.1077 (3)0.0767 (11)
H2A1.37441.13250.05700.092*
H2B1.31971.19510.16570.092*
N21.1112 (3)1.14692 (16)0.07216 (17)0.0452 (5)
H3N1.12171.17680.02700.054*
C30.9935 (5)1.2074 (2)0.1501 (3)0.0690 (9)
H3A1.06691.25740.20050.083*
H3B0.91631.24380.12170.083*
C40.8818 (17)1.1576 (5)0.1992 (10)0.061 (3)0.488 (19)
H4A0.77311.19460.22000.074*0.488 (19)
H4B0.94321.15590.25750.074*0.488 (19)
C4'0.8249 (10)1.1542 (5)0.1505 (8)0.051 (2)0.512 (19)
H4C0.77391.18440.21550.061*0.512 (19)
H4D0.74331.16490.10340.061*0.512 (19)
N30.8376 (3)1.04909 (18)0.12719 (19)0.0504 (5)
H4N0.72301.04560.10740.060*
H5N0.85021.00660.15950.060*
Ni20.50000.50000.00000.02827 (8)
N40.7465 (3)0.49477 (14)0.07239 (15)0.0367 (4)
H6N0.82630.46040.02740.044*
H7N0.79000.55790.10470.044*
C50.7158 (3)0.44471 (19)0.1423 (2)0.0432 (5)
H5A0.67770.49370.20480.052*
H5B0.82540.41570.15400.052*
C60.5737 (4)0.36181 (18)0.1005 (2)0.0445 (6)
H6A0.62340.30570.04700.053*
H6B0.53900.33740.15180.053*
N50.4152 (3)0.39640 (14)0.06345 (15)0.0359 (4)
H8N0.36290.34220.01500.043*
C70.2797 (4)0.4464 (2)0.1359 (2)0.0478 (6)
H7A0.26490.41040.18030.057*
H7B0.16710.44260.10140.057*
C80.3260 (4)0.5571 (2)0.1968 (2)0.0489 (6)
H8A0.21950.59150.22740.059*
H8B0.41050.56100.24890.059*
N60.4024 (3)0.60801 (14)0.13483 (15)0.0368 (4)
H9N0.49200.64980.16820.044*
H10N0.31890.64540.12070.044*
Ni30.50000.00000.50000.03448 (9)
N70.2853 (3)0.09136 (18)0.48989 (16)0.0472 (5)
H11N0.19420.05160.45550.057*
H12N0.24740.12790.55090.057*
C90.3417 (5)0.1589 (3)0.4410 (2)0.0620 (8)
H9A0.37370.22470.49030.074*
H9B0.24430.16750.40080.074*
C100.5002 (6)0.1161 (3)0.3762 (3)0.0719 (10)
H10A0.45960.06080.31690.086*
H10B0.55210.16820.35620.086*
N80.6368 (3)0.07957 (18)0.42620 (18)0.0513 (6)
H13N0.70420.03490.37910.062*
C110.7572 (4)0.1549 (3)0.4976 (3)0.0682 (9)
H11A0.78290.20870.47380.082*
H11B0.86850.12310.50170.082*
C120.6800 (4)0.2001 (2)0.6002 (2)0.0601 (8)
H12A0.77270.23640.64750.072*
H12B0.58900.24770.60080.072*
N90.6036 (3)0.12051 (17)0.62835 (16)0.0484 (5)
H14N0.51590.14560.67150.058*
H15N0.68750.09680.65820.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sb10.02564 (7)0.02224 (6)0.02859 (7)0.00025 (4)0.00112 (5)0.00518 (5)
S10.0362 (3)0.0303 (3)0.0364 (3)0.0079 (2)0.0062 (2)0.0051 (2)
S20.0292 (3)0.0369 (3)0.0551 (4)0.0001 (2)0.0073 (2)0.0145 (3)
S30.0451 (3)0.0361 (3)0.0431 (3)0.0140 (2)0.0154 (3)0.0105 (2)
S40.0583 (4)0.0339 (3)0.0370 (3)0.0074 (3)0.0023 (3)0.0131 (2)
Ni10.03042 (19)0.0346 (2)0.0476 (2)0.00614 (16)0.00727 (17)0.02295 (18)
N10.0392 (11)0.0563 (14)0.0668 (15)0.0041 (10)0.0085 (10)0.0387 (12)
C10.0534 (19)0.073 (2)0.153 (4)0.0180 (17)0.056 (2)0.055 (3)
C20.0563 (19)0.077 (2)0.110 (3)0.0339 (17)0.035 (2)0.052 (2)
N20.0489 (12)0.0413 (11)0.0530 (13)0.0112 (9)0.0096 (10)0.0272 (10)
