Download citation
Download citation
link to html
The sodium salt of [immucillin-A-CO2H]- (Imm-A), namely catena-poly[[[triaqua­disodium(I)]([mu]-aqua)[[mu]-(1S)-N-car­box­yl­ato-1-(9-deaza­adenin-9-yl)-1,4-dide­oxy-1,4-imino-D-ribi­tol][triaqua­disodium(I)][[mu]-(1S)-N-carboxyl­ato-1-(9-deaza­aden­in-9-yl)-1,4-dide­oxy-1,4-imino-D-ribitol]] tetra­hydrate], {[Na2(C12H13N4O6)2(H2O)7]·4H2O}n, (I), forms a polymeric chain via Na+-O inter­actions involving the carboxyl­ate and keto O atoms of two independent Imm-A mol­ecules. Extensive N,O-H...O hydrogen bonding utilizing all water H atoms, including four waters of crystallization, provides crystal packing. The structural definition of this novel compound was made possible through the use of synchrotron radiation utilizing a minute fragment (volume ~2.4 × 10-5 mm-3) on a beamline optimized for protein data collection. A summary of intra-ring conformations for immucillin structures indicates considerable flexibility while retaining similar intra-ring orientations.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110002738/sk3359sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110002738/sk3359Isup2.hkl
Contains datablock I

CCDC reference: 774064

Comment top

The title compound, (I), was prepared as part of continuing studies of the so-called 'immucillin' family of compounds which are potent aza-C-nucleoside inhibitors of purine nucleoside phosphorylase (Evans et al., 2003). The immucillin compounds do not usually form adequate-quality crystals, and only adducts protonated on the aza-ribitol sugar (N1) positions have been reported [MILMAV, Federov et al. (2001); MEFZOM, Evans et al. (2000)] [alphabetic codes used herein are those used in the Cambridge Structural Database, 2009]. A related compound, with oxygen replacing NH in the saturated five-membered ring, is VOVJIZ (Otter et al., 1992) while compound VILHON (Ikegami et al., 1990) has been re-assigned as a related 6'-amino compound by Otter et al. (1992). Some of these compounds have been successfully defined `in action' as inhibitors in sites within the enzymes (e.g. MT-Imm_A, Singh et al., 2004). The size of the crystal fragment used here meant that both the superb power and resolution of synchrotron radiation was essential even when used in the less than optimum settings at the end of a protein data collection. We are thus able to present the first anionic derivative of this family.

The asymmetric unit contents of the title compound, (I), are shown in Fig. 1; the polymer linking bonds (Na1*—O16, Na1—O16*) are shown at the top and bottom of the figure (see also Fig. 2 and scheme). The two independent ImmA-CO2- molecules, which are label-related by adding 10 to the number of the first (i.e. N1 and N11), are almost superimposable. The absolute configurations at C1' (S), C2' (S), C3' (R) and C4' (R) indicated by a Flack parameter of 0.0 (3) agree with the stereochemistry known from the synthesis. There is a slight difference in tilt angle ~10° between the two rings (see the dihedral angles around C1'—C9 and C11'—C19 in Table 1) and ring comparisons (Spek, 2009) give r.m.s. bond and angle fits of 0.016 Å and 1.25°. The 1,9-deazaadenin-9-yl nine-membered rings (e.g. N1, C2, N3, C4, C9, C8, N7, C5, C6) are made up of two rigidly planar five- and six-membered rings which are at an average of 1.8 (3)° to each other. The five-membered (imino-ribitol) rings (e.g. N1', C1'-C4') are puckered on C2' and C3' [Cremer & Pople (1975) parameters Q(2) 0.342 (6) Å, ϕ(2) 272.3 (9)°] in molecule 1 and twisted on C12'–C13' [Q(2) 0.307 (6) Å, ϕ(2) 268.2 (10)°] in the other. Such variations are normal as shown by the pyrrolidine-1-carboxylate adduct FISNUR (Zukerman-Schpector et al., 2005) which also twists along C2'–C3' [Q(2) 0.426 Å, ϕ(2) 266.4 (3)°].

For completeness we note that other pyrimidine-4-one structures have been reported: FOYWIZ (Girgis et al., 1987) and QINBOE (Jukic et al., 2000); the former has (fortuitously) similar relative orientations of the two rings to molecule 1 here.

One of the ImmA-CO2- molecules provides a bridging oxygen (O6) to the two independent cations while the other bonds to only Na2 through the carboxylate oxygen O7b' (Fig. 1). The Na cations are further bridged by one water molecule (O2W) and both have the usual approximate octahedral binding stereochemistry, with variation in Na—O distances depending on the trans donor atoms. Finally, the packing cohesion is provided by extensive hydrogen bonds involving all the waters of crystallization, the aqua molecules and the ImmA-CO2- nitrogen H atoms as donors (Table 2, scheme). Overall, the structure can be described as a polymeric chain parallel to the (1,-1,1) plane cross-linked by hydrogen bonds to the water molecules that lie between the chains (Fig. 2).

It is of interest to compare the relative conformations of the two independent ImmA-CO2- molecules here with the previously reported (free) ImmH cationic molecules and ImmH as found bound in a human purine nucleoside phosphorylase mutant (Table 3). There is quite a wide variation of relative conformations of the ten-membered 9-deazaadenin-9-yl and the 4-aza-ribitol rings with respect to the linking bond (e.g. C1–C9') with the two independent molecules here being closely related both in intra-ring orientations and in the 4-aza ribitol ring descriptions. This is rather remarkable given the variation that might be expected in the strongly hydrogen-bonded network and with each molecule involved in different interactions with the cations. Agreement between the two free ImmH studies (entries 4 and 6) is also notable. It is also apparent that the protein-bound molecule (entry 5) has been twisted about the link bond in response to close interactions, but still retained a similar intraplanar angle (between the two rings) to that in the free ligand structures. The linking factor in these determinations is that the variable conformations retain a similar intraplanar angle with only minor variations in the attachment angles [e.g. C1'–C9–C8, C11'–C19–C18 126.3 (5),129.1 (5)°, respectively, here compared with 130.2° in the bound molecule (Murkin et al., 2007)].

