Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100014359/sk1394sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270100014359/sk1394Isup2.hkl |
CCDC reference: 158231
The title compound was prepared by hydrothermal treatment of Ni (58.693 mg, 1 mmol), Sb (487.04 mg, 4 mmol) and S (256.528 mg, 8 mmol) at 413 K, in the presence of 50% diethylenetriamine (10 ml) in a Teflon-lined steel autoclave for 8 d. The yield is about 55% based on Ni.
The H atoms were positioned with idealized geometry and refined with fixed isotropic displacement parameters [Uiso(N—H, C—H) = 1.2Ueq(Cmethylene/Camine)] using a riding model with the parameters C—H = 0.97 Å and N—H = 0.90 Å. The C4 atom of one deta ligand is disordered over two positions and was refined using a split model. The C4 and C4' atoms were refined with anisotropic displacement parameters and varying site-occupation factors. The volume which is accessible for potential solvent molecules was calculated to be 290.4 Å3 and the total electron count per cell was calculated to be 70. Note that the calculated density, the F(000) value, the molecular weight and the formula are given without taking into account the results obtained with the SQUEEZE option (van der Sluis & Spek, 1990) in PLATON (Spek, 2000).
Data collection: DIF4 (Stoe & Cie, 1992); cell refinement: DIF4; data reduction: REDU4 (Stoe & Cie, 1992); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Crystal Impact GbR, 1999); software used to prepare material for publication: CIFTAB in SHELXL97.
[Ni(C4H13N2)2]3[SbS4]2 | Z = 1 |
Mr = 1295.19 | F(000) = 662 |
Triclinic, P1 | Dx = 1.483 Mg m−3 |
a = 7.5259 (15) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 14.250 (3) Å | Cell parameters from 128 reflections |
c = 14.565 (3) Å | θ = 10–30° |
α = 111.79 (3)° | µ = 2.20 mm−1 |
β = 90.72 (3)° | T = 293 K |
γ = 90.92 (3)° | Plate, yellow |
V = 1450.0 (5) Å3 | 0.3 × 0.02 × 0.02 mm |
Stoe AED-II four-circle diffractometer | 6737 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.020 |
Graphite monochromator | θmax = 30.0°, θmin = 1.5° |
ω/θ scans | h = 0→10 |
Absorption correction: ψ scan (X-SHAPE; Stoe & Cie, 1997, 1998) | k = −20→20 |
Tmin = 0.670, Tmax = 0.777 | l = −20→20 |
8715 measured reflections | 4 standard reflections every 120 min |
8127 independent reflections | intensity decay: none |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.027 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.071 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0402P)2 + 0.3047P] where P = (Fo2 + 2Fc2)/3 |
8127 reflections | (Δ/σ)max = 0.001 |
263 parameters | Δρmax = 0.56 e Å−3 |
0 restraints | Δρmin = −1.14 e Å−3 |
[Ni(C4H13N2)2]3[SbS4]2 | γ = 90.92 (3)° |
Mr = 1295.19 | V = 1450.0 (5) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.5259 (15) Å | Mo Kα radiation |
b = 14.250 (3) Å | µ = 2.20 mm−1 |
c = 14.565 (3) Å | T = 293 K |
α = 111.79 (3)° | 0.3 × 0.02 × 0.02 mm |
β = 90.72 (3)° |
Stoe AED-II four-circle diffractometer | 6737 reflections with I > 2σ(I) |
Absorption correction: ψ scan (X-SHAPE; Stoe & Cie, 1997, 1998) | Rint = 0.020 |
Tmin = 0.670, Tmax = 0.777 | 4 standard reflections every 120 min |
8715 measured reflections | intensity decay: none |
8127 independent reflections |
R[F2 > 2σ(F2)] = 0.027 | 0 restraints |
wR(F2) = 0.071 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.56 e Å−3 |
8127 reflections | Δρmin = −1.14 e Å−3 |
263 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Sb1 | 0.857195 (17) | 0.805903 (10) | 0.200520 (10) | 0.02672 (4) | |
S1 | 0.99745 (8) | 0.95855 (4) | 0.29879 (4) | 0.03653 (12) | |
S2 | 0.59471 (8) | 0.84297 (5) | 0.13708 (5) | 0.04119 (13) | |
S3 | 1.03208 (9) | 0.71683 (5) | 0.06747 (5) | 0.04234 (14) | |
S4 | 0.79343 (10) | 0.70958 (5) | 0.29461 (5) | 0.04316 (14) | |
Ni1 | 1.0000 | 1.0000 | 0.0000 | 0.03548 (9) | |
N1 | 1.2026 (3) | 0.96153 (19) | 0.08280 (19) | 0.0497 (6) | |
H1N | 1.1532 | 0.9391 | 0.1270 | 0.060* | |
H2N | 1.2695 | 0.9121 | 0.0420 | 0.060* | |
C1 | 1.3096 (5) | 1.0486 (3) | 0.1323 (4) | 0.0901 (15) | |
H1A | 1.4327 | 1.0288 | 0.1219 | 0.108* | |
H1B | 1.2888 | 1.0688 | 0.2026 | 0.108* | |
C2 | 1.2899 (5) | 1.1355 (3) | 0.1077 (3) | 0.0767 (11) | |
H2A | 1.3744 | 1.1325 | 0.0570 | 0.092* | |
H2B | 1.3197 | 1.1951 | 0.1657 | 0.092* | |
N2 | 1.1112 (3) | 1.14692 (16) | 0.07216 (17) | 0.0452 (5) | |
H3N | 1.1217 | 1.1768 | 0.0270 | 0.054* | |
C3 | 0.9935 (5) | 1.2074 (2) | 0.1501 (3) | 0.0690 (9) | |
H3A | 1.0669 | 1.2574 | 0.2005 | 0.083* | |
H3B | 0.9163 | 1.2438 | 0.1217 | 0.083* | |
C4 | 0.8818 (17) | 1.1576 (5) | 0.1992 (10) | 0.061 (3) | 0.488 (19) |
H4A | 0.7731 | 1.1946 | 0.2200 | 0.074* | 0.488 (19) |
H4B | 0.9432 | 1.1559 | 0.2575 | 0.074* | 0.488 (19) |
C4' | 0.8249 (10) | 1.1542 (5) | 0.1505 (8) | 0.051 (2) | 0.512 (19) |
H4C | 0.7739 | 1.1844 | 0.2155 | 0.061* | 0.512 (19) |
H4D | 0.7433 | 1.1649 | 0.1034 | 0.061* | 0.512 (19) |
N3 | 0.8376 (3) | 1.04909 (18) | 0.12719 (19) | 0.0504 (5) | |
H4N | 0.7230 | 1.0456 | 0.1074 | 0.060* | |
H5N | 0.8502 | 1.0066 | 0.1595 | 0.060* | |
Ni2 | 0.5000 | 0.5000 | 0.0000 | 0.02827 (8) | |
N4 | 0.7465 (3) | 0.49477 (14) | 0.07239 (15) | 0.0367 (4) | |
H6N | 0.8263 | 0.4604 | 0.0274 | 0.044* | |
H7N | 0.7900 | 0.5579 | 0.1047 | 0.044* | |
C5 | 0.7158 (3) | 0.44471 (19) | 0.1423 (2) | 0.0432 (5) | |
H5A | 0.6777 | 0.4937 | 0.2048 | 0.052* | |
H5B | 0.8254 | 0.4157 | 0.1540 | 0.052* | |
C6 | 0.5737 (4) | 0.36181 (18) | 0.1005 (2) | 0.0445 (6) | |
H6A | 0.6234 | 0.3057 | 0.0470 | 0.053* | |
H6B | 0.5390 | 0.3374 | 0.1518 | 0.053* | |
N5 | 0.4152 (3) | 0.39640 (14) | 0.06345 (15) | 0.0359 (4) | |
H8N | 0.3629 | 0.3422 | 0.0150 | 0.043* | |
C7 | 0.2797 (4) | 0.4464 (2) | 0.1359 (2) | 0.0478 (6) | |
H7A | 0.2649 | 0.4104 | 0.1803 | 0.057* | |
H7B | 0.1671 | 0.4426 | 0.1014 | 0.057* | |
C8 | 0.3260 (4) | 0.5571 (2) | 0.1968 (2) | 0.0489 (6) | |
H8A | 0.2195 | 0.5915 | 0.2274 | 0.059* | |
H8B | 0.4105 | 0.5610 | 0.2489 | 0.059* | |
N6 | 0.4024 (3) | 0.60801 (14) | 0.13483 (15) | 0.0368 (4) | |
H9N | 0.4920 | 0.6498 | 0.1682 | 0.044* | |
H10N | 0.3189 | 0.6454 | 0.1207 | 0.044* | |
Ni3 | 0.5000 | 0.0000 | 0.5000 | 0.03448 (9) | |
N7 | 0.2853 (3) | 0.09136 (18) | 0.48989 (16) | 0.0472 (5) | |
H11N | 0.1942 | 0.0516 | 0.4555 | 0.057* | |
H12N | 0.2474 | 0.1279 | 0.5509 | 0.057* | |
C9 | 0.3417 (5) | 0.1589 (3) | 0.4410 (2) | 0.0620 (8) | |
H9A | 0.3737 | 0.2247 | 0.4903 | 0.074* | |
H9B | 0.2443 | 0.1675 | 0.4008 | 0.074* | |
C10 | 0.5002 (6) | 0.1161 (3) | 0.3762 (3) | 0.0719 (10) | |
H10A | 0.4596 | 0.0608 | 0.3169 | 0.086* | |
H10B | 0.5521 | 0.1682 | 0.3562 | 0.086* | |
N8 | 0.6368 (3) | 0.07957 (18) | 0.42620 (18) | 0.0513 (6) | |
H13N | 0.7042 | 0.0349 | 0.3791 | 0.062* | |
C11 | 0.7572 (4) | 0.1549 (3) | 0.4976 (3) | 0.0682 (9) | |
H11A | 0.7829 | 0.2087 | 0.4738 | 0.082* | |
H11B | 0.8685 | 0.1231 | 0.5017 | 0.082* | |
C12 | 0.6800 (4) | 0.2001 (2) | 0.6002 (2) | 0.0601 (8) | |
H12A | 0.7727 | 0.2364 | 0.6475 | 0.072* | |
H12B | 0.5890 | 0.2477 | 0.6008 | 0.072* | |
N9 | 0.6036 (3) | 0.12051 (17) | 0.62835 (16) | 0.0484 (5) | |
H14N | 0.5159 | 0.1456 | 0.6715 | 0.058* | |
H15N | 0.6875 | 0.0968 | 0.6582 | 0.058* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sb1 | 0.02564 (7) | 0.02224 (6) | 0.02859 (7) | −0.00025 (4) | 0.00112 (5) | 0.00518 (5) |
S1 | 0.0362 (3) | 0.0303 (3) | 0.0364 (3) | −0.0079 (2) | −0.0062 (2) | 0.0051 (2) |
S2 | 0.0292 (3) | 0.0369 (3) | 0.0551 (4) | 0.0001 (2) | −0.0073 (2) | 0.0145 (3) |
S3 | 0.0451 (3) | 0.0361 (3) | 0.0431 (3) | 0.0140 (2) | 0.0154 (3) | 0.0105 (2) |
S4 | 0.0583 (4) | 0.0339 (3) | 0.0370 (3) | −0.0074 (3) | 0.0023 (3) | 0.0131 (2) |
Ni1 | 0.03042 (19) | 0.0346 (2) | 0.0476 (2) | −0.00614 (16) | −0.00727 (17) | 0.02295 (18) |
N1 | 0.0392 (11) | 0.0563 (14) | 0.0668 (15) | −0.0041 (10) | −0.0085 (10) | 0.0387 (12) |
C1 | 0.0534 (19) | 0.073 (2) | 0.153 (4) | −0.0180 (17) | −0.056 (2) | 0.055 (3) |
C2 | 0.0563 (19) | 0.077 (2) | 0.110 (3) | −0.0339 (17) | −0.035 (2) | 0.052 (2) |
N2 | 0.0489 (12) | 0.0413 (11) | 0.0530 (13) | −0.0112 (9) | −0.0096 (10) | 0.0272 (10) |
C3 | 0.085 (2) | 0.0430 (16) | 0.067 (2) | −0.0097 (16) | 0.0067 (18) | 0.0067 (14) |
C4 | 0.079 (6) | 0.037 (3) | 0.067 (6) | 0.012 (3) | 0.022 (5) | 0.017 (3) |
C4' | 0.057 (4) | 0.043 (3) | 0.053 (5) | 0.017 (3) | 0.006 (3) | 0.017 (3) |
N3 | 0.0459 (12) | 0.0506 (13) | 0.0616 (14) | −0.0076 (10) | −0.0014 (11) | 0.0293 (12) |
Ni2 | 0.02789 (17) | 0.01989 (16) | 0.03364 (19) | 0.00024 (13) | 0.00098 (14) | 0.00602 (14) |
N4 | 0.0321 (9) | 0.0254 (8) | 0.0472 (11) | 0.0004 (7) | −0.0010 (8) | 0.0074 (8) |
C5 | 0.0457 (13) | 0.0353 (12) | 0.0468 (13) | 0.0032 (10) | −0.0096 (11) | 0.0134 (10) |
C6 | 0.0534 (15) | 0.0289 (11) | 0.0528 (15) | 0.0005 (10) | −0.0027 (12) | 0.0173 (10) |
N5 | 0.0405 (10) | 0.0242 (8) | 0.0379 (10) | −0.0058 (7) | 0.0002 (8) | 0.0058 (7) |
C7 | 0.0475 (14) | 0.0389 (13) | 0.0538 (15) | −0.0082 (11) | 0.0120 (12) | 0.0137 (11) |
C8 | 0.0541 (15) | 0.0410 (13) | 0.0434 (13) | −0.0002 (11) | 0.0128 (12) | 0.0060 (11) |
N6 | 0.0357 (10) | 0.0250 (8) | 0.0425 (10) | 0.0002 (7) | 0.0020 (8) | 0.0041 (7) |
Ni3 | 0.02723 (18) | 0.0374 (2) | 0.02894 (19) | 0.00137 (15) | 0.00012 (14) | 0.00080 (16) |
N7 | 0.0382 (11) | 0.0524 (13) | 0.0378 (11) | 0.0081 (9) | −0.0037 (9) | 0.0014 (9) |
C9 | 0.069 (2) | 0.0608 (19) | 0.0551 (17) | 0.0181 (16) | −0.0031 (15) | 0.0194 (15) |
C10 | 0.095 (3) | 0.074 (2) | 0.0512 (18) | 0.018 (2) | 0.0174 (18) | 0.0282 (17) |
N8 | 0.0486 (13) | 0.0488 (13) | 0.0485 (13) | 0.0061 (10) | 0.0166 (10) | 0.0082 (10) |
C11 | 0.0522 (17) | 0.0530 (18) | 0.087 (2) | −0.0113 (14) | 0.0176 (17) | 0.0117 (17) |
C12 | 0.0478 (15) | 0.0429 (15) | 0.0671 (19) | −0.0031 (12) | −0.0033 (14) | −0.0054 (13) |
N9 | 0.0357 (10) | 0.0517 (13) | 0.0385 (11) | 0.0046 (9) | 0.0000 (9) | −0.0058 (9) |
Sb1—S4 | 2.3205 (8) | Ni2—N4 | 2.138 (2) |
Sb1—S2 | 2.3206 (8) | Ni2—N6 | 2.143 (2) |
Sb1—S3 | 2.3218 (11) | Ni2—N6ii | 2.143 (2) |
Sb1—S1 | 2.3389 (11) | N4—C5 | 1.462 (3) |
Ni1—N2 | 2.116 (2) | C5—C6 | 1.523 (3) |
Ni1—N2i | 2.116 (2) | C6—N5 | 1.469 (3) |
Ni1—N3i | 2.130 (3) | N5—C7 | 1.468 (3) |
Ni1—N3 | 2.130 (3) | C7—C8 | 1.527 (4) |
Ni1—N1 | 2.133 (2) | C8—N6 | 1.468 (3) |
Ni1—N1i | 2.133 (2) | Ni3—N8iii | 2.097 (2) |
N1—C1 | 1.412 (4) | Ni3—N8 | 2.097 (2) |
C1—C2 | 1.421 (5) | Ni3—N7 | 2.129 (2) |
C2—N2 | 1.468 (4) | Ni3—N7iii | 2.129 (2) |
N2—C3 | 1.462 (4) | Ni3—N9iii | 2.142 (2) |
C3—C4 | 1.447 (8) | Ni3—N9 | 2.142 (2) |
C3—C4' | 1.469 (8) | N7—C9 | 1.454 (4) |
C4—N3 | 1.540 (9) | C9—C10 | 1.520 (5) |
C4'—N3 | 1.413 (7) | C10—N8 | 1.462 (5) |
Ni2—N5 | 2.107 (2) | N8—C11 | 1.474 (4) |
Ni2—N5ii | 2.107 (2) | C11—C12 | 1.518 (5) |
Ni2—N4ii | 2.138 (2) | C12—N9 | 1.454 (4) |
S4—Sb1—S2 | 109.46 (3) | N5ii—Ni2—N6 | 97.41 (8) |
S4—Sb1—S3 | 110.68 (3) | N4ii—Ni2—N6 | 89.52 (8) |
S2—Sb1—S3 | 107.49 (3) | N4—Ni2—N6 | 90.48 (8) |
S4—Sb1—S1 | 110.24 (3) | N5—Ni2—N6ii | 97.41 (8) |
S2—Sb1—S1 | 108.09 (4) | N5ii—Ni2—N6ii | 82.59 (8) |
S3—Sb1—S1 | 110.80 (4) | N4ii—Ni2—N6ii | 90.48 (8) |
N2—Ni1—N2i | 180.0 | N4—Ni2—N6ii | 89.52 (8) |
N2—Ni1—N3i | 98.99 (10) | N6—Ni2—N6ii | 180.00 (9) |
N2i—Ni1—N3i | 81.01 (10) | C5—N4—Ni2 | 108.76 (15) |
N2—Ni1—N3 | 81.01 (10) | N4—C5—C6 | 109.7 (2) |
N2i—Ni1—N3 | 98.99 (10) | N5—C6—C5 | 112.76 (19) |
N3i—Ni1—N3 | 180.000 (1) | C7—N5—C6 | 117.0 (2) |
N2—Ni1—N1 | 82.42 (9) | C7—N5—Ni2 | 107.13 (15) |
N2i—Ni1—N1 | 97.58 (9) | C6—N5—Ni2 | 107.76 (15) |
N3i—Ni1—N1 | 90.06 (10) | N5—C7—C8 | 113.1 (2) |
N3—Ni1—N1 | 89.94 (10) | N6—C8—C7 | 111.3 (2) |
N2—Ni1—N1i | 97.58 (9) | C8—N6—Ni2 | 110.85 (14) |
N2i—Ni1—N1i | 82.42 (9) | N8iii—Ni3—N8 | 180.0 |
N3i—Ni1—N1i | 89.94 (10) | N8iii—Ni3—N7 | 96.96 (10) |
N3—Ni1—N1i | 90.06 (10) | N8—Ni3—N7 | 83.04 (10) |
N1—Ni1—N1i | 180.0 | N8iii—Ni3—N7iii | 83.04 (10) |
C1—N1—Ni1 | 108.58 (19) | N8—Ni3—N7iii | 96.96 (10) |
N1—C1—C2 | 119.3 (3) | N7—Ni3—N7iii | 180.000 (1) |
C1—C2—N2 | 114.5 (3) | N8iii—Ni3—N9iii | 82.55 (10) |
C3—N2—C2 | 114.1 (3) | N8—Ni3—N9iii | 97.45 (10) |
C3—N2—Ni1 | 109.94 (18) | N7—Ni3—N9iii | 89.48 (9) |
C2—N2—Ni1 | 107.3 (2) | N7iii—Ni3—N9iii | 90.52 (9) |
C4—C3—N2 | 119.3 (4) | N8iii—Ni3—N9 | 97.45 (10) |
C4—C3—C4' | 32.3 (4) | N8—Ni3—N9 | 82.55 (10) |
N2—C3—C4' | 112.5 (4) | N7—Ni3—N9 | 90.52 (9) |
C3—C4—N3 | 109.0 (6) | N7iii—Ni3—N9 | 89.48 (9) |
N3—C4'—C3 | 115.2 (5) | N9iii—Ni3—N9 | 180.0 |
C4'—N3—C4 | 31.5 (3) | C9—N7—Ni3 | 110.22 (18) |
C4'—N3—Ni1 | 103.7 (4) | N7—C9—C10 | 110.4 (3) |
C4—N3—Ni1 | 113.7 (3) | N8—C10—C9 | 112.7 (3) |
N5—Ni2—N5ii | 180.00 (8) | C10—N8—C11 | 117.9 (3) |
N5—Ni2—N4ii | 96.80 (8) | C10—N8—Ni3 | 105.8 (2) |
N5ii—Ni2—N4ii | 83.20 (8) | C11—N8—Ni3 | 108.6 (2) |
N5—Ni2—N4 | 83.20 (8) | N8—C11—C12 | 112.8 (2) |
N5ii—Ni2—N4 | 96.80 (8) | N9—C12—C11 | 110.1 (2) |
N4ii—Ni2—N4 | 180.00 (10) | C12—N9—Ni3 | 109.98 (18) |
N5—Ni2—N6 | 82.59 (8) |
Symmetry codes: (i) −x+2, −y+2, −z; (ii) −x+1, −y+1, −z; (iii) −x+1, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C4H13N2)2]3[SbS4]2 |
Mr | 1295.19 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 7.5259 (15), 14.250 (3), 14.565 (3) |
α, β, γ (°) | 111.79 (3), 90.72 (3), 90.92 (3) |
V (Å3) | 1450.0 (5) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 2.20 |
Crystal size (mm) | 0.3 × 0.02 × 0.02 |
Data collection | |
Diffractometer | Stoe AED-II four-circle diffractometer |
Absorption correction | ψ scan (X-SHAPE; Stoe & Cie, 1997, 1998) |
Tmin, Tmax | 0.670, 0.777 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8715, 8127, 6737 |
Rint | 0.020 |
(sin θ/λ)max (Å−1) | 0.704 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.071, 1.05 |
No. of reflections | 8127 |
No. of parameters | 263 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.56, −1.14 |
Computer programs: DIF4 (Stoe & Cie, 1992), DIF4, REDU4 (Stoe & Cie, 1992), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), DIAMOND (Crystal Impact GbR, 1999), CIFTAB in SHELXL97.
Sb1—S4 | 2.3205 (8) | Ni2—N5 | 2.107 (2) |
Sb1—S2 | 2.3206 (8) | Ni2—N4 | 2.138 (2) |
Sb1—S3 | 2.3218 (11) | Ni2—N6 | 2.143 (2) |
Sb1—S1 | 2.3389 (11) | Ni3—N8 | 2.097 (2) |
Ni1—N2 | 2.116 (2) | Ni3—N7 | 2.129 (2) |
Ni1—N3 | 2.130 (3) | Ni3—N9 | 2.142 (2) |
Ni1—N1 | 2.133 (2) | ||
S4—Sb1—S2 | 109.46 (3) | N5—Ni2—N4 | 83.20 (8) |
S4—Sb1—S3 | 110.68 (3) | N5ii—Ni2—N4 | 96.80 (8) |
S2—Sb1—S3 | 107.49 (3) | N5—Ni2—N6 | 82.59 (8) |
S4—Sb1—S1 | 110.24 (3) | N4—Ni2—N6 | 90.48 (8) |
S2—Sb1—S1 | 108.09 (4) | N5—Ni2—N6ii | 97.41 (8) |
S3—Sb1—S1 | 110.80 (4) | N4—Ni2—N6ii | 89.52 (8) |
N2—Ni1—N3 | 81.01 (10) | N8—Ni3—N7 | 83.04 (10) |
N2i—Ni1—N3 | 98.99 (10) | N8—Ni3—N7iii | 96.96 (10) |
N2—Ni1—N1 | 82.42 (9) | N8iii—Ni3—N9 | 97.45 (10) |
N3—Ni1—N1 | 89.94 (10) | N8—Ni3—N9 | 82.55 (10) |
N2—Ni1—N1i | 97.58 (9) | N7—Ni3—N9 | 90.52 (9) |
N3—Ni1—N1i | 90.06 (10) | N7iii—Ni3—N9 | 89.48 (9) |
Symmetry codes: (i) −x+2, −y+2, −z; (ii) −x+1, −y+1, −z; (iii) −x+1, −y, −z+1. |
During our systematic study of syntheses of transition metal thioantimonates in different amine solutions under solvothermal conditions, the new thioantimonate(V) [Ni(deta)2]3[SbS4]2, (I), was obtained as yellow plates. The structure is composed of [Ni(deta)2]2+ cations and [SbS4]3- anions (Fig. 1). The Sb—S distances in the tetrahedral thioantimonate(V) anion vary between 2.3205 (8) and 2.3389 (11) Å, and are typical for SbV—S distances (Schur et al., 1998). The S—Sb—S angles, which vary between 107.49 (3) and 110.80 (4)°, deviate only slightly from ideal tetrahedral geometry and are in the normal range for [SbS4]3- anions. In the crystal structure, three crystallographically independent Ni cations are located on special positions. They are in a distorted octahedral environment of six N atoms of two chelating deta molecules (Fig. 2). The Ni—N distances range between 2.097 (2) and 2.143 (2) Å, with N—Ni—N angles ranging between 81.01 (10) and 98.99 (10)°. In the crystal structure, the cations and anions form separated stacks parallel to the a axis in a pseudo-hexagonal arrangement (Fig. 2). Each anion stack is surrounded by three cation stacks and each cation stack has two next-neighbour anion stacks. This arrangement leads to the formation of large channels running parallel to the a axis, which coincides with the pseudo-sixfold axis. The three-dimensional interconnection of the cations and anions is achieved via intermolecular N—H···S hydrogen bonds. The N—H···S distances range from 2.57 to 2.87 Å and the N—H···S angles range between 138 and 167°. All four S atoms of the thioantimonate(V) anion are involved in hydrogen bonding. The results of the structure refinement reveal that small amounts of solvent molecules must be located in the channels as is evidenced by several peaks in the difference electron-density map. Because in the middle of the channels the center of symmetry is located and neither deta nor water molecules exhibit inversion symmetry, these molecules must be disordered due to symmetry reasons. Therefore, it was impossible to decide whether only deta molecules are within the channels or whether additional water molecules are present. All attempts to find a satisfactory structural model failed. Therefore, the structure was refined using the SQUEEZE option (van der Sluis & Spek, 1990) in PLATON (Spek, 2000). Applying this procedure, the reliability factors significantly decrease. The thermal stability of the compound was investigated with differential thermal analysis (DTA) combined with thermogravimetry (TG). The decomposition starts at about 520 K and proceeds in at least two steps. The weight loss observed in the TG curve corresponds to the loss of the deta ligands. After decomposition, the binary sulfides Sb2S3 and NiS are formed, which is evidenced by X-ray powder diffractometry.