C30.085 (2)0.0430 (16)0.067 (2)0.0097 (16)0.0067 (18)0.0067 (14)
C40.079 (6)0.037 (3)0.067 (6)0.012 (3)0.022 (5)0.017 (3)
C4'0.057 (4)0.043 (3)0.053 (5)0.017 (3)0.006 (3)0.017 (3)
N30.0459 (12)0.0506 (13)0.0616 (14)0.0076 (10)0.0014 (11)0.0293 (12)
Ni20.02789 (17)0.01989 (16)0.03364 (19)0.00024 (13)0.00098 (14)0.00602 (14)
N40.0321 (9)0.0254 (8)0.0472 (11)0.0004 (7)0.0010 (8)0.0074 (8)
C50.0457 (13)0.0353 (12)0.0468 (13)0.0032 (10)0.0096 (11)0.0134 (10)
C60.0534 (15)0.0289 (11)0.0528 (15)0.0005 (10)0.0027 (12)0.0173 (10)
N50.0405 (10)0.0242 (8)0.0379 (10)0.0058 (7)0.0002 (8)0.0058 (7)
C70.0475 (14)0.0389 (13)0.0538 (15)0.0082 (11)0.0120 (12)0.0137 (11)
C80.0541 (15)0.0410 (13)0.0434 (13)0.0002 (11)0.0128 (12)0.0060 (11)
N60.0357 (10)0.0250 (8)0.0425 (10)0.0002 (7)0.0020 (8)0.0041 (7)
Ni30.02723 (18)0.0374 (2)0.02894 (19)0.00137 (15)0.00012 (14)0.00080 (16)
N70.0382 (11)0.0524 (13)0.0378 (11)0.0081 (9)0.0037 (9)0.0014 (9)
C90.069 (2)0.0608 (19)0.0551 (17)0.0181 (16)0.0031 (15)0.0194 (15)
C100.095 (3)0.074 (2)0.0512 (18)0.018 (2)0.0174 (18)0.0282 (17)
N80.0486 (13)0.0488 (13)0.0485 (13)0.0061 (10)0.0166 (10)0.0082 (10)
C110.0522 (17)0.0530 (18)0.087 (2)0.0113 (14)0.0176 (17)0.0117 (17)
C120.0478 (15)0.0429 (15)0.0671 (19)0.0031 (12)0.0033 (14)0.0054 (13)
N90.0357 (10)0.0517 (13)0.0385 (11)0.0046 (9)0.0000 (9)0.0058 (9)
Geometric parameters (Å, º) top
Sb1—S42.3205 (8)Ni2—N42.138 (2)
Sb1—S22.3206 (8)Ni2—N62.143 (2)
Sb1—S32.3218 (11)Ni2—N6ii2.143 (2)
Sb1—S12.3389 (11)N4—C51.462 (3)
Ni1—N22.116 (2)C5—C61.523 (3)
Ni1—N2i2.116 (2)C6—N51.469 (3)
Ni1—N3i2.130 (3)N5—C71.468 (3)
Ni1—N32.130 (3)C7—C81.527 (4)
Ni1—N12.133 (2)C8—N61.468 (3)
Ni1—N1i2.133 (2)Ni3—N8iii2.097 (2)
N1—C11.412 (4)Ni3—N82.097 (2)
C1—C21.421 (5)Ni3—N72.129 (2)
C2—N21.468 (4)Ni3—N7iii2.129 (2)
N2—C31.462 (4)Ni3—N9iii2.142 (2)
C3—C41.447 (8)Ni3—N92.142 (2)
C3—C4'1.469 (8)N7—C91.454 (4)
C4—N31.540 (9)C9—C101.520 (5)
C4'—N31.413 (7)C10—N81.462 (5)
Ni2—N52.107 (2)N8—C111.474 (4)
Ni2—N5ii2.107 (2)C11—C121.518 (5)
Ni2—N4ii2.138 (2)C12—N91.454 (4)
S4—Sb1—S2109.46 (3)N5ii—Ni2—N697.41 (8)
S4—Sb1—S3110.68 (3)N4ii—Ni2—N689.52 (8)
S2—Sb1—S3107.49 (3)N4—Ni2—N690.48 (8)
S4—Sb1—S1110.24 (3)N5—Ni2—N6ii97.41 (8)
S2—Sb1—S1108.09 (4)N5ii—Ni2—N6ii82.59 (8)
S3—Sb1—S1110.80 (4)N4ii—Ni2—N6ii90.48 (8)
N2—Ni1—N2i180.0N4—Ni2—N6ii89.52 (8)
N2—Ni1—N3i98.99 (10)N6—Ni2—N6ii180.00 (9)
N2i—Ni1—N3i81.01 (10)C5—N4—Ni2108.76 (15)
N2—Ni1—N381.01 (10)N4—C5—C6109.7 (2)
N2i—Ni1—N398.99 (10)N5—C6—C5112.76 (19)
N3i—Ni1—N3180.000 (1)C7—N5—C6117.0 (2)
N2—Ni1—N182.42 (9)C7—N5—Ni2107.13 (15)
N2i—Ni1—N197.58 (9)C6—N5—Ni2107.76 (15)
N3i—Ni1—N190.06 (10)N5—C7—C8113.1 (2)
N3—Ni1—N189.94 (10)N6—C8—C7111.3 (2)
N2—Ni1—N1i97.58 (9)C8—N6—Ni2110.85 (14)
N2i—Ni1—N1i82.42 (9)N8iii—Ni3—N8180.0