Related literature top

For related literature, see: Cambridge Structural Database (2009); Cremer & Pople (1975); Evans et al. (2000, 2003); Federov et al. (2001); Girgis et al. (1987); Ikegami et al. (1990); Jukic et al. (2000); Murkin et al. (2007); Otter et al. (1992); Singh et al. (2004); Spek (2009); Zukerman-Schpector, Caracelli, Teijido, Garcia, Costenaro & Correia (2005).

Experimental top

The title compound (immucillin-A—CO2H) was made by incubation of the Imm-A-HCl salt (50 mg, 0.165 mmol) (Evans et al., 2003) dissolved in 2 ml of water. The compound was deprotonated with 0.165 mmol (6.6 mg) sodium hydroxide dissolved in 100 µl water, which caused precipitation, but an additional 0.165 mmol [?mg] sodium hydroxide dissolved in 100 µl caused the compound to redissolve. The aqueous mixture was left open to the atmosphere to allow for evaporation of solvent (and to pick up CO2) and for crystallization. The described material crystallized after 1 week.

Refinement top

One low angle reflection (-1,1,0) and 8 high angle reflections (Δ(F2)/e.s.d. > 3.8) were omitted. A total of 44 non-H atoms were refined with isotropic displacement parameters (some being unstable to anisotropic refinement) thereby improving the data/parameter value. The number of Friedel pairs was 1161. All H atoms were constrained, with Uiso values of 1.2 times the Ueq of the parent atom for C, N and hydroxy O atoms, and with Uiso values of 1.2 times the Ueq of the parent atom for water O atoms. Most water H atoms were located on difference Fourier maps; other water H atoms were positioned from stereochemical considerations and confirmed by improved agreement factors and Fourier maps. The O10W water H atoms could not be resolved from difference Fourier maps and their placement lead to unacceptably close contacts with other water H atoms (< 1.5 Å); they were excluded from the final refinement. In final refinements, all water O—H distances were constrained to 0.82 (3) Å, with a minimum H···H distance of 1.35 (3) Å. In the final model, there are some close water H···H distances reflecting the model and data limitations. All other H atoms were geometrically constrained (riding model) to C–H,N–H and O–H bond lengths of 0.99,0.88 and 0.84 Å, respectively.

Computing details top

Data collection: DENZO, (Otwinowski & Minor, 1997); cell refinement: DENZO, (Otwinowski & Minor, 1997); data reduction: DENZO & SCALEPACK, (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP in WinGX (Farrugia, 1997); PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008); PLATON (Spek, 2009) Mercury (Bruno et al., 2002).

Figures top
[Figure 1] Fig. 1. Diagram of the asymmetric unit and two atoms of (I) with 50% displacement ellipsoids (Farrugia, 1997). Atoms Na1* (at x-1, y-1, z) and O16* (at x+1, y+1, z) are included and linked by 3-line bonds to show the polymeric linkages. H atoms have arbitrary radii. Identified hydrogen bonds within the asymmetric unit are shown as dashed lines.
[Figure 2] Fig. 2. Packing diagram of the cell of (I) (Bruno et al., 2002) viewed approximately down the c axis. Representative atom labels are given (see text and Table 2) and H atoms are omitted for clarity. Hydrogen bonds are shown as dashed lines. N, blue sticks; Na, purple balls; O, red sticks; C, grey wires.
catena-Poly[[[triaquadisodium(I)](µ-aqua)[µ-(1S)-N-carboxylato-1-(9-deazaadenin-9-yl)-1,4-dideoxy-1,4-imino-D-ribitol][triaquadisodium(I)][µ-(1S)-N-carboxylato-1-(9-deazaadenin-9-yl)-1,4-dideoxy-1,4-imino-D-ribitol]] tetrahydrate] top
Crystal data top
[Na2(C12H13N4O6)2(H2O)7]·4H2OZ = 1
Mr = 862.68F(000) = 454
Triclinic, P1Dx = 1.571 Mg m3
Hall symbol: P 1Synchrotron radiation, λ = 0.98000 Å
a = 7.6620 (15) ÅCell parameters from 185 reflections
b = 10.488 (2) Åθ = 3.8–26.5°
c = 11.606 (2) ŵ = 0.16 mm1
α = 98.24 (3)°T = 100 K
β = 91.07 (3)°Plate, colourless
γ = 98.49 (3)°0.08 × 0.06 × 0.01 mm
V = 912.1 (3) Å3
Data collection top
MAR CCD detector
diffractometer
2330 reflections with I > 2σ(I)
Si111 monochromatorRint = 0.034
Detector resolution: 4000 pixels mm-1θmax = 25.5°, θmin = 2.5°
ϕ scanh = 66
2357 measured reflectionsk = 99
2357 independent reflectionsl = 99
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0364P)2 + 1.0082P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
2357 reflectionsΔρmax = 0.22 e Å3
360 parametersΔρmin = 0.21 e Å3
27 restraintsAbsolute structure: Flack (1983), 1161 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.0 (3)
Crystal data top
[Na2(C12H13N4O6)2(H2O)7]·4H2Oγ = 98.49 (3)°
Mr = 862.68V = 912.1 (3) Å3
Triclinic, P1Z = 1
a = 7.6620 (15) ÅSynchrotron radiation, λ = 0.98000 Å
b = 10.488 (2) ŵ = 0.16 mm1
c = 11.606 (2) ÅT = 100 K
α = 98.24 (3)°0.08 × 0.06 × 0.01 mm
β = 91.07 (3)°
Data collection top
MAR CCD detector
diffractometer
2330 reflections with I > 2σ(I)
2357 measured reflectionsRint = 0.034
2357 independent reflectionsθmax = 25.5°
Refinement top
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.092Δρmax = 0.22 e Å3
S = 1.07Δρmin = 0.21 e Å3
2357 reflectionsAbsolute structure: Flack (1983), 1161 Friedel pairs
360 parametersAbsolute structure parameter: 0.0 (3)
27 restraints
Special details top

Experimental. Crystal decay was monitored and corrected by the inter-frame analysis (DENZO: Otwinowski & Minor (1997)).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Na10.9839 (3)1.3128 (2)0.4851 (2)0.0262 (6)
Na20.6910 (3)1.23034 (19)0.7169 (2)0.0273 (6)
O1W0.4963 (5)1.2928 (4)0.8598 (4)0.0330 (12)
H1W10.474 (9)1.365 (4)0.887 (6)0.049*
H1W20.405 (6)1.250 (6)0.863 (7)0.049*
O2W0.7781 (5)1.4180 (4)0.6201 (4)0.0290 (11)
H2W10.710 (8)1.432 (5)0.568 (4)0.044*
H2W20.781 (8)1.481 (5)0.673 (4)0.044*
O3W0.9204 (5)1.3167 (4)0.8678 (4)0.0264 (11)
H3W10.982 (7)1.386 (4)0.883 (6)0.040*
H3W20.854 (8)1.299 (6)0.922 (4)0.040*
O4W0.4326 (5)1.1534 (4)0.5740 (4)0.0289 (11)
H4W10.457 (8)1.160 (5)0.504 (3)0.043*
H4W20.369 (7)1.083 (4)0.571 (5)0.043*
O5W1.2008 (5)1.3340 (4)0.6402 (4)0.0291 (12)
H5W11.286 (7)1.303 (6)0.607 (5)0.044*
H5W21.159 (9)1.304 (6)0.695 (4)0.044*
O6W0.4746 (6)1.1225 (4)0.3375 (4)0.0315 (11)
H6W10.473 (9)1.055 (5)0.290 (5)0.047*
H6W20.557 (7)1.176 (5)0.322 (6)0.047*
O7W0.7809 (5)0.2924 (4)0.0848 (4)0.0261 (11)
H7W10.734 (8)0.221 (4)0.055 (6)0.039*
H7W20.699 (6)0.332 (6)0.108 (6)0.039*
O8W1.1404 (5)1.2039 (4)0.3334 (4)0.0256 (11)
H8W11.137 (7)1.256 (5)0.285 (5)0.038*
H8W21.239 (5)1.185 (5)0.335 (5)0.038*
O9W0.7699 (5)1.3102 (4)0.3328 (4)0.0286 (11)
H9W10.686 (6)1.348 (6)0.359 (5)0.043*
H9W20.786 (8)1.329 (6)0.266 (3)0.043*
O10W0.5397 (5)0.4641 (3)0.4447 (3)0.0280 (11)
O11W0.1833 (5)0.3381 (4)0.1420 (4)0.0279 (11)
H11A0.131 (8)0.279 (5)0.094 (5)0.042*
H11B0.124 (8)0.399 (5)0.156 (6)0.042*
N1'0.8358 (6)0.6307 (4)0.0682 (4)0.0213 (12)*
C1'0.7459 (7)0.6338 (6)0.1812 (5)0.0227 (15)*
H1'0.79420.57160.22650.027*
C2'0.5563 (8)0.5816 (5)0.1489 (5)0.0198 (15)*
H2'0.47540.62260.20450.024*
O2'0.5336 (5)0.4434 (3)0.1453 (4)0.0231 (10)*
H2'O0.42610.41270.13370.028*
C3'0.5332 (7)0.6162 (5)0.0276 (5)0.0190 (15)*
H3'0.51230.70880.03340.023*
O3'0.3980 (5)0.5334 (3)0.0465 (3)0.0209 (10)*
H3'O0.30060.55960.03440.025*
C4'0.7074 (7)0.6011 (5)0.0323 (5)0.0176 (15)*
H4'0.70340.50780.06730.021*
C5'0.7362 (7)0.6847 (5)0.1277 (5)0.0214 (15)*
H5'A0.62170.68120.17000.026*
H5'B0.77450.77610.09130.026*
O5'0.8628 (5)0.6490 (4)0.2104 (4)0.0250 (10)*
H5'O0.95090.63100.17530.030*
C7'1.0041 (8)0.6007 (5)0.0601 (6)0.0212 (15)*
O7'A1.0922 (5)0.5926 (3)0.1502 (3)0.0212 (10)*
O7'B1.0623 (5)0.5786 (3)0.0429 (4)0.0211 (10)*
N10.7170 (5)0.9150 (4)0.5883 (4)0.0209 (13)*
H1N0.70400.94680.66150.025*
C20.6629 (7)0.7864 (5)0.5547 (6)0.0242 (16)*
H20.61480.73660.61190.029*
N30.6719 (6)0.7249 (4)0.4478 (4)0.0231 (13)*
C40.7457 (7)0.8033 (5)0.3708 (5)0.0198 (15)*
C50.8032 (7)0.9355 (5)0.4015 (6)0.0199 (15)*
C60.7918 (7)1.0008 (5)0.5156 (5)0.0207 (15)*
O60.8372 (5)1.1186 (4)0.5543 (3)0.0245 (10)*
N70.8716 (6)0.9840 (4)0.3065 (4)0.0190 (12)*
H7N0.91661.06570.30380.023*
C80.8579 (7)0.8830 (5)0.2156 (6)0.0212 (15)*
H80.89530.89010.13880.025*
C90.7809 (7)0.7694 (5)0.2535 (5)0.0211 (15)*
C11'0.3086 (7)0.9684 (5)0.7875 (5)0.0227 (16)*
H11'0.37601.02890.73920.027*
N11'0.4092 (5)0.9768 (4)0.8984 (4)0.0165 (12)*
C12'0.1380 (8)1.0204 (6)0.8215 (6)0.0218 (15)*
H12'0.03570.97380.76970.026*
O12'0.1631 (5)1.1565 (3)0.8168 (3)0.0229 (10)*
H2O'0.07821.18900.84740.027*
C13'0.1162 (7)0.9941 (5)0.9456 (5)0.0211 (15)*
H13'0.05550.90260.94410.025*
O13'0.0200 (5)1.0800 (3)1.0168 (3)0.0219 (10)*
H3O'0.08861.05171.00800.026*
C14'0.3006 (7)1.0062 (5)1.0009 (5)0.0192 (15)*
H14'0.33971.09761.04010.023*
C15'0.3003 (7)0.9131 (5)1.0885 (5)0.0211 (15)*
H5A'0.20390.92681.14240.025*
H5B'0.27310.82301.04660.025*
C17'0.5883 (7)1.0141 (5)0.9013 (5)0.0193 (15)*
O7A'0.6680 (5)1.0309 (3)1.0035 (3)0.0241 (10)*
O7B'0.6689 (5)1.0272 (3)0.8106 (3)0.0209 (10)*
O15'0.4637 (5)0.9248 (4)1.1570 (4)0.0278 (10)*
H5O'0.54720.96171.12210.033*
N110.1676 (6)0.6995 (4)0.3774 (4)0.0237 (13)*
H11N0.14140.66940.30350.028*
C120.1920 (7)0.8325 (5)0.4112 (6)0.0236 (16)*
H120.18250.88640.35290.028*
N130.2276 (6)0.8893 (4)0.5194 (4)0.0212 (12)*
C140.2396 (7)0.8053 (5)0.5985 (5)0.0198 (15)*
C150.2189 (7)0.6706 (5)0.5691 (5)0.0204 (15)*
C160.1821 (7)0.6103 (5)0.4531 (5)0.0176 (15)*
O160.1628 (5)0.4905 (3)0.4148 (3)0.0244 (10)*
N170.2487 (6)0.6181 (4)0.6665 (4)0.0190 (12)*
H17N0.24510.53460.67020.023*
C180.2852 (7)0.7169 (5)0.7577 (6)0.0193 (15)*
H180.31010.70610.83590.023*
C190.2804 (7)0.8343 (5)0.7194 (5)0.0198 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0263 (14)0.0240 (13)0.0279 (17)0.0038 (10)0.0009 (11)0.0029 (10)
Na20.0295 (13)0.0230 (13)0.0288 (17)0.0057 (10)0.0019 (11)0.0007 (11)
O1W0.026 (3)0.021 (3)0.047 (3)0.001 (2)0.003 (2)0.010 (2)
O2W0.036 (3)0.025 (3)0.026 (3)0.010 (2)0.001 (2)0.001 (2)
O3W0.022 (3)0.023 (2)0.033 (4)0.001 (2)0.005 (2)0.002 (2)
O4W0.034 (3)0.027 (3)0.026 (3)0.0010 (19)0.005 (2)0.007 (2)
O5W0.026 (3)0.033 (3)0.030 (4)0.008 (2)0.006 (2)0.006 (2)
O6W0.028 (3)0.032 (3)0.035 (3)0.004 (2)0.002 (3)0.006 (2)
O7W0.022 (3)0.026 (3)0.032 (3)0.010 (2)0.001 (2)0.001 (2)
O8W0.026 (3)0.026 (3)0.029 (3)0.011 (2)0.003 (2)0.009 (2)
O9W0.028 (2)0.032 (3)0.027 (3)0.007 (2)0.001 (2)0.005 (2)
O10W0.030 (3)0.025 (2)0.029 (3)0.0097 (19)0.000 (2)0.003 (2)
O11W0.023 (3)0.029 (3)0.029 (3)0.005 (2)0.001 (2)0.005 (2)
Geometric parameters (Å, º) top
Na1—O9W2.382 (5)C7'—O7'B1.286 (7)
Na1—O5W2.391 (5)N1—C21.349 (7)
Na1—O16i2.396 (4)N1—C61.391 (7)
Na1—O8W2.398 (5)N1—H1N0.8800
Na1—O62.426 (4)C2—N31.321 (7)
Na1—O2W2.504 (5)C2—H20.9500
Na1—H8W12.65 (6)N3—C41.374 (8)
Na2—O1W2.340 (5)C4—C51.384 (8)
Na2—O2W2.419 (5)C4—C91.398 (8)
Na2—O3W2.436 (5)C5—N71.361 (7)
Na2—O62.454 (4)C5—C61.412 (8)
Na2—O7B'2.513 (4)C6—O61.247 (6)
Na2—O4W2.518 (5)N7—C81.375 (7)
Na2—H3W22.62 (7)N7—H7N0.8800
O1W—H1W10.82 (3)C8—C91.384 (8)
O1W—H1W20.78 (3)C8—H80.9500
O2W—H2W10.84 (3)C11'—N11'1.473 (7)
O2W—H2W20.83 (3)C11'—C191.495 (8)
O3W—H3W10.80 (3)C11'—C12'1.527 (8)
O3W—H3W20.84 (3)C11'—H11'1.0000
O4W—H4W10.85 (3)N11'—C17'1.369 (7)
O4W—H4W20.81 (3)N11'—C14'1.487 (7)
O5W—H5W10.85 (3)C12'—O12'1.421 (7)
O5W—H5W20.80 (3)C12'—C13'1.513 (9)
O6W—H6W10.83 (3)C12'—H12'1.0000
O6W—H6W20.82 (3)O12'—H2O'0.8400
O7W—H7W10.81 (3)C13'—O13'1.429 (7)
O7W—H7W20.83 (3)C13'—C14'1.521 (8)
O8W—H8W10.84 (3)C13'—H13'1.0000
O8W—H8W20.81 (3)O13'—H3O'0.8400
O9W—H9W10.84 (3)C14'—C15'1.506 (8)
O9W—H9W20.83 (3)C14'—H14'1.0000
O11W—H11A0.82 (3)C15'—O15'1.450 (7)
O11W—H11B0.84 (3)C15'—H5A'0.9900
N1'—C7'1.373 (7)C15'—H5B'0.9900
N1'—C4'1.479 (7)C17'—O7B'1.245 (6)
N1'—C1'1.491 (8)C17'—O7A'1.300 (7)
C1'—C2'1.496 (9)O15'—H5O'0.8400
C1'—C91.528 (8)N11—C121.378 (7)
C1'—H1'1.0000N11—C161.386 (7)
C2'—O2'1.428 (7)N11—H11N0.8800
C2'—C3'1.517 (8)C12—N131.316 (7)
C2'—H2'1.0000C12—H120.9500
O2'—H2'O0.8400N13—C141.371 (7)
C3'—O3'1.433 (7)C14—C151.389 (8)
C3'—C4'1.535 (8)C14—C191.412 (8)
C3'—H3'1.0000C15—N171.356 (7)
O3'—H3'O0.8400C15—C161.407 (8)
C4'—C5'1.507 (8)C16—O161.257 (6)
C4'—H4'1.0000O16—Na1ii2.396 (4)
C5'—O5'1.429 (7)N17—C181.365 (7)
C5'—H5'A0.9900N17—H17N0.8800
C5'—H5'B0.9900C18—C191.373 (8)
O5'—H5'O0.8400C18—H180.9500
C7'—O7'A1.254 (7)
O9W—Na1—O5W175.42 (18)C4'—C5'—H5'B108.5
O9W—Na1—O16i89.10 (16)H5'A—C5'—H5'B107.5
O5W—Na1—O16i87.54 (16)C5'—O5'—H5'O109.5
O9W—Na1—O8W84.02 (16)O7'A—C7'—O7'B122.8 (5)
O5W—Na1—O8W98.27 (16)O7'A—C7'—N1'120.3 (6)
O16i—Na1—O8W77.40 (15)O7'B—C7'—N1'116.8 (5)
O9W—Na1—O695.41 (16)C2—N1—C6124.7 (5)
O5W—Na1—O688.27 (16)C2—N1—H1N117.7
O16i—Na1—O6172.39 (15)C6—N1—H1N117.7
O8W—Na1—O696.94 (14)N3—C2—N1124.7 (6)
O9W—Na1—O2W86.85 (16)N3—C2—H2117.6
O5W—Na1—O2W90.99 (17)N1—C2—H2117.6
O16i—Na1—O2W104.75 (16)C2—N3—C4114.1 (5)
O8W—Na1—O2W170.60 (16)N3—C4—C5123.2 (5)
O6—Na1—O2W81.67 (15)N3—C4—C9129.0 (5)
O9W—Na1—H8W172.7 (10)C5—C4—C9107.8 (5)
O5W—Na1—H8W1108.4 (10)N7—C5—C4108.7 (5)
O16i—Na1—H8W163.6 (11)N7—C5—C6128.9 (5)
O8W—Na1—H8W118.4 (7)C4—C5—C6122.4 (5)
O6—Na1—H8W1111.9 (11)O6—C6—N1120.2 (5)
O2W—Na1—H8W1156.1 (7)O6—C6—C5128.8 (5)
O1W—Na2—O2W106.58 (16)N1—C6—C5110.9 (5)
O1W—Na2—O3W84.76 (16)C6—O6—Na1137.8 (4)
O2W—Na2—O3W89.45 (16)C6—O6—Na2122.3 (3)
O1W—Na2—O6165.81 (16)Na1—O6—Na296.92 (15)
O2W—Na2—O682.83 (15)C5—N7—C8108.0 (5)
O3W—Na2—O6106.30 (15)C5—N7—H7N126.0
O1W—Na2—O7B'83.68 (16)C8—N7—H7N126.0
O2W—Na2—O7B'167.45 (16)N7—C8—C9109.2 (6)
O3W—Na2—O7B'84.24 (15)N7—C8—H8125.4
O6—Na2—O7B'88.54 (14)C9—C8—H8125.4
O1W—Na2—O4W89.51 (16)C8—C9—C4106.4 (5)
O2W—Na2—O4W90.70 (16)C8—C9—C1'126.3 (6)
O3W—Na2—O4W174.07 (16)C4—C9—C1'127.3 (5)
O6—Na2—O4W79.60 (14)N11'—C11'—C19113.0 (4)
O7B'—Na2—O4W96.70 (15)N11'—C11'—C12'104.8 (5)
O1W—Na2—H3W268.6 (10)C19—C11'—C12'114.0 (5)
O2W—Na2—H3W2102.9 (11)N11'—C11'—H11'108.3
O3W—Na2—H3W218.7 (8)C19—C11'—H11'108.3
O6—Na2—H3W2120.4 (11)C12'—C11'—H11'108.3
O7B'—Na2—H3W273.7 (12)C17'—N11'—C11'118.7 (5)
O4W—Na2—H3W2156.7 (9)C17'—N11'—C14'122.5 (4)
H1W1—O1W—H1W2101 (8)C11'—N11'—C14'112.1 (4)
Na2—O2W—Na195.78 (15)O12'—C12'—C13'110.8 (5)
Na2—O2W—H2W1118 (5)O12'—C12'—C11'108.4 (5)
Na1—O2W—H2W196 (4)C13'—C12'—C11'103.4 (5)
Na2—O2W—H2W2104 (5)O12'—C12'—H12'111.3
Na1—O2W—H2W2139 (5)C13'—C12'—H12'111.3
H2W1—O2W—H2W2105 (4)C11'—C12'—H12'111.3
Na2—O3W—H3W1133 (5)C12'—O12'—H2O'109.5
Na2—O3W—H3W293 (5)O13'—C13'—C12'115.3 (4)
H3W1—O3W—H3W2112 (7)O13'—C13'—C14'108.3 (5)
Na2—O4W—H4W1114 (4)C12'—C13'—C14'107.1 (4)
Na2—O4W—H4W2124 (4)O13'—C13'—H13'108.6
H4W1—O4W—H4W2105 (4)C12'—C13'—H13'108.6
Na1—O5W—H5W1103 (5)C14'—C13'—H13'108.6
Na1—O5W—H5W2111 (5)C13'—O13'—H3O'109.5
H5W1—O5W—H5W2120 (8)N11'—C14'—C15'114.5 (4)
H6W1—O6W—H6W2107 (8)N11'—C14'—C13'102.6 (4)
H7W1—O7W—H7W2105 (7)C15'—C14'—C13'109.7 (4)
Na1—O8W—H8W198 (4)N11'—C14'—H14'109.9
Na1—O8W—H8W2130 (4)C15'—C14'—H14'109.9
H8W1—O8W—H8W2108 (4)C13'—C14'—H14'109.9
Na1—O9W—H9W1110 (4)O15'—C15'—C14'115.4 (5)
Na1—O9W—H9W2129 (4)O15'—C15'—H5A'108.4
H9W1—O9W—H9W2107 (4)C14'—C15'—H5A'108.4
H11A—O11W—H11B110 (7)O15'—C15'—H5B'108.4
C7'—N1'—C4'122.1 (5)C14'—C15'—H5B'108.4
C7'—N1'—C1'120.3 (5)H5A'—C15'—H5B'107.5
C4'—N1'—C1'111.7 (4)O7B'—C17'—O7A'122.7 (5)
N1'—C1'—C2'105.0 (5)O7B'—C17'—N11'121.4 (5)
N1'—C1'—C9111.6 (4)O7A'—C17'—N11'115.9 (5)
C2'—C1'—C9115.6 (5)C17'—O7B'—Na2123.0 (3)
N1'—C1'—H1'108.1C15'—O15'—H5O'109.5
C2'—C1'—H1'108.1C12—N11—C16123.9 (5)
C9—C1'—H1'108.1C12—N11—H11N118.1
O2'—C2'—C1'107.8 (4)C16—N11—H11N118.1
O2'—C2'—C3'110.5 (5)N13—C12—N11123.9 (6)
C1'—C2'—C3'103.2 (5)N13—C12—H12118.0
O2'—C2'—H2'111.6N11—C12—H12118.0
C1'—C2'—H2'111.6C12—N13—C14114.6 (5)
C3'—C2'—H2'111.6N13—C14—C15123.9 (5)
C2'—O2'—H2'O109.5N13—C14—C19128.8 (5)
O3'—C3'—C2'115.9 (4)C15—C14—C19107.2 (5)
O3'—C3'—C4'105.8 (4)N17—C15—C14108.5 (5)
C2'—C3'—C4'106.1 (5)N17—C15—C16130.2 (5)
O3'—C3'—H3'109.6C14—C15—C16121.3 (5)
C2'—C3'—H3'109.6O16—C16—N11120.0 (5)
C4'—C3'—H3'109.6O16—C16—C15127.7 (5)
C3'—O3'—H3'O109.5N11—C16—C15112.4 (5)
N1'—C4'—C5'117.3 (5)C16—O16—Na1ii129.2 (4)
N1'—C4'—C3'101.6 (5)C15—N17—C18108.4 (5)
C5'—C4'—C3'111.6 (4)C15—N17—H17N125.8
N1'—C4'—H4'108.7C18—N17—H17N125.8
C5'—C4'—H4'108.7N17—C18—C19109.7 (6)
C3'—C4'—H4'108.7N17—C18—H18125.2
O5'—C5'—C4'115.3 (4)C19—C18—H18125.2
O5'—C5'—H5'A108.5C18—C19—C14106.2 (5)
C4'—C5'—H5'A108.5C18—C19—C11'129.0 (6)
O5'—C5'—H5'B108.5C14—C19—C11'124.8 (5)
O1W—Na2—O2W—Na1178.36 (15)C5—N7—C8—C90.3 (6)
O3W—Na2—O2W—Na193.99 (16)N7—C8—C9—C40.5 (6)
O6—Na2—O2W—Na112.51 (14)N7—C8—C9—C1'178.2 (5)
O7B'—Na2—O2W—Na134.4 (8)N3—C4—C9—C8179.1 (5)
O4W—Na2—O2W—Na191.94 (16)C5—C4—C9—C80.5 (6)
O9W—Na1—O2W—Na2108.63 (17)N3—C4—C9—C1'0.4 (9)
O5W—Na1—O2W—Na275.41 (17)C5—C4—C9—C1'178.2 (5)
O16i—Na1—O2W—Na2163.12 (14)N1'—C1'—C9—C811.0 (7)
O6—Na1—O2W—Na212.70 (15)C2'—C1'—C9—C8109.0 (6)
C7'—N1'—C1'—C2'143.6 (5)N1'—C1'—C9—C4167.6 (5)
C4'—N1'—C1'—C2'9.8 (6)C2'—C1'—C9—C472.5 (8)
C7'—N1'—C1'—C990.5 (6)C19—C11'—N11'—C17'94.2 (6)
C4'—N1'—C1'—C9116.2 (5)C12'—C11'—N11'—C17'141.1 (5)
N1'—C1'—C2'—O2'89.4 (5)C19—C11'—N11'—C14'113.7 (5)
C9—C1'—C2'—O2'147.2 (5)C12'—C11'—N11'—C14'11.0 (6)
N1'—C1'—C2'—C3'27.6 (5)N11'—C11'—C12'—O12'91.7 (5)
C9—C1'—C2'—C3'95.8 (6)C19—C11'—C12'—O12'144.2 (5)
O2'—C2'—C3'—O3'38.1 (6)N11'—C11'—C12'—C13'26.0 (5)
C1'—C2'—C3'—O3'153.1 (4)C19—C11'—C12'—C13'98.1 (6)
O2'—C2'—C3'—C4'79.0 (5)O12'—C12'—C13'—O13'36.9 (6)
C1'—C2'—C3'—C4'36.0 (5)C11'—C12'—C13'—O13'152.9 (5)
C7'—N1'—C4'—C5'73.3 (6)O12'—C12'—C13'—C14'83.7 (5)
C1'—N1'—C4'—C5'133.9 (5)C11'—C12'—C13'—C14'32.3 (5)
C7'—N1'—C4'—C3'164.8 (5)C17'—N11'—C14'—C15'81.7 (6)
C1'—N1'—C4'—C3'12.0 (5)C11'—N11'—C14'—C15'127.5 (5)
O3'—C3'—C4'—N1'153.0 (4)C17'—N11'—C14'—C13'159.5 (5)
C2'—C3'—C4'—N1'29.3 (5)C11'—N11'—C14'—C13'8.7 (5)
O3'—C3'—C4'—C5'81.3 (5)O13'—C13'—C14'—N11'150.3 (4)
C2'—C3'—C4'—C5'155.0 (5)C12'—C13'—C14'—N11'25.4 (5)
N1'—C4'—C5'—O5'81.7 (6)O13'—C13'—C14'—C15'87.6 (6)
C3'—C4'—C5'—O5'161.7 (4)C12'—C13'—C14'—C15'147.5 (5)
C4'—N1'—C7'—O7'A160.1 (5)N11'—C14'—C15'—O15'71.8 (6)
C1'—N1'—C7'—O7'A9.5 (7)C13'—C14'—C15'—O15'173.5 (5)
C4'—N1'—C7'—O7'B18.2 (7)C11'—N11'—C17'—O7B'7.8 (7)
C1'—N1'—C7'—O7'B168.8 (4)C14'—N11'—C17'—O7B'156.8 (5)
C6—N1—C2—N30.7 (8)C11'—N11'—C17'—O7A'174.2 (4)
N1—C2—N3—C41.1 (7)C14'—N11'—C17'—O7A'25.1 (7)
C2—N3—C4—C51.0 (7)O7A'—C17'—O7B'—Na299.3 (5)
C2—N3—C4—C9177.4 (5)N11'—C17'—O7B'—Na282.8 (5)
N3—C4—C5—N7179.1 (5)O1W—Na2—O7B'—C17'6.0 (4)
C9—C4—C5—N70.4 (6)O2W—Na2—O7B'—C17'139.5 (7)
N3—C4—C5—C60.5 (8)O3W—Na2—O7B'—C17'79.3 (4)
C9—C4—C5—C6178.1 (5)O6—Na2—O7B'—C17'174.1 (4)
C2—N1—C6—O6179.6 (5)O4W—Na2—O7B'—C17'94.8 (4)
C2—N1—C6—C50.2 (7)C16—N11—C12—N131.6 (8)
N7—C5—C6—O62.3 (9)N11—C12—N13—C140.2 (8)
C4—C5—C6—O6179.5 (5)C12—N13—C14—C150.8 (8)
N7—C5—C6—N1178.3 (5)C12—N13—C14—C19178.1 (5)
C4—C5—C6—N10.1 (7)N13—C14—C15—N17176.7 (5)
N1—C6—O6—Na1175.7 (3)C19—C14—C15—N171.1 (6)
C5—C6—O6—Na14.9 (9)N13—C14—C15—C160.4 (8)
N1—C6—O6—Na228.6 (6)C19—C14—C15—C16178.2 (5)
C5—C6—O6—Na2150.7 (5)C12—N11—C16—O16178.0 (5)
O9W—Na1—O6—C660.9 (5)C12—N11—C16—C151.9 (7)
O5W—Na1—O6—C6121.8 (5)N17—C15—C16—O162.5 (10)
O8W—Na1—O6—C623.7 (5)C14—C15—C16—O16178.9 (5)
O2W—Na1—O6—C6146.9 (5)N17—C15—C16—N11177.3 (5)
O9W—Na1—O6—Na298.55 (16)C14—C15—C16—N110.9 (7)
O5W—Na1—O6—Na278.71 (16)N11—C16—O16—Na1ii131.1 (4)
O8W—Na1—O6—Na2176.83 (14)C15—C16—O16—Na1ii49.1 (7)
O2W—Na1—O6—Na212.54 (15)C14—C15—N17—C181.0 (6)
O1W—Na2—O6—C618.4 (9)C16—C15—N17—C18177.7 (6)
O2W—Na2—O6—C6150.9 (4)C15—N17—C18—C190.4 (6)
O3W—Na2—O6—C6121.8 (4)N17—C18—C19—C140.3 (6)
O7B'—Na2—O6—C638.2 (4)N17—C18—C19—C11'178.9 (5)
O4W—Na2—O6—C658.9 (4)N13—C14—C19—C18176.8 (5)
O1W—Na2—O6—Na1145.4 (7)C15—C14—C19—C180.8 (6)
O2W—Na2—O6—Na112.95 (15)N13—C14—C19—C11'4.0 (9)
O3W—Na2—O6—Na174.36 (17)C15—C14—C19—C11'178.4 (5)
O7B'—Na2—O6—Na1157.92 (14)N11'—C11'—C19—C1821.7 (8)
O4W—Na2—O6—Na1104.99 (15)C12'—C11'—C19—C1897.8 (7)
C4—C5—N7—C80.0 (6)N11'—C11'—C19—C14159.3 (5)
C6—C5—N7—C8178.4 (5)C12'—C11'—C19—C1481.2 (7)
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O3iii0.82 (5)2.00 (5)2.815 (5)175 (7)
O1W—H1W2···O120.78 (5)1.99 (5)2.735 (5)160 (8)
O2—H2O···O11W0.841.922.745 (5)168
O2W—H2W1···O10Wiv0.83 (5)2.02 (5)2.849 (6)178 (7)
O3—H3O···O7Bv0.841.872.683 (4)163
O2W—H2W2···O5iii0.83 (5)2.07 (5)2.878 (6)163 (6)
O3W—H3W1···O7Biii0.80 (5)2.08 (5)2.839 (5)159 (5)
O5—H5O···O7B0.841.932.701 (6)152
O3W—H3W2···O7Wiii0.84 (5)1.99 (5)2.785 (6)158 (5)
O4W—H4W1···O6W0.85 (4)1.93 (4)2.748 (7)163 (5)
N7—H7N···O8W0.882.062.833 (6)145
O4W—H4W2···N130.82 (4)2.15 (5)2.952 (6)165 (5)
O5W—H5W1···O4Wvi0.85 (6)2.06 (6)2.821 (6)150 (6)
O5W—H5W2···O12vi0.80 (5)2.24 (6)2.951 (6)148 (6)
O6W—H6W1···O15vii0.84 (5)1.89 (6)2.717 (6)168 (6)
O11W—H11A···O13viii0.82 (5)2.19 (5)2.968 (5)158 (5)
O11W—H11B···O7Av0.84 (6)2.09 (5)2.846 (5)150 (6)
N11—H11N···O7Av0.881.852.729 (6)175
O6W—H6W2···O9W0.82 (6)1.98 (5)2.778 (6)164 (7)
O12—H2O···O3Wv0.841.932.704 (5)153
O7W—H7W1···O7Aviii0.81 (4)1.98 (5)2.773 (5)165 (5)
O13—H3O···O7Av0.841.842.667 (5)166
O7W—H7W2···O20.83 (5)1.86 (5)2.685 (6)170 (7)
O8W—H8W1···O11Wi0.84 (5)1.99 (6)2.795 (6)160 (5)
O15—H5O···O7A0.841.852.650 (6)159
O8W—H8W2···O6Wvi0.81 (4)2.01 (4)2.818 (6)175 (6)
O9W—H9W1···O10Wiv0.84 (5)1.96 (5)2.780 (6)165 (5)
N17—H17N···O5Wii0.882.062.919 (6)166
O9W—H9W2···O7Wiv0.83 (4)2.08 (3)2.861 (7)156 (6)
N1—H1N···O7B0.881.862.733 (6)175
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y1, z; (iii) x, y+1, z+1; (iv) x, y+1, z; (v) x1, y, z; (vi) x+1, y, z; (vii) x, y, z1; (viii) x, y1, z1.

Experimental details

Crystal data
Chemical formula[Na2(C12H13N4O6)2(H2O)7]·4H2O
Mr862.68
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.6620 (15), 10.488 (2), 11.606 (2)
α, β, γ (°)98.24 (3), 91.07 (3), 98.49 (3)
V3)912.1 (3)
Z1
Radiation typeSynchrotron, λ = 0.98000 Å
µ (mm1)0.16
Crystal size (mm)0.08 × 0.06 × 0.01
Data collection
DiffractometerMAR CCD detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2357, 2357, 2330
Rint0.034
θmax (°)25.5
(sin θ/λ)max1)0.439
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.092, 1.07
No. of reflections2357
No. of parameters360
No. of restraints27
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.21
Absolute structureFlack (1983), 1161 Friedel pairs
Absolute structure parameter0.0 (3)

Computer programs: DENZO, (Otwinowski & Minor, 1997), DENZO & SCALEPACK, (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), ORTEP in WinGX (Farrugia, 1997); PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008); PLATON (Spek, 2009) Mercury (Bruno et al., 2002).

Selected geometric parameters (Å, º) top
Na1—O9W2.382 (5)Na2—O1W2.340 (5)
Na1—O5W2.391 (5)Na2—O2W2.419 (5)
Na1—O16i2.396 (4)Na2—O3W2.436 (5)
Na1—O8W2.398 (5)Na2—O62.454 (4)
Na1—O62.426 (4)Na2—O7B'2.513 (4)
Na1—O2W2.504 (5)Na2—O4W2.518 (5)
O16i—Na1—O8W77.40 (15)O2W—Na2—O7B'167.45 (16)
O16i—Na1—O6172.39 (15)O6—Na2—O7B'88.54 (14)
O1W—Na2—O2W106.58 (16)Na2—O2W—Na195.78 (15)
O1W—Na2—O7B'83.68 (16)Na1—O6—Na296.92 (15)
C2—N1—C6—O6179.6 (5)C14'—N11'—C17'—O7B'156.8 (5)
N1'—C1'—C9—C811.0 (7)N11'—C11'—C19—C1821.7 (8)
N1'—C1'—C9—C4167.6 (5)N11'—C11'—C19—C14159.3 (5)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O3'ii0.82 (5)2.00 (5)2.815 (5)175 (7)
O1W—H1W2···O12'0.78 (5)1.99 (5)2.735 (5)160 (8)
O2'—H2'O···O11W0.841.922.745 (5)168
O2W—H2W1···O10Wiii0.83 (5)2.02 (5)2.849 (6)178 (7)
O3'—H3'O···O7'Biv0.841.872.683 (4)163
O2W—H2W2···O5'ii0.83 (5)2.07 (5)2.878 (6)163 (6)
O3W—H3W1···O7'Bii0.80 (5)2.08 (5)2.839 (5)159 (5)
O5'—H5'O···O7'B0.841.932.701 (6)152
O3W—H3W2···O7Wii0.84 (5)1.99 (5)2.785 (6)158 (5)
O4W—H4W1···O6W0.85 (4)1.93 (4)2.748 (7)163 (5)
N7—H7N···O8W0.882.062.833 (6)145
O4W—H4W2···N130.82 (4)2.15 (5)2.952 (6)165 (5)
O5W—H5W1···O4Wv0.85 (6)2.06 (6)2.821 (6)150 (6)
O5W—H5W2···O12'v0.80 (5)2.24 (6)2.951 (6)148 (6)
O6W—H6W1···O15'vi0.84 (5)1.89 (6)2.717 (6)168 (6)
O11W—H11A···O13'vii0.82 (5)2.19 (5)2.968 (5)158 (5)
O11W—H11B···O7'Aiv0.84 (6)2.09 (5)2.846 (5)150 (6)
N11—H11N···O7'Aiv0.881.852.729 (6)175
O6W—H6W2···O9W0.82 (6)1.98 (5)2.778 (6)164 (7)
O12'—H2O'···O3Wiv0.841.932.704 (5)153
O7W—H7W1···O7A'vii0.81 (4)1.98 (5)2.773 (5)165 (5)
O13'—H3O'···O7A'iv0.841.842.667 (5)166
O7W—H7W2···O2'0.83 (5)1.86 (5)2.685 (6)170 (7)
O8W—H8W1···O11Wi0.84 (5)1.99 (6)2.795 (6)160 (5)
O15'—H5O'···O7A'0.841.852.650 (6)159
O8W—H8W2···O6Wv0.81 (4)2.01 (4)2.818 (6)175 (6)
O9W—H9W1···O10Wiii0.84 (5)1.96 (5)2.780 (6)165 (5)
N17—H17N···O5Wviii0.882.062.919 (6)166
O9W—H9W2···O7Wiii0.83 (4)2.08 (3)2.861 (7)156 (6)
N1—H1N···O7B'0.881.862.733 (6)175
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z+1; (iii) x, y+1, z; (iv) x1, y, z; (v) x+1, y, z; (vi) x, y, z1; (vii) x, y1, z1; (viii) x1, y1, z.
Comparison of Immucillin ring conformations top
Angles in degrees
Compoundϕ1ϕ2Intraplanar Anglea4-aza-ribitol ring description
N1'–C1'–C9–C8'C2'–C1'–C9–C4Spek (2009)
Molecule_1 (I)11.0 (7)72.5 (8)70.5 (3)Twist on C2',C3'
Molecule_10 (I)21.7 (8)81.2 (7)77.8 (3)Twist on C2',C3'
Federov et al. (2001)66 (3)129 (2)89.5 (11)Envelope on C2'
(average) Evans et al. (2003)-88 (3)-30 (4)75.3 (11)Twist on C2',C3'
Bound in 2oc4 (Murkin et al., 2007)-45.31761Envelope on C3'
(average) Evans et al. (2010)-88.7 (4)-26.5 (5)66.7 (2)Envelope on C2'
a. Between the mean planes through N1,C2,N3,C4,C5,C6,N7,C8,C9 and C1',C2',C3',C4',N1'
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds