In each of 6-amino-3-methyl-5-nitroso-2-(pyrrolidin-1-yl)pyrimidin-4(3
H)-one monohydrate, C
9H
13N
5O
2·H
2O, (I), and 6-amino-2-dimethylamino-3-methyl-5-nitrosopyrimidin-4(3
H)-one monohydrate, C
7H
11N
5O
2·H
2O, (II), the interatomic distances indicate significant polarization of the electronic structures of the pyrimidinone molecules. In each compound, the organic component contains an intramolecular N-H

O hydrogen bond. The molecular components in (I) are linked by a combination of two-centre O-H

O, O-H

N and N-H

O hydrogen bonds and a three-centre O-H

(NO) hydrogen bond to form a broad ribbon containing five distinct ring motifs. In compound (II), three intermolecular hydrogen bonds, one each of the O-H

O, O-H

N and N-H

O types, link the molecules into sheets containing equal numbers of centrosymmetric
R44(10) and
R108(34) rings.
Supporting information
CCDC references: 760123; 760124
To a suspension of
6-amino-2-methylsulfanyl-3-methyl-5-nitrosopyrimidin-4(3H)-one (25 mmol) in methanol (80 ml), the appropriate secondary amine (100 mmol),
pyrrolidine for (I) and dimethylamine for (II), was added dropwise with
magnetic stirring. The reactions proceeded for 6 h with a change of colour
from blue to violet and the liberation of methanethiol. The resulting solid
products were collected by filtration and washed with cold ethanol, and then
recrystallized from dimethylformamide–water (3:1 v/v) to give
red–violet crystals suitable for single-crystal X-ray diffraction. Analysis
for (I): 87% yield, m.p. 484 K; MS (70 eV) m/z (%) 223
(M+, 100), 209 (4), 150 (20), 123 (17), 97 (24). Analysis for (II):
52% yield, m.p. 504 K; MS (70 eV) m/z (%) 197 (M+,
90), 183 (32), 152 (56), 92 (100), 42 (73).
All H atoms were located in difference maps and then treated as riding atoms. H
atoms bonded to C or N atoms were allowed to ride in geometrically idealized
positions, with C—H = 0.98 (CH3) or 0.99 Å (CH2) and N—H = 0.88 Å,
and with Uiso(H) = kUeq(C,N), where k = 1.5 for the
methyl groups, which were permitted to rotate but not to tilt, and 1.2
otherwise. Water H atoms were permitted to ride at the positions deduced from
the difference maps, with O—H = 0.86 Å and with Uiso(H) =
1.5Ueq(O).
For both compounds, data collection: COLLECT (Nonius, 1999); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
(I) 6-amino-3-methyl-5-nitroso-2-(pyrrolidin-1- yl)pyrimidin-4(3
H)-one
monohydrate
top
Crystal data top
C9H13N5O2·H2O | Z = 2 |
Mr = 241.26 | F(000) = 256 |
Triclinic, P1 | Dx = 1.531 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.9734 (18) Å | Cell parameters from 2051 reflections |
b = 8.452 (2) Å | θ = 2.8–26.1° |
c = 8.9099 (2) Å | µ = 0.12 mm−1 |
α = 75.158 (9)° | T = 120 K |
β = 84.727 (7)° | Block, red-violet |
γ = 64.436 (16)° | 0.41 × 0.18 × 0.15 mm |
V = 523.46 (19) Å3 | |
Data collection top
Bruker Nonius KappaCCD area-detector diffractometer | 2051 independent reflections |
Radiation source: Bruker Nonius FR591 rotating anode | 1629 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.054 |
Detector resolution: 9.091 pixels mm-1 | θmax = 26.1°, θmin = 2.8° |
ϕ and ω scans | h = −9→9 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | k = −10→10 |
Tmin = 0.953, Tmax = 0.983 | l = −11→11 |
12137 measured reflections | |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.116 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.057P)2 + 0.2677P] where P = (Fo2 + 2Fc2)/3 |
2051 reflections | (Δ/σ)max = 0.001 |
155 parameters | Δρmax = 0.26 e Å−3 |
0 restraints | Δρmin = −0.28 e Å−3 |
Crystal data top
C9H13N5O2·H2O | γ = 64.436 (16)° |
Mr = 241.26 | V = 523.46 (19) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.9734 (18) Å | Mo Kα radiation |
b = 8.452 (2) Å | µ = 0.12 mm−1 |
c = 8.9099 (2) Å | T = 120 K |
α = 75.158 (9)° | 0.41 × 0.18 × 0.15 mm |
β = 84.727 (7)° | |
Data collection top
Bruker Nonius KappaCCD area-detector diffractometer | 2051 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 1629 reflections with I > 2σ(I) |
Tmin = 0.953, Tmax = 0.983 | Rint = 0.054 |
12137 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.046 | 0 restraints |
wR(F2) = 0.116 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.26 e Å−3 |
2051 reflections | Δρmin = −0.28 e Å−3 |
155 parameters | |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
N1 | 0.2670 (2) | 0.3989 (2) | 0.54705 (17) | 0.0150 (4) | |
C2 | 0.2106 (2) | 0.3906 (2) | 0.4150 (2) | 0.0137 (4) | |
N3 | 0.1887 (2) | 0.2428 (2) | 0.39906 (17) | 0.0150 (4) | |
C4 | 0.2614 (3) | 0.0779 (2) | 0.5103 (2) | 0.0152 (4) | |
C5 | 0.3364 (3) | 0.0822 (2) | 0.6502 (2) | 0.0157 (4) | |
C6 | 0.3239 (3) | 0.2514 (2) | 0.6648 (2) | 0.0153 (4) | |
C31 | 0.0700 (3) | 0.2525 (3) | 0.2780 (2) | 0.0199 (4) | |
H31A | −0.0271 | 0.3760 | 0.2462 | 0.030* | |
H31B | 0.0122 | 0.1690 | 0.3186 | 0.030* | |
H31C | 0.1453 | 0.2190 | 0.1884 | 0.030* | |
O4 | 0.2530 (2) | −0.05311 (18) | 0.48645 (15) | 0.0223 (3) | |
N5 | 0.4112 (2) | −0.0779 (2) | 0.75216 (18) | 0.0187 (4) | |
O5 | 0.4785 (2) | −0.08538 (18) | 0.87926 (15) | 0.0243 (4) | |
N6 | 0.3725 (2) | 0.2663 (2) | 0.79564 (17) | 0.0189 (4) | |
H6B | 0.3669 | 0.3703 | 0.8031 | 0.023* | |
H6A | 0.4107 | 0.1723 | 0.8758 | 0.023* | |
N21 | 0.1696 (2) | 0.5355 (2) | 0.29804 (16) | 0.0153 (4) | |
C22 | 0.1742 (3) | 0.5409 (3) | 0.1302 (2) | 0.0186 (4) | |
H22A | 0.0517 | 0.5621 | 0.0919 | 0.022* | |
H22B | 0.2698 | 0.4266 | 0.1091 | 0.022* | |
C23 | 0.2225 (3) | 0.6978 (3) | 0.0555 (2) | 0.0198 (4) | |
H23A | 0.1673 | 0.7567 | −0.0506 | 0.024* | |
H23B | 0.3588 | 0.6575 | 0.0500 | 0.024* | |
C24 | 0.1381 (3) | 0.8246 (3) | 0.1626 (2) | 0.0205 (4) | |
H24A | 0.0021 | 0.8935 | 0.1448 | 0.025* | |
H24B | 0.1956 | 0.9103 | 0.1489 | 0.025* | |
C25 | 0.1839 (3) | 0.6955 (2) | 0.3222 (2) | 0.0169 (4) | |
H25A | 0.3109 | 0.6647 | 0.3573 | 0.020* | |
H25B | 0.0937 | 0.7480 | 0.3997 | 0.020* | |
O41 | 0.39271 (19) | −0.39899 (18) | 0.72240 (15) | 0.0216 (3) | |
H41A | 0.3933 | −0.3005 | 0.7318 | 0.032* | |
H41B | 0.3505 | −0.3738 | 0.6298 | 0.032* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
N1 | 0.0186 (8) | 0.0154 (8) | 0.0105 (8) | −0.0071 (7) | −0.0012 (6) | −0.0023 (6) |
C2 | 0.0136 (9) | 0.0146 (9) | 0.0120 (9) | −0.0051 (7) | −0.0006 (7) | −0.0027 (7) |
N3 | 0.0182 (8) | 0.0160 (8) | 0.0109 (8) | −0.0075 (7) | −0.0030 (6) | −0.0017 (6) |
C4 | 0.0167 (10) | 0.0157 (9) | 0.0136 (9) | −0.0076 (8) | 0.0009 (7) | −0.0030 (7) |
C5 | 0.0171 (9) | 0.0160 (9) | 0.0129 (9) | −0.0068 (8) | −0.0002 (7) | −0.0019 (7) |
C6 | 0.0157 (9) | 0.0174 (9) | 0.0119 (9) | −0.0071 (8) | 0.0009 (7) | −0.0024 (7) |
C31 | 0.0238 (11) | 0.0217 (10) | 0.0160 (10) | −0.0117 (9) | −0.0061 (8) | −0.0018 (8) |
O4 | 0.0337 (8) | 0.0173 (7) | 0.0179 (7) | −0.0124 (6) | −0.0062 (6) | −0.0025 (6) |
N5 | 0.0223 (9) | 0.0192 (8) | 0.0141 (8) | −0.0093 (7) | −0.0028 (6) | −0.0011 (6) |
O5 | 0.0378 (9) | 0.0239 (8) | 0.0124 (7) | −0.0156 (7) | −0.0090 (6) | 0.0018 (6) |
N6 | 0.0292 (9) | 0.0173 (8) | 0.0114 (8) | −0.0115 (7) | −0.0036 (6) | −0.0007 (6) |
N21 | 0.0206 (8) | 0.0163 (8) | 0.0088 (8) | −0.0082 (7) | −0.0006 (6) | −0.0017 (6) |
C22 | 0.0264 (11) | 0.0211 (10) | 0.0085 (9) | −0.0106 (8) | −0.0013 (7) | −0.0023 (7) |
C23 | 0.0251 (11) | 0.0211 (10) | 0.0119 (9) | −0.0103 (8) | −0.0030 (8) | 0.0002 (8) |
C24 | 0.0283 (11) | 0.0168 (10) | 0.0133 (10) | −0.0087 (8) | −0.0016 (8) | 0.0005 (7) |
C25 | 0.0221 (10) | 0.0146 (9) | 0.0131 (9) | −0.0077 (8) | −0.0004 (7) | −0.0019 (7) |
O41 | 0.0304 (8) | 0.0174 (7) | 0.0172 (7) | −0.0105 (6) | −0.0045 (6) | −0.0021 (5) |
Geometric parameters (Å, º) top
N1—C2 | 1.326 (2) | N6—H6A | 0.8800 |
N1—C6 | 1.338 (2) | N21—C25 | 1.475 (2) |
C2—N21 | 1.325 (2) | N21—C22 | 1.482 (2) |
C2—N3 | 1.376 (2) | C22—C23 | 1.514 (3) |
N3—C4 | 1.401 (2) | C22—H22A | 0.9900 |
N3—C31 | 1.463 (2) | C22—H22B | 0.9900 |
C4—O4 | 1.209 (2) | C23—C24 | 1.516 (3) |
C4—C5 | 1.446 (3) | C23—H23A | 0.9900 |
C5—N5 | 1.336 (2) | C23—H23B | 0.9900 |
C5—C6 | 1.429 (3) | C24—C25 | 1.518 (3) |
C6—N6 | 1.313 (2) | C24—H24A | 0.9900 |
C31—H31A | 0.9800 | C24—H24B | 0.9900 |
C31—H31B | 0.9800 | C25—H25A | 0.9900 |
C31—H31C | 0.9800 | C25—H25B | 0.9900 |
N5—O5 | 1.273 (2) | O41—H41A | 0.8600 |
N6—H6B | 0.8800 | O41—H41B | 0.8600 |
| | | |
C2—N1—C6 | 118.95 (16) | C2—N21—C22 | 126.77 (15) |
N21—C2—N1 | 116.65 (16) | C25—N21—C22 | 110.46 (14) |
N21—C2—N3 | 120.68 (16) | N21—C22—C23 | 103.59 (15) |
N1—C2—N3 | 122.64 (16) | N21—C22—H22A | 111.0 |
C2—N3—C4 | 121.34 (15) | C23—C22—H22A | 111.0 |
C2—N3—C31 | 122.82 (15) | N21—C22—H22B | 111.0 |
C4—N3—C31 | 115.39 (15) | C23—C22—H22B | 111.0 |
O4—C4—N3 | 119.54 (16) | H22A—C22—H22B | 109.0 |
O4—C4—C5 | 125.16 (17) | C22—C23—C24 | 103.53 (15) |
N3—C4—C5 | 115.27 (16) | C22—C23—H23A | 111.1 |
N5—C5—C6 | 127.53 (17) | C24—C23—H23A | 111.1 |
N5—C5—C4 | 114.27 (16) | C22—C23—H23B | 111.1 |
C6—C5—C4 | 118.20 (16) | C24—C23—H23B | 111.1 |
N6—C6—N1 | 117.27 (17) | H23A—C23—H23B | 109.0 |
N6—C6—C5 | 120.51 (17) | C23—C24—C25 | 102.45 (15) |
N1—C6—C5 | 122.20 (16) | C23—C24—H24A | 111.3 |
N3—C31—H31A | 109.5 | C25—C24—H24A | 111.3 |
N3—C31—H31B | 109.5 | C23—C24—H24B | 111.3 |
H31A—C31—H31B | 109.5 | C25—C24—H24B | 111.3 |
N3—C31—H31C | 109.5 | H24A—C24—H24B | 109.2 |
H31A—C31—H31C | 109.5 | N21—C25—C24 | 103.29 (15) |
H31B—C31—H31C | 109.5 | N21—C25—H25A | 111.1 |
O5—N5—C5 | 118.24 (16) | C24—C25—H25A | 111.1 |
C6—N6—H6B | 120.0 | N21—C25—H25B | 111.1 |
C6—N6—H6A | 120.0 | C24—C25—H25B | 111.1 |
H6B—N6—H6A | 120.0 | H25A—C25—H25B | 109.1 |
C2—N21—C25 | 119.18 (15) | H41A—O41—H41B | 104.8 |
| | | |
C6—N1—C2—N21 | −174.82 (16) | C4—C5—C6—N6 | 173.03 (17) |
C6—N1—C2—N3 | 7.2 (3) | N5—C5—C6—N1 | 171.40 (18) |
N21—C2—N3—C4 | 168.53 (16) | C4—C5—C6—N1 | −8.4 (3) |
N1—C2—N3—C4 | −13.6 (3) | C6—C5—N5—O5 | 0.9 (3) |
N21—C2—N3—C31 | −19.5 (3) | C4—C5—N5—O5 | −179.22 (16) |
N1—C2—N3—C31 | 158.34 (17) | N1—C2—N21—C25 | −1.7 (2) |
C2—N3—C4—O4 | −173.95 (17) | N3—C2—N21—C25 | 176.31 (16) |
C31—N3—C4—O4 | 13.5 (2) | N1—C2—N21—C22 | 154.83 (17) |
C2—N3—C4—C5 | 8.1 (2) | N3—C2—N21—C22 | −27.2 (3) |
C31—N3—C4—C5 | −164.41 (16) | C2—N21—C22—C23 | −149.59 (18) |
O4—C4—C5—N5 | 4.6 (3) | C25—N21—C22—C23 | 8.6 (2) |
N3—C4—C5—N5 | −177.62 (16) | N21—C22—C23—C24 | −30.59 (19) |
O4—C4—C5—C6 | −175.57 (18) | C22—C23—C24—C25 | 41.04 (19) |
N3—C4—C5—C6 | 2.3 (2) | C2—N21—C25—C24 | 176.79 (16) |
C2—N1—C6—N6 | −177.61 (17) | C22—N21—C25—C24 | 16.7 (2) |
C2—N1—C6—C5 | 3.8 (3) | C23—C24—C25—N21 | −35.16 (19) |
N5—C5—C6—N6 | −7.1 (3) | | |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N6—H6A···O5 | 0.88 | 2.00 | 2.630 (2) | 128 |
N6—H6A···O5i | 0.88 | 2.25 | 2.989 (2) | 142 |
N6—H6B···O41ii | 0.88 | 1.99 | 2.808 (2) | 154 |
O41—H41A···N5 | 0.86 | 2.00 | 2.860 (2) | 177 |
O41—H41B···O4 | 0.86 | 2.48 | 2.946 (2) | 114 |
O41—H41B···N1iii | 0.86 | 2.57 | 3.082 (2) | 119 |
Symmetry codes: (i) −x+1, −y, −z+2; (ii) x, y+1, z; (iii) x, y−1, z. |
(II) 6-amino-2-dimethylamino-3-methyl-5-nitrosopyrimidin-4(3
H)-one monohydrate
top
Crystal data top
C7H11N5O2·H2O | F(000) = 456 |
Mr = 215.22 | Dx = 1.503 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 1873 reflections |
a = 11.8125 (6) Å | θ = 2.9–26.1° |
b = 7.1372 (7) Å | µ = 0.12 mm−1 |
c = 11.8588 (19) Å | T = 120 K |
β = 107.910 (4)° | Block, red-violet |
V = 951.34 (19) Å3 | 0.16 × 0.16 × 0.12 mm |
Z = 4 | |
Data collection top
Bruker Nonius KappaCCD area-detector diffractometer | 1873 independent reflections |
Radiation source: Bruker Nonius FR591 rotating anode | 1304 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.049 |
Detector resolution: 9.091 pixels mm-1 | θmax = 26.1°, θmin = 2.9° |
ϕ and ω scans | h = −13→14 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | k = −8→8 |
Tmin = 0.971, Tmax = 0.986 | l = −14→14 |
9096 measured reflections | |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.109 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0454P)2 + 0.4921P] where P = (Fo2 + 2Fc2)/3 |
1873 reflections | (Δ/σ)max = 0.001 |
139 parameters | Δρmax = 0.22 e Å−3 |
0 restraints | Δρmin = −0.27 e Å−3 |
Crystal data top
C7H11N5O2·H2O | V = 951.34 (19) Å3 |
Mr = 215.22 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 11.8125 (6) Å | µ = 0.12 mm−1 |
b = 7.1372 (7) Å | T = 120 K |
c = 11.8588 (19) Å | 0.16 × 0.16 × 0.12 mm |
β = 107.910 (4)° | |
Data collection top
Bruker Nonius KappaCCD area-detector diffractometer | 1873 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 1304 reflections with I > 2σ(I) |
Tmin = 0.971, Tmax = 0.986 | Rint = 0.049 |
9096 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.046 | 0 restraints |
wR(F2) = 0.109 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.22 e Å−3 |
1873 reflections | Δρmin = −0.27 e Å−3 |
139 parameters | |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
N1 | 0.57117 (14) | 0.2239 (2) | 0.01496 (15) | 0.0162 (4) | |
C2 | 0.68354 (18) | 0.1716 (3) | 0.04242 (18) | 0.0158 (5) | |
N3 | 0.75402 (14) | 0.1340 (2) | 0.15621 (15) | 0.0166 (4) | |
C4 | 0.70340 (19) | 0.1162 (3) | 0.24691 (18) | 0.0181 (5) | |
C5 | 0.57916 (18) | 0.1618 (3) | 0.21776 (18) | 0.0166 (5) | |
C6 | 0.51939 (18) | 0.2291 (3) | 0.10021 (19) | 0.0170 (5) | |
C31 | 0.88350 (18) | 0.1612 (3) | 0.1939 (2) | 0.0218 (5) | |
H31A | 0.9230 | 0.0397 | 0.1967 | 0.033* | |
H31B | 0.9092 | 0.2187 | 0.2727 | 0.033* | |
H31C | 0.9048 | 0.2433 | 0.1373 | 0.033* | |
O4 | 0.76681 (13) | 0.0702 (2) | 0.34577 (13) | 0.0236 (4) | |
N5 | 0.53510 (15) | 0.1451 (3) | 0.30806 (15) | 0.0213 (4) | |
O5 | 0.42701 (13) | 0.1931 (2) | 0.29178 (13) | 0.0252 (4) | |
N6 | 0.40982 (15) | 0.2914 (2) | 0.07244 (16) | 0.0208 (4) | |
H6A | 0.3751 | 0.2896 | 0.1283 | 0.025* | |
H6B | 0.3752 | 0.3325 | 0.0000 | 0.025* | |
N21 | 0.73167 (14) | 0.1569 (2) | −0.04472 (15) | 0.0181 (4) | |
C23 | 0.66686 (19) | 0.2309 (3) | −0.16106 (18) | 0.0231 (5) | |
H23A | 0.6042 | 0.1426 | −0.2021 | 0.035* | |
H23B | 0.7218 | 0.2486 | −0.2075 | 0.035* | |
H23C | 0.6309 | 0.3515 | −0.1519 | 0.035* | |
C22 | 0.82560 (19) | 0.0232 (3) | −0.0445 (2) | 0.0256 (5) | |
H22A | 0.8997 | 0.0910 | −0.0371 | 0.038* | |
H22B | 0.8023 | −0.0480 | −0.1188 | 0.038* | |
H22C | 0.8378 | −0.0631 | 0.0224 | 0.038* | |
O41 | 0.64952 (15) | 0.0890 (2) | 0.56867 (14) | 0.0393 (5) | |
H41A | 0.6228 | 0.0906 | 0.4925 | 0.059* | |
H41B | 0.6212 | −0.0029 | 0.5985 | 0.059* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
N1 | 0.0154 (10) | 0.0193 (9) | 0.0143 (9) | −0.0004 (7) | 0.0053 (7) | −0.0001 (7) |
C2 | 0.0172 (11) | 0.0123 (10) | 0.0182 (11) | −0.0030 (8) | 0.0057 (9) | 0.0001 (8) |
N3 | 0.0142 (9) | 0.0171 (9) | 0.0177 (9) | −0.0001 (7) | 0.0036 (7) | 0.0019 (8) |
C4 | 0.0229 (12) | 0.0127 (11) | 0.0173 (12) | −0.0024 (9) | 0.0044 (9) | −0.0015 (9) |
C5 | 0.0205 (12) | 0.0139 (11) | 0.0154 (11) | −0.0002 (9) | 0.0054 (9) | 0.0006 (9) |
C6 | 0.0188 (12) | 0.0140 (11) | 0.0177 (11) | −0.0011 (9) | 0.0050 (9) | −0.0022 (9) |
C31 | 0.0155 (11) | 0.0233 (12) | 0.0249 (12) | −0.0013 (9) | 0.0034 (9) | 0.0009 (10) |
O4 | 0.0247 (9) | 0.0266 (9) | 0.0167 (8) | 0.0001 (7) | 0.0022 (7) | 0.0033 (7) |
N5 | 0.0235 (11) | 0.0217 (10) | 0.0193 (10) | 0.0005 (8) | 0.0073 (8) | −0.0002 (8) |
O5 | 0.0251 (9) | 0.0297 (9) | 0.0242 (9) | 0.0047 (7) | 0.0125 (7) | 0.0030 (7) |
N6 | 0.0189 (10) | 0.0284 (10) | 0.0168 (10) | 0.0051 (8) | 0.0078 (8) | 0.0046 (8) |
N21 | 0.0170 (9) | 0.0208 (10) | 0.0178 (9) | 0.0009 (7) | 0.0071 (8) | 0.0012 (8) |
C23 | 0.0204 (12) | 0.0335 (13) | 0.0160 (12) | 0.0021 (10) | 0.0064 (9) | 0.0015 (10) |
C22 | 0.0243 (12) | 0.0278 (13) | 0.0280 (13) | 0.0055 (10) | 0.0131 (10) | −0.0003 (10) |
O41 | 0.0597 (12) | 0.0352 (10) | 0.0220 (9) | −0.0144 (9) | 0.0110 (8) | 0.0019 (8) |
Geometric parameters (Å, º) top
N1—C2 | 1.320 (3) | N5—O5 | 1.278 (2) |
N1—C6 | 1.333 (3) | N6—H6A | 0.8800 |
C2—N21 | 1.328 (3) | N6—H6B | 0.8800 |
C2—N3 | 1.377 (3) | N21—C23 | 1.456 (3) |
N3—C4 | 1.388 (3) | N21—C22 | 1.463 (3) |
N3—C31 | 1.468 (3) | C23—H23A | 0.9800 |
C4—O4 | 1.226 (2) | C23—H23B | 0.9800 |
C4—C5 | 1.438 (3) | C23—H23C | 0.9800 |
C5—N5 | 1.332 (3) | C22—H22A | 0.9800 |
C5—C6 | 1.438 (3) | C22—H22B | 0.9800 |
C6—N6 | 1.311 (3) | C22—H22C | 0.9800 |
C31—H31A | 0.9800 | O41—H41A | 0.8600 |
C31—H31B | 0.9800 | O41—H41B | 0.8600 |
C31—H31C | 0.9800 | | |
| | | |
C2—N1—C6 | 118.81 (18) | H31B—C31—H31C | 109.5 |
N1—C2—N21 | 117.99 (18) | O5—N5—C5 | 118.27 (17) |
N1—C2—N3 | 123.80 (18) | C6—N6—H6A | 117.3 |
N21—C2—N3 | 118.21 (18) | C6—N6—H6B | 119.0 |
C2—N3—C4 | 120.18 (17) | H6A—N6—H6B | 123.7 |
C2—N3—C31 | 122.12 (17) | C2—N21—C23 | 118.85 (17) |
C4—N3—C31 | 115.66 (17) | C2—N21—C22 | 123.81 (17) |
O4—C4—N3 | 118.91 (19) | C23—N21—C22 | 114.57 (17) |
O4—C4—C5 | 124.7 (2) | N21—C23—H23A | 109.5 |
N3—C4—C5 | 116.37 (18) | N21—C23—H23B | 109.5 |
N5—C5—C4 | 114.12 (18) | H23A—C23—H23B | 109.5 |
N5—C5—C6 | 127.78 (19) | N21—C23—H23C | 109.5 |
C4—C5—C6 | 117.99 (18) | H23A—C23—H23C | 109.5 |
N6—C6—N1 | 117.81 (19) | H23B—C23—H23C | 109.5 |
N6—C6—C5 | 120.62 (19) | N21—C22—H22A | 109.5 |
N1—C6—C5 | 121.52 (18) | N21—C22—H22B | 109.5 |
N3—C31—H31A | 109.5 | H22A—C22—H22B | 109.5 |
N3—C31—H31B | 109.5 | N21—C22—H22C | 109.5 |
H31A—C31—H31B | 109.5 | H22A—C22—H22C | 109.5 |
N3—C31—H31C | 109.5 | H22B—C22—H22C | 109.5 |
H31A—C31—H31C | 109.5 | H41A—O41—H41B | 112.2 |
| | | |
C6—N1—C2—N21 | 176.20 (18) | N3—C4—C5—C6 | −2.7 (3) |
C6—N1—C2—N3 | −4.7 (3) | C2—N1—C6—N6 | 176.25 (18) |
N1—C2—N3—C4 | 11.9 (3) | C2—N1—C6—C5 | −6.2 (3) |
N21—C2—N3—C4 | −169.02 (18) | N5—C5—C6—N6 | 3.1 (3) |
N1—C2—N3—C31 | −151.1 (2) | C4—C5—C6—N6 | −172.75 (19) |
N21—C2—N3—C31 | 28.0 (3) | N5—C5—C6—N1 | −174.3 (2) |
C2—N3—C4—O4 | 175.14 (19) | C4—C5—C6—N1 | 9.8 (3) |
C31—N3—C4—O4 | −20.8 (3) | C4—C5—N5—O5 | 176.07 (17) |
C2—N3—C4—C5 | −7.4 (3) | C6—C5—N5—O5 | 0.0 (3) |
C31—N3—C4—C5 | 156.66 (18) | N1—C2—N21—C23 | 11.2 (3) |
O4—C4—C5—N5 | −1.8 (3) | N3—C2—N21—C23 | −168.00 (18) |
N3—C4—C5—N5 | −179.11 (18) | N1—C2—N21—C22 | −148.94 (19) |
O4—C4—C5—C6 | 174.61 (19) | N3—C2—N21—C22 | 31.9 (3) |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N6—H6A···O5 | 0.88 | 1.97 | 2.641 (2) | 132 |
N6—H6B···O4i | 0.88 | 2.01 | 2.874 (2) | 168 |
O41—H41A···N5 | 0.86 | 2.15 | 2.995 (2) | 168 |
O41—H41B···O5ii | 0.86 | 2.08 | 2.921 (2) | 166 |
Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) −x+1, −y, −z+1. |
Experimental details
| (I) | (II) |
Crystal data |
Chemical formula | C9H13N5O2·H2O | C7H11N5O2·H2O |
Mr | 241.26 | 215.22 |
Crystal system, space group | Triclinic, P1 | Monoclinic, P21/n |
Temperature (K) | 120 | 120 |
a, b, c (Å) | 7.9734 (18), 8.452 (2), 8.9099 (2) | 11.8125 (6), 7.1372 (7), 11.8588 (19) |
α, β, γ (°) | 75.158 (9), 84.727 (7), 64.436 (16) | 90, 107.910 (4), 90 |
V (Å3) | 523.46 (19) | 951.34 (19) |
Z | 2 | 4 |
Radiation type | Mo Kα | Mo Kα |
µ (mm−1) | 0.12 | 0.12 |
Crystal size (mm) | 0.41 × 0.18 × 0.15 | 0.16 × 0.16 × 0.12 |
|
Data collection |
Diffractometer | Bruker Nonius KappaCCD area-detector diffractometer | Bruker Nonius KappaCCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2003) | Multi-scan (SADABS; Sheldrick, 2003) |
Tmin, Tmax | 0.953, 0.983 | 0.971, 0.986 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12137, 2051, 1629 | 9096, 1873, 1304 |
Rint | 0.054 | 0.049 |
(sin θ/λ)max (Å−1) | 0.618 | 0.618 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.046, 0.116, 1.05 | 0.046, 0.109, 1.05 |
No. of reflections | 2051 | 1873 |
No. of parameters | 155 | 139 |
H-atom treatment | H-atom parameters constrained | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.26, −0.28 | 0.22, −0.27 |
Selected bond distances (Å) for compounds (I)–(III) topParameter | (I) | (II) | (III)a |
N1-C2 | 1.326 (2) | 1.320 (3) | 1.315 (3) |
C2-N3 | 1.376 (2) | 1.377 (3) | 1.376 (3) |
N3-C4 | 1.401 (2) | 1.388 (3) | 1.415 (3) |
C4-C5 | 1.446 (3) | 1.438 (3) | 1.447 (3) |
C5-C6 | 1.429 (3) | 1.438 (3) | 1.435 (3) |
C6-N1 | 1.338 (2) | 1.333 (3) | 1.357 (3) |
C2-N21 | 1.325 (2) | 1.328 (3) | 1.358 (3) |
C4-O4 | 1.209 (2) | 1.226 (2) | 1.221 (3) |
C5-N5 | 1.336 (2) | 1.332 (3) | 1.358 (3) |
N5-O5 | 1.273 (2) | 1.278 (2) | 1.275 (3) |
C6-N6 | 1.313 (2) | 1.311 (3) | 1.316 (3) |
Δb | 0.063 (3) | 0.054 (3) | 0.083 (3) |
(a) Data for (III) are taken from Orozco et al. (2008).
(b) Δ represents the bond-length difference d(C5—N5) - d(N5—O5). |
Hydrogen-bonding parameters (Å, °) for compounds (I) and (II) topCompound | D—H···A | D—H | H···A | D···A | D—H···A |
(I) | N6-H6A···O5 | 0.88 | 2.00 | 2.630 (2) | 128 |
| N6-H6A···O5i | 0.88 | 2.25 | 2.989 (2) | 142 |
| N6-H6B···O41ii | 0.88 | 1.99 | 2.808 (2) | 154 |
| O41-H41A···N5 | 0.86 | 2.00 | 2.860 (2) | 177 |
| O41-H41B···O4a | 0.86 | 2.48 | 2.946 (2) | 114 |
| O41-H41B···N1iii | 0.86 | 2.57 | 3.082 (2) | 119 |
(II) | N6-H6A···O5 | 0.88 | 1.97 | 2.641 (2) | 132 |
| N6-H6B···O4iv | 0.88 | 2.01 | 2.874 (2) | 168 |
| O41-H41A···N5 | 0.86 | 2.15 | 2.995 (2) | 168 |
| O41-H41B···O5v | 0.86 | 2.08 | 2.921 (2) | 166 |
(a) The angle O4···H41B···N1iii is 125°.
Symmetry codes: (i) 1 - x, -y, 2 - z; (ii) x, 1 + y, z;
(iii)(x, -1 + y, z; (iv) -1/2 + x, 1/2 - y, -1/2 + z;
(v) 1 - x, -y, 1 - z. |
We report here the crystal structures of 6-amino-3-methyl-5-nitroso-2-(pyrrolidin-1-yl)pyrimidin-4(3H)-one monohydrate, (I), and 6-amino-2-dimethylamino-3-methyl-5-nitrosopyrimidin-4(3H)-one monohydrate, (II) (Figs. 1 and 2), and compare them with those of 6-amino-3-methyl-2-morpholino-5-nitrosopyrimidin-4(3H)-one, (III) (Orozco et al., 2008), and of the amino acid derivatives, (IV)–(VIII) (Low et al., 1997, 1999, 2000). Our interest in the structures of this class of compounds was aroused by the observation that the structures of the amino acid derivatives (IV)–(VIII) are all characterized by short intermolecular O—H···O hydrogen bonds, with the carboxyl group acting as the donor and the nitrosyl O atom acting as the acceptor, and in which the O···O distances are all ca 2.50 Å. At the same time, the intramolecular bond distances show a number of unusual values, and a combination of database analysis and molecular modelling led to an interpretation of the relationship between the unusual intramolecular bond lengths and the very short intermolecular hydrogen bonds in terms of highly polarized electronic structures (Low et al., 2000).
Although the pyrimidinone ring in (III) is effectively planar (Orozco et al., 2008), the rings in both (I) and (II) show a modest distortion towards a twist-boat conformation. The ring-puckering parameters (Cremer & Pople, 1975) are θ = 99.5 (1)° and ϕ = 273.9 (10)° for (I), and θ = 87.1 (10)° and ϕ = 100.2 (11)° for (II); the ideal values, for rings having all bond distances equal, are θ = 90° and ϕ = (60k + 30)°, where k represents an integer. In both compounds, the ring atoms N2 and C5 are displaced to one side of the mean ring plane, and atoms N3 and C6 are displaced to the opposite side. While the ring-atom displacements are modest, in the range 0.04–0.07 Å, the displacements of the exocyclic substituent atoms are much greater, with the maximum displacement being experienced by atom C31 in each case, 0.453 (2) Å in (I) and 0.619 (2) Å in (II). The twist-boat conformation is not uncommon amongst highly substituted pyrimidines of this general type (Quesada et al., 2002; Melguizo et al., 2003). The the boat conformation has also been observed (Quesada et al., 2004), as well as the expected planar forms.
Despite the non-planarity of the pyrimidinone rings, the bond distances in (I) and (II) (Table 1) provide evidence for polarization of the electronic structure, but in a manner which differs slightly from that in (III). The key indicators for compounds of this type have been identified (Low et al., 2000), as (i) the C—N distances in the sequence N21—C2—N1—C6—N6; (ii) the similarity of the distances C4—C5 and C5—C6; (iii) the distances C5—N5 and N5—O5 and, perhaps most importantly, the difference between these distances. On this basis, the extent of the polarization can be identified as greatest in (II) and least in (III), with the extent of the delocalization greater in (I) and (II) than in (III), all indicating the importance of the polarized forms (Ia) and (IIa) in addition to the localized forms (I) and (II), compared with form (IIIa) (Orozco et al., 2008). Accordingly, in both (I) and (II) hydrogen bonds involving atom N6 as the donor or atom O5 as the acceptor can be regarded as charge-assisted hydrogen bonds (Gilli et al., 1994). In (II), where all of the intermolecular hydrogen bonds are of the two-centre type, those involving atoms N6 or O5 exhibit almost linear D—H···A fragments.
Compounds (I) and (II) both crystallize as monohydrates, while (III) crystallizes in the unsolvated form (Orozco et al., 2008). Of the amino acid derivatives, (IV) crystallizes as a dihydrate (Low et al., 1997) and (VII) as a monohydrate (Low et al., 2000), while (V), (VI) and (VIII) all crystallize in the unsolvated forms (Low et al., 1999, 2000).
In each of (I) and (II), the organic components contain an intramolecular N—H···O hydrogen bond forming an S(6) motif (Bernstein et al., 1995) (Table 2), but the remaining details of the hydrogen bonding are very different in the two compounds. In (I), the water molecule acts as a single acceptor, in an N—H···O hydrogen bond, and as a triple donor, forming a two-centre O—H···N hydrogen bond within the selected asymmetric unit (Fig. 1) and a three-centre O—H···(N,O) hydrogen bond, which serves to link two pyrimidinone molecules related by translation (Fig. 3). The hydrogen bonds involving the water molecules, together with the intramolecular N—H···O hydrogen bond, thus generate a chain of edge-fused S(6), R22(6) and R22(7) rings running parallel to the [010] direction. Pairs of antiparallel chains, related to one another by inversion, are linked by an intermolecular N—H···O hydrogen bond involving only the organic components, so generating a broad ribbon. The central core of this ribbon consists of R22(4) rings centred at (1/2, n, 1), where n represents an integer, alternating with R56(14) rings centred at (1/2, n + 1/2, 1), where n again represents an integer. This central core is flanked by two outer strips, each containing S(6), R22(6) and R22(7) rings, so that, overall, the ribbon contains five different ring motifs (Fig. 3).
The hydrogen bonding in (II) is simpler than that in (I) (Table 2). In particular, the water molecule does not act as an acceptor of hydrogen bonds. As a double donor, it forms only two-centre hydrogen bonds, one each of O—H···N and O—H···O types, which link a pair of organic components which are related to one another by inversion, thus forming a centrosymmetric four-molecule aggregate centred at (1/2, 0, 1/2) and containing an R44(10) motif (Fig. 2). This aggregate can conveniently be regarded as the basic building block for the supramolecular structure. The intermolecular N—H···O hydrogen bond links the four-molecule aggregate centred at (1/2, 0, 1/2) to four similar aggregates centred at (0, 1/2, 0), (0, -1/2, 0), (1, 1/2, 1) and (1, -1/2, 1), so generating a sheet parallel to (101) and containing S(6), R44(10) and R108(34) rings (Fig. 4). Thus, although there are fewer independent hydrogen bonds in the structure of (II) than in (I), the hydrogen-bonded supramolecular structure of (II) is two-dimensional, as opposed to the one-dimensional hydrogen-bonded structure of (I).
In each of (I) and (II), the water component is firmly embedded in the hydrogen-bonded structure. By contrast, (III) contains no water component and its very simple hydrogen-bonded structure is built from just two intermolecular N—H···O hydrogen bonds, in which the ketonic and morpholine O atoms are the acceptors, giving a sheet containing only S(6) and R44(26) rings. Had the morpholine O atom not been available to accept a hydrogen bond in the structure of (III), then, without further reorganization, the hydrogen-bonded structure would consist of simple C(6) chains, with one of the amino N—H bonds finding no acceptor site. This suggests that the presence of water in (I) and (II), versus its absence in (III), may be connected with the overall ratio of hydrogen-bond donors and acceptors.
Three-dimensional hydrogen-bonded structures are formed by each of (IV)–(VI) and (VIII), despite the fact that, whereas (IV) crystallizes as a dihydrate (Low et al., 1997), the other three compounds all crystallize in solvent-free form (Low et al., 1999, 2000), while the monohydrate, (VII), forms only a two-dimensional hydrogen-bonded structure (Low et al., 2000). The contrast between the two-dimensional structure of (VII) and the three-dimensional structures of (V) and (VI) is both striking and unexpected in view of the considerably greater number of potential hydrogen-bonding donor and acceptor sites available in the asymmetric unit of (VII) compared with (V) and (VI).