N3i—Ni1—N1i89.94 (10)N8iii—Ni3—N796.96 (10)
N3—Ni1—N1i90.06 (10)N8—Ni3—N783.04 (10)
N1—Ni1—N1i180.0N8iii—Ni3—N7iii83.04 (10)
C1—N1—Ni1108.58 (19)N8—Ni3—N7iii96.96 (10)
N1—C1—C2119.3 (3)N7—Ni3—N7iii180.000 (1)
C1—C2—N2114.5 (3)N8iii—Ni3—N9iii82.55 (10)
C3—N2—C2114.1 (3)N8—Ni3—N9iii97.45 (10)
C3—N2—Ni1109.94 (18)N7—Ni3—N9iii89.48 (9)
C2—N2—Ni1107.3 (2)N7iii—Ni3—N9iii90.52 (9)
C4—C3—N2119.3 (4)N8iii—Ni3—N997.45 (10)
C4—C3—C4'32.3 (4)N8—Ni3—N982.55 (10)
N2—C3—C4'112.5 (4)N7—Ni3—N990.52 (9)
C3—C4—N3109.0 (6)N7iii—Ni3—N989.48 (9)
N3—C4'—C3115.2 (5)N9iii—Ni3—N9180.0
C4'—N3—C431.5 (3)C9—N7—Ni3110.22 (18)
C4'—N3—Ni1103.7 (4)N7—C9—C10110.4 (3)
C4—N3—Ni1113.7 (3)N8—C10—C9112.7 (3)
N5—Ni2—N5ii180.00 (8)C10—N8—C11117.9 (3)
N5—Ni2—N4ii96.80 (8)C10—N8—Ni3105.8 (2)
N5ii—Ni2—N4ii83.20 (8)C11—N8—Ni3108.6 (2)
N5—Ni2—N483.20 (8)N8—C11—C12112.8 (2)
N5ii—Ni2—N496.80 (8)N9—C12—C11110.1 (2)
N4ii—Ni2—N4180.00 (10)C12—N9—Ni3109.98 (18)
N5—Ni2—N682.59 (8)
Symmetry codes: (i) x+2, y+2, z; (ii) x+1, y+1, z; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C4H13N2)2]3[SbS4]2
Mr1295.19
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.5259 (15), 14.250 (3), 14.565 (3)
α, β, γ (°)111.79 (3), 90.72 (3), 90.92 (3)
V3)1450.0 (5)
Z1
Radiation typeMo Kα
µ (mm1)2.20
Crystal size (mm)0.3 × 0.02 × 0.02
Data collection
DiffractometerStoe AED-II four-circle
diffractometer
Absorption correctionψ scan
(X-SHAPE; Stoe & Cie, 1997, 1998)
Tmin, Tmax0.670, 0.777
No. of measured, independent and
observed [I > 2σ(I)] reflections
8715, 8127, 6737
Rint0.020
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.071, 1.05
No. of reflections8127
No. of parameters263
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 1.14

Computer programs: DIF4 (Stoe & Cie, 1992), DIF4, REDU4 (Stoe & Cie, 1992), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), DIAMOND (Crystal Impact GbR, 1999), CIFTAB in SHELXL97.

Selected geometric parameters (Å, º) top
Sb1—S42.3205 (8)Ni2—N52.107 (2)
Sb1—S22.3206 (8)Ni2—N42.138 (2)
Sb1—S32.3218 (11)Ni2—N62.143 (2)
Sb1—S12.3389 (11)Ni3—N82.097 (2)
Ni1—N22.116 (2)Ni3—N72.129 (2)
Ni1—N32.130 (3)Ni3—N92.142 (2)
Ni1—N12.133 (2)
S4—Sb1—S2109.46 (3)N5—Ni2—N483.20 (8)
S4—Sb1—S3110.68 (3)N5ii—Ni2—N496.80 (8)
S2—Sb1—S3107.49 (3)N5—Ni2—N682.59 (8)
S4—Sb1—S1110.24 (3)N4—Ni2—N690.48 (8)
S2—Sb1—S1108.09 (4)N5—Ni2—N6ii97.41 (8)
S3—Sb1—S1110.80 (4)N4—Ni2—N6ii89.52 (8)
N2—Ni1—N381.01 (10)N8—Ni3—N783.04 (10)
N2i—Ni1—N398.99 (10)N8—Ni3—N7iii96.96 (10)
N2—Ni1—N182.42 (9)N8iii—Ni3—N997.45 (10)
N3—Ni1—N189.94 (10)N8—Ni3—N982.55 (10)
N2—Ni1—N1i97.58 (9)N7—Ni3—N990.52 (9)
N3—Ni1—N1i90.06 (10)N7iii—Ni3—N989.48 (9)
Symmetry codes: (i) x+2, y+2, z; (ii) x+1, y+1, z; (iii) x+1, y, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds