Download citation
Download citation
link to html
Two enantiopure palladium(II) complexes, viz. ­[1,1'-(butane-1,3-diyl)-3,3',4,4'-tetra­methyl-5,5'-diphenyl-2,2'-biphosphole]dichloridopalladium(II) dichloro­methane solvate [system­atic name: dichlorido(1,2,5,10,11-penta­methyl-3,9-diphenyl­perhydro­dicyclo­penta­[a,c][1,4]diphosphepine-[kappa]2P,P')palladium(II) dichloro­methane solvate], [PdCl2(C28H30P2)]·CH2­Cl2, have been synthesized from stereodynamic diphosphines derived from 2,2'-biphosphole through a metal kinetic dynamic resolution. In both structures, the coordination around the metal atom is square planar, with a cis arrangement of the ligands that drastically reduces the dihedral angle between the two phosphole rings compared with the free ligand. The structural determination of both enanti­omers unambiguously establishes the absolute configuration of both central and axial elements of chirality of the 2,2'-biphosphole framework and indicates that the original carbon chirality of the backbone controls the chiralities of the 2,2'-biphosphole framework.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107049347/sq3103sup1.cif
Contains datablocks 4a, 4b, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107049347/sq31034asup2.hkl
Contains datablock 4a

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107049347/sq31034bsup3.hkl
Contains datablock 4b

CCDC references: 677128; 677129

Comment top

Considerable effort has been devoted to the design of new ligands for asymmetric catalysis (Ojima, 2000; Jacobsen et al., 1999; Noyori, 1994). Asymmetric catalysts are generally metal complexes with stereochemically rigid enantiopure ligands. However, stereochemically dynamic ligands can also be controlled into a single enantiomeric conformation on a metal centre and hence this methodology opens a new synthetic approach for the synthesis of enantiopure ligands (Walsh et al., 2003; Mikami, Aikawa, Yusa, Jodry & Yamanaka, 2002). Good results have been obtained with flexible diphosphines such as BIPHEP [Please define] (Mikami et al., 1999, 2004; Mikami, Aikawa, Yusa & Hatano, 2002; Becker et al., 2001), DPPF [Please define] (Mikami & Aikawa, 2002) and NUPHOS [Please define] (Doherty et al., 2005, 2004, 2003).

Recently, we reported the first application of chiral stereochemically dynamic 2,2'-biphosphole (BIPHOS) to asymmetric allylic substitution involving crystallization-induced spontaneous resolution and kinetic stabilization by coordination to a Pd centre (Tissot et al., 2001). The flexibility of 2,2'-biphosphole ligands is reflected in the configurational instability of the axial chirality generated by the 2,2'-biphosphole framework and the central chiralities at the P atoms (Tissot et al., 1996). In a more convenient procedure, we have discovered that dual chirality control can be achieved by introducing a chiral carbon linker between the two P atoms that favours a single enantiomeric form on a metal centre (Ortéga et al., 2003). The strategy used is based on a two-step chirality control process, involving firstly a partial chirality control in order to maintain some degree of freedom, and secondly a total chirality control by diastereoselective coordination on a metal centre (see reaction scheme).

By asymmetric alkylation of a 2,2'-biphospholyl dianion, (2), under highly dilute conditions, using various enantiomerically pure diol ditosylates or mesylates, an equilibrium mixture of diastereoisomeric diphosphines was obtained (Robé et al., 2005). The reaction of this equilibrium mixture with transition metals such as Pd, Pt and Rh resulted in dynamic resolution leading to diastereo- and enantiopure complexes. These enantiomeric Pd, Pt and Rh complexes can be used in asymmetric allylic alkylation (Robé et al., 2005), hydroformylation (Robé, Hegedüs, Bakos, Coppel et al., 2007) and hydrogenation (Robé, Hegedüs, Bakos, Daran & Gouygou, 2007), respectively.

We report here the structural characterization of two enantiomerically pure palladium complexes, (4), containing a diphosphine, (3), derived from 2,2'-biphosphole (see reaction scheme). Complexes (4a) and (4b) were obtained from diphosphines (3a) and (3b), respectively, which differ in the chirality of atom C1 within the backbone linking the two P atoms.

The unit cell and space group for (4a) and (4b) are identical, which agrees with the occurrence of the formation of two enantiomers. In both structures, the coordination around the metal is square-planar, with a cis arrangement of the ligands (Figs. 2 and 3). The refinement of the Flack parameter (Flack, 1983) clearly indicates that they are both enantiomerically pure in the solid state and that the absolute configuration is S[sp,Rp Rc] (axial chirality [phosphorus chirality, carbon chirality]) for (4a) and R[Rp,sp Sc] for (4b).

It is interesting to note that the ligand adopts a single configuration in these palladium complexes in which the two P atoms have opposite configurations, [sp,Rp] or [Rp,sp]. The coordination to Pd locks both the central and axial chirality of 2,2'-biphosphole, leading to drastically reduced P1—C11—C21—P2 torsion angles in complexes (4a) and (4b) compared with the BIPHOS ligand (Tissot et al., 1996) (Table 1).

These results prove unambiguously the influence of the chirality of the carbon backbone on the axial and central configuration of the 2,2'-biphosphole skeleton in complexes (4a) and (4b), as the (R) configuration provides the S[sp,Rp] configuration of (4a), whereas the (S) configuration leads to the R[Rp,sp] configuration of (4b).

The geometry of the chelating PdCl2P2(C2)(C3) framework is obviously identical within experimental error for (4a) and (4b) and closely related to the reported PdCl2(BIPHOS) complex (Ortéga et al., 2003) containing a symmetrical chiral backbone (Table 1). This framework may be described in terms of the arrangement of the P1/C11/C21/P2, P1/C1/C2/P2 and P1/P2/Pd1/Cl1/Cl2 planes around the P1—P2 axes. The dihedral angles between these different planes are roughly identical in the three complexes (Table 1).

Related literature top

For related literature, see: Becker et al. (2001); Doherty et al. (2003, 2004, 2005); Flack (1983); Jacobsen et al. (1999); Mikami & Aikawa (2002); Mikami et al. (1999, 2004); Mikami, Aikawa, Yusa & Hatano (2002); Mikami, Aikawa, Yusa, Jodry & Yamanaka (2002); Noyori (1994); Ojima (2000); Ortéga et al. (2003); Robé et al. (2005); Robé, Hegedüs, Bakos, Coppel, Daran & Gouygou (2007); Robé, Hegedüs, Bakos, Daran & Gouygou (2007); Tissot et al. (1996, 2001); Walsh et al. (2003).

Experimental top

Complexes (4a) and (4b) were synthesized according to a reported procedure (Robé et al., 2005) (see reaction scheme). Crystals suitable for X-ray analyses were obtained by slow evaporation of a CH2Cl2 solution. The enantiomers were separated by what means?

Refinement top

All H atoms were positioned geometrically and treated as riding, with C—H = 0.93 (aromatic), 0.96 (methyl) or 0.97 Å (methylene) and with Uiso(H) = 1.2Ueq(Caromatic or Cmethylene) or 1.5Ueq(Cmethyl). Owing to the relatively poor quality of the data for (4b), the thermal displacement parameters for the C atoms were restrained using EADP constraints.

Computing details top

For both compounds, data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A molecular view of compound (4a), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A molecular view of compound (4b), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.
(4a) dichlorido(1,2,5,10,11-pentamethyl-3,9- diphenylperhydrodicyclopenta[a,c][1,4]diphosphepine-κ2P,P')palladium(II) dichloromethane solvate top
Crystal data top
[PdCl2(C28H30P2)]·CH2Cl2F(000) = 700
Mr = 690.69Dx = 1.551 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 4995 reflections
a = 8.9333 (4) Åθ = 2.7–32.2°
b = 12.1598 (4) ŵ = 1.12 mm1
c = 14.0088 (6) ÅT = 180 K
β = 103.678 (4)°Needle, red
V = 1478.58 (10) Å30.47 × 0.14 × 0.11 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur
diffractometer
4911 independent reflections
Radiation source: fine-focus sealed tube4022 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 8.2632 pixels mm-1θmax = 26.4°, θmin = 2.5°
ω and ϕ scansh = 1011
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006) (empirical (using intensity measurements) absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm)
k = 1513
Tmin = 0.597, Tmax = 0.885l = 1717
10919 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.143 w = 1/[σ2(Fo2) + (0.0885P)2 + 0.9712P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
4911 reflectionsΔρmax = 2.05 e Å3
330 parametersΔρmin = 1.08 e Å3
1 restraintAbsolute structure: Flack (1983), with how many Friedel pairs?
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (5)
Crystal data top
[PdCl2(C28H30P2)]·CH2Cl2V = 1478.58 (10) Å3
Mr = 690.69Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.9333 (4) ŵ = 1.12 mm1
b = 12.1598 (4) ÅT = 180 K
c = 14.0088 (6) Å0.47 × 0.14 × 0.11 mm
β = 103.678 (4)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
4911 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006) (empirical (using intensity measurements) absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm)
4022 reflections with I > 2σ(I)
Tmin = 0.597, Tmax = 0.885Rint = 0.045
10919 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.143Δρmax = 2.05 e Å3
S = 1.09Δρmin = 1.08 e Å3
4911 reflectionsAbsolute structure: Flack (1983), with how many Friedel pairs?
330 parametersAbsolute structure parameter: 0.03 (5)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.87403 (5)0.38163 (5)0.51128 (4)0.02459 (16)
Cl10.8725 (2)0.34940 (16)0.67610 (13)0.0347 (5)
Cl20.60521 (18)0.3908 (2)0.46057 (13)0.0332 (4)
P10.9006 (2)0.41117 (15)0.35820 (14)0.0252 (4)
P21.13145 (18)0.37192 (19)0.53132 (12)0.0231 (4)
C10.9946 (9)0.5450 (6)0.3508 (6)0.0294 (17)
H10.91020.59920.32600.035*
C21.2052 (10)0.5091 (7)0.5104 (6)0.0336 (18)
H2A1.25410.54250.57470.040*
H2B1.28560.50090.47290.040*
C31.0820 (10)0.5855 (7)0.4553 (7)0.0389 (19)
H3A1.12990.65760.44830.047*
H3B1.00570.59720.49530.047*
C41.0915 (12)0.5441 (8)0.2793 (7)0.050 (2)
H4A1.12280.61950.26860.074*
H4B1.03290.51330.21700.074*
H4C1.18320.49910.30460.074*
C111.0268 (9)0.2997 (6)0.3454 (6)0.0316 (17)
C120.9536 (9)0.2370 (6)0.2676 (6)0.0316 (17)
C130.8090 (9)0.2846 (6)0.2101 (6)0.0306 (17)
C140.7613 (7)0.3780 (9)0.2467 (5)0.0301 (14)
C211.1556 (9)0.2870 (5)0.4305 (5)0.0260 (16)
C221.2838 (9)0.2242 (6)0.4581 (5)0.0256 (15)
C231.3593 (8)0.2392 (6)0.5631 (6)0.0274 (16)
C241.2915 (8)0.3090 (6)0.6160 (6)0.0262 (16)
C1210.9998 (10)0.1230 (7)0.2450 (7)0.045 (2)
H12A1.06100.12670.19550.067*
H12B0.90730.07870.21960.067*
H12C1.06130.08910.30500.067*
C1310.7221 (11)0.2288 (8)0.1191 (6)0.045 (2)
H13A0.66680.16530.13690.068*
H13B0.79420.20400.08070.068*
H13C0.64810.28050.08000.068*
C1410.6186 (9)0.4411 (7)0.2048 (6)0.0335 (18)
C1420.4786 (9)0.3899 (10)0.1943 (5)0.0423 (19)
H1420.47420.31690.21750.051*
C1430.3423 (11)0.4447 (10)0.1497 (7)0.050 (2)
H1430.24550.40910.14190.060*
C1440.3504 (12)0.5507 (9)0.1173 (7)0.054 (3)
H1440.25850.58800.08590.065*
C1450.4884 (11)0.6030 (8)0.1295 (7)0.049 (2)
H1450.49150.67690.10830.059*
C1460.6258 (11)0.5487 (8)0.1732 (7)0.046 (2)
H1460.72220.58490.18100.055*
C2211.3547 (10)0.1522 (7)0.3957 (6)0.0375 (19)
H22A1.33390.07510.40830.056*
H22B1.46620.16460.41110.056*
H22C1.31080.16930.32630.056*
C2311.5047 (9)0.1766 (6)0.6072 (6)0.0316 (17)
H23A1.53260.18800.67850.047*
H23B1.58830.20300.57880.047*
H23C1.48780.09800.59310.047*
C2411.3557 (9)0.3545 (6)0.7140 (5)0.0292 (17)
C2421.2795 (9)0.3535 (7)0.7883 (6)0.039 (2)
H2421.17940.32220.77660.046*
C2431.3447 (10)0.3968 (10)0.8794 (6)0.049 (2)
H2431.29290.39220.93130.059*
C2441.4871 (12)0.4472 (8)0.8940 (7)0.048 (2)
H2441.53140.47940.95600.057*
C2451.5649 (10)0.4519 (8)0.8222 (6)0.041 (2)
H2451.66190.48790.83340.049*
C2461.5016 (9)0.4035 (7)0.7319 (6)0.035 (2)
H2461.55750.40370.68200.042*
C2000.9295 (14)0.3315 (10)0.0757 (8)0.063 (3)
H20A0.95630.35940.13590.076*
H20B0.82290.30280.09470.076*
Cl210.9349 (4)0.4392 (3)0.0044 (2)0.0767 (9)
Cl221.0525 (4)0.2239 (3)0.0292 (3)0.0729 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0288 (3)0.0148 (2)0.0295 (3)0.0004 (2)0.00544 (17)0.0008 (3)
Cl10.0410 (10)0.0335 (12)0.0295 (9)0.0030 (7)0.0083 (7)0.0004 (7)
Cl20.0267 (8)0.0294 (11)0.0429 (9)0.0004 (9)0.0068 (6)0.0000 (11)
P10.0301 (10)0.0190 (11)0.0262 (9)0.0019 (7)0.0062 (7)0.0006 (7)
P20.0250 (8)0.0155 (9)0.0285 (8)0.0003 (9)0.0055 (6)0.0004 (9)
C10.038 (4)0.015 (4)0.033 (4)0.002 (3)0.003 (3)0.000 (3)
C20.043 (5)0.019 (4)0.034 (4)0.004 (3)0.000 (4)0.002 (3)
C30.054 (5)0.015 (4)0.047 (5)0.003 (3)0.012 (4)0.001 (4)
C40.071 (7)0.030 (5)0.045 (5)0.003 (4)0.009 (5)0.007 (4)
C110.043 (4)0.013 (3)0.037 (4)0.004 (3)0.003 (3)0.005 (3)
C120.043 (4)0.014 (4)0.037 (4)0.000 (3)0.007 (3)0.002 (3)
C130.032 (4)0.023 (4)0.035 (4)0.002 (3)0.004 (3)0.004 (3)
C140.034 (3)0.025 (3)0.032 (3)0.001 (4)0.010 (3)0.006 (4)
C210.042 (4)0.005 (3)0.030 (4)0.004 (3)0.006 (3)0.000 (3)
C220.035 (4)0.014 (3)0.029 (4)0.000 (3)0.009 (3)0.000 (3)
C230.031 (4)0.010 (3)0.044 (4)0.006 (3)0.013 (3)0.004 (3)
C240.022 (4)0.015 (3)0.036 (4)0.002 (3)0.003 (3)0.008 (3)
C1210.049 (5)0.020 (4)0.057 (6)0.005 (4)0.004 (4)0.012 (4)
C1310.055 (5)0.037 (5)0.035 (5)0.004 (4)0.006 (4)0.011 (4)
C1410.043 (5)0.030 (5)0.024 (4)0.004 (3)0.001 (3)0.003 (3)
C1420.047 (4)0.044 (5)0.033 (4)0.000 (5)0.004 (3)0.014 (5)
C1430.045 (5)0.061 (7)0.039 (5)0.005 (5)0.000 (4)0.004 (5)
C1440.061 (6)0.051 (6)0.040 (5)0.026 (5)0.010 (4)0.005 (5)
C1450.062 (6)0.034 (5)0.042 (6)0.016 (4)0.007 (4)0.003 (4)
C1460.057 (6)0.034 (5)0.038 (5)0.008 (4)0.004 (4)0.001 (4)
C2210.047 (5)0.029 (5)0.038 (5)0.011 (4)0.012 (4)0.003 (4)
C2310.035 (4)0.019 (4)0.040 (5)0.004 (3)0.009 (3)0.003 (3)
C2410.034 (4)0.020 (4)0.029 (4)0.004 (3)0.002 (3)0.001 (3)
C2420.037 (4)0.046 (6)0.031 (4)0.003 (3)0.005 (3)0.005 (4)
C2430.053 (5)0.058 (7)0.037 (4)0.014 (5)0.012 (4)0.003 (5)
C2440.059 (6)0.044 (6)0.033 (5)0.006 (4)0.005 (4)0.010 (4)
C2450.035 (5)0.039 (5)0.043 (5)0.005 (4)0.001 (4)0.003 (4)
C2460.041 (4)0.032 (6)0.029 (4)0.001 (3)0.003 (3)0.001 (3)
C2000.087 (8)0.057 (7)0.049 (6)0.010 (6)0.020 (6)0.006 (5)
Cl210.087 (2)0.0577 (18)0.0673 (19)0.0085 (15)0.0192 (15)0.0221 (14)
Cl220.084 (2)0.0469 (17)0.088 (2)0.0038 (14)0.0210 (16)0.0042 (15)
Geometric parameters (Å, º) top
Pd1—P12.2415 (19)C121—H12C0.9800
Pd1—P22.2529 (16)C131—H13A0.9800
Pd1—Cl22.3404 (16)C131—H13B0.9800
Pd1—Cl12.3452 (18)C131—H13C0.9800
P1—C141.797 (7)C141—C1421.374 (12)
P1—C111.799 (8)C141—C1461.388 (13)
P1—C11.845 (8)C142—C1431.398 (13)
P2—C241.798 (7)C142—H1420.9500
P2—C211.803 (8)C143—C1441.374 (16)
P2—C21.842 (8)C143—H1430.9500
C1—C41.470 (12)C144—C1451.361 (15)
C1—C31.568 (12)C144—H1440.9500
C1—H11.0000C145—C1461.401 (12)
C2—C31.506 (12)C145—H1450.9500
C2—H2A0.9900C146—H1460.9500
C2—H2B0.9900C221—H22A0.9800
C3—H3A0.9900C221—H22B0.9800
C3—H3B0.9900C221—H22C0.9800
C4—H4A0.9800C231—H23A0.9800
C4—H4B0.9800C231—H23B0.9800
C4—H4C0.9800C231—H23C0.9800
C11—C121.364 (11)C241—C2421.371 (12)
C11—C211.456 (10)C241—C2461.401 (11)
C12—C131.469 (11)C242—C2431.377 (12)
C12—C1211.501 (11)C242—H2420.9500
C13—C141.355 (12)C243—C2441.383 (14)
C13—C1311.490 (11)C243—H2430.9500
C14—C1411.485 (11)C244—C2451.352 (14)
C21—C221.355 (11)C244—H2440.9500
C22—C231.477 (11)C245—C2461.389 (11)
C22—C2211.481 (10)C245—H2450.9500
C23—C241.360 (11)C246—H2460.9500
C23—C2311.507 (10)C200—Cl211.718 (12)
C24—C2411.465 (10)C200—Cl221.733 (12)
C121—H12A0.9800C200—H20A0.9900
C121—H12B0.9800C200—H20B0.9900
P1—Pd1—P277.99 (7)C12—C121—H12A109.5
P1—Pd1—Cl292.01 (7)C12—C121—H12B109.5
P2—Pd1—Cl2169.80 (6)H12A—C121—H12B109.5
P1—Pd1—Cl1174.41 (7)C12—C121—H12C109.5
P2—Pd1—Cl196.43 (7)H12A—C121—H12C109.5
Cl2—Pd1—Cl193.58 (7)H12B—C121—H12C109.5
C14—P1—C1193.8 (4)C13—C131—H13A109.5
C14—P1—C1112.3 (4)C13—C131—H13B109.5
C11—P1—C1110.7 (4)H13A—C131—H13B109.5
C14—P1—Pd1126.0 (3)C13—C131—H13C109.5
C11—P1—Pd1100.7 (3)H13A—C131—H13C109.5
C1—P1—Pd1110.4 (3)H13B—C131—H13C109.5
C24—P2—C2192.8 (4)C142—C141—C146120.2 (8)
C24—P2—C2103.4 (4)C142—C141—C14118.9 (9)
C21—P2—C2106.3 (4)C146—C141—C14120.8 (8)
C24—P2—Pd1137.1 (3)C141—C142—C143120.4 (10)
C21—P2—Pd1103.9 (3)C141—C142—H142119.8
C2—P2—Pd1109.0 (3)C143—C142—H142119.8
C4—C1—C3113.3 (7)C144—C143—C142119.1 (10)
C4—C1—P1112.4 (6)C144—C143—H143120.5
C3—C1—P1110.9 (5)C142—C143—H143120.5
C4—C1—H1106.6C145—C144—C143120.9 (9)
C3—C1—H1106.6C145—C144—H144119.6
P1—C1—H1106.6C143—C144—H144119.6
C3—C2—P2113.2 (6)C144—C145—C146120.6 (10)
C3—C2—H2A108.9C144—C145—H145119.7
P2—C2—H2A108.9C146—C145—H145119.7
C3—C2—H2B108.9C141—C146—C145118.8 (9)
P2—C2—H2B108.9C141—C146—H146120.6
H2A—C2—H2B107.7C145—C146—H146120.6
C2—C3—C1115.3 (7)C22—C221—H22A109.5
C2—C3—H3A108.5C22—C221—H22B109.5
C1—C3—H3A108.5H22A—C221—H22B109.5
C2—C3—H3B108.5C22—C221—H22C109.5
C1—C3—H3B108.5H22A—C221—H22C109.5
H3A—C3—H3B107.5H22B—C221—H22C109.5
C1—C4—H4A109.5C23—C231—H23A109.5
C1—C4—H4B109.5C23—C231—H23B109.5
H4A—C4—H4B109.5H23A—C231—H23B109.5
C1—C4—H4C109.5C23—C231—H23C109.5
H4A—C4—H4C109.5H23A—C231—H23C109.5
H4B—C4—H4C109.5H23B—C231—H23C109.5
C12—C11—C21137.0 (7)C242—C241—C246118.4 (7)
C12—C11—P1107.9 (6)C242—C241—C24123.6 (7)
C21—C11—P1113.0 (6)C246—C241—C24118.0 (7)
C11—C12—C13114.2 (7)C241—C242—C243121.6 (8)
C11—C12—C121125.5 (7)C241—C242—H242119.2
C13—C12—C121119.9 (7)C243—C242—H242119.2
C14—C13—C12115.9 (7)C242—C243—C244118.6 (8)
C14—C13—C131123.9 (7)C242—C243—H243120.7
C12—C13—C131120.1 (7)C244—C243—H243120.7
C13—C14—C141126.9 (7)C245—C244—C243121.7 (8)
C13—C14—P1107.6 (6)C245—C244—H244119.1
C141—C14—P1125.5 (7)C243—C244—H244119.1
C22—C21—C11138.1 (7)C244—C245—C246119.3 (8)
C22—C21—P2110.4 (5)C244—C245—H245120.3
C11—C21—P2111.3 (6)C246—C245—H245120.3
C21—C22—C23111.7 (6)C245—C246—C241120.2 (8)
C21—C22—C221128.0 (7)C245—C246—H246119.9
C23—C22—C221120.2 (6)C241—C246—H246119.9
C24—C23—C22117.6 (6)Cl21—C200—Cl22114.4 (6)
C24—C23—C231122.9 (7)Cl21—C200—H20A108.7
C22—C23—C231119.5 (6)Cl22—C200—H20A108.7
C23—C24—C241128.3 (7)Cl21—C200—H20B108.7
C23—C24—P2107.0 (6)Cl22—C200—H20B108.7
C241—C24—P2122.1 (5)H20A—C200—H20B107.6
C12—C11—C21—C2223.0 (18)P1—C11—C21—P29.8 (7)
(4b) dichlorido(1,2,5,10,11-pentamethyl-3,9- diphenylperhydrodicyclopenta[a,c][1,4]diphosphepine-κ2P,P')palladium(II) dichloromethane solvate top
Crystal data top
[PdCl2(C28H30P2)]·CH2Cl2F(000) = 700
Mr = 690.69Dx = 1.552 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1192 reflections
a = 8.963 (3) Åθ = 2.9–32.0°
b = 12.139 (5) ŵ = 1.12 mm1
c = 13.989 (6) ÅT = 180 K
β = 103.87 (3)°Box, red
V = 1477.6 (10) Å30.38 × 0.24 × 0.21 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur
diffractometer
4033 independent reflections
Radiation source: fine-focus sealed tube1900 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
Detector resolution: 8.2632 pixels mm-1θmax = 25.0°, θmin = 2.9°
ω and ϕ scansh = 710
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006) (empirical (using intensity measurements) absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm)
k = 1414
Tmin = 0.688, Tmax = 0.791l = 1516
5431 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.080H-atom parameters constrained
wR(F2) = 0.226 w = 1/[σ2(Fo2) + (0.0951P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max = 0.003
4033 reflectionsΔρmax = 1.66 e Å3
168 parametersΔρmin = 1.30 e Å3
13 restraintsAbsolute structure: Flack (1983), with how many Friedel pairs?
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (11)
Crystal data top
[PdCl2(C28H30P2)]·CH2Cl2V = 1477.6 (10) Å3
Mr = 690.69Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.963 (3) ŵ = 1.12 mm1
b = 12.139 (5) ÅT = 180 K
c = 13.989 (6) Å0.38 × 0.24 × 0.21 mm
β = 103.87 (3)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
4033 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006) (empirical (using intensity measurements) absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm)
1900 reflections with I > 2σ(I)
Tmin = 0.688, Tmax = 0.791Rint = 0.079
5431 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.080H-atom parameters constrained
wR(F2) = 0.226Δρmax = 1.66 e Å3
S = 0.97Δρmin = 1.30 e Å3
4033 reflectionsAbsolute structure: Flack (1983), with how many Friedel pairs?
168 parametersAbsolute structure parameter: 0.02 (11)
13 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.12540 (17)0.30787 (17)0.51225 (9)0.0231 (4)
Cl10.1251 (6)0.3397 (4)0.6772 (3)0.0351 (17)
Cl20.3941 (5)0.2977 (6)0.4621 (3)0.0278 (13)
P10.0991 (6)0.2789 (4)0.3590 (3)0.0254 (16)
P20.1327 (5)0.3167 (6)0.5329 (3)0.0218 (12)
C10.013 (2)0.1429 (17)0.3471 (13)0.0326 (14)
H10.09610.08980.32390.039*
C20.215 (2)0.1778 (17)0.5139 (13)0.0326 (14)
H2A0.29290.18660.47690.039*
H2B0.26360.14590.57740.039*
C30.091 (2)0.1015 (17)0.4593 (13)0.0326 (14)
H3A0.02060.08800.50070.039*
H3B0.13910.03160.45090.039*
C40.090 (2)0.1430 (17)0.2757 (13)0.0326 (14)
H4A0.19470.15570.31100.049*
H4B0.05840.20030.22780.049*
H4C0.08320.07300.24290.049*
C110.025 (2)0.3926 (17)0.3450 (13)0.0326 (14)
C120.047 (2)0.4488 (17)0.2694 (13)0.0326 (14)
C130.181 (2)0.4055 (17)0.2132 (13)0.0326 (14)
C140.241 (2)0.303 (2)0.2444 (11)0.0326 (14)
C210.151 (2)0.4048 (17)0.4329 (13)0.0326 (14)
C220.290 (2)0.4661 (17)0.4613 (13)0.0326 (14)
C230.368 (2)0.4502 (17)0.5656 (13)0.0326 (14)
C240.303 (2)0.3778 (18)0.6180 (13)0.0326 (14)
C1210.012 (2)0.5602 (16)0.2397 (13)0.0326 (14)
H12A0.09930.60730.23710.049*
H12B0.00960.55720.17580.049*
H12C0.07530.58890.28660.049*
C1310.278 (2)0.4694 (17)0.1215 (12)0.0326 (14)
H13A0.30110.54180.14120.049*
H13B0.37130.43030.09460.049*
H13C0.21900.47520.07250.049*
C1410.372 (2)0.2452 (13)0.2074 (13)0.0326 (14)
C1420.366 (2)0.1363 (13)0.1756 (12)0.0326 (14)
H1420.27360.09820.18250.039*
C1430.5108 (18)0.0886 (17)0.1321 (13)0.0414 (17)
H1430.50790.01590.11170.050*
C1440.659 (2)0.1357 (14)0.1153 (14)0.0414 (17)
H1440.74880.09920.08370.050*
C1450.656 (2)0.2430 (14)0.1514 (13)0.0414 (17)
H1450.74860.28020.14660.050*
C1460.5162 (17)0.2963 (19)0.1952 (11)0.0414 (17)
H1460.51960.36850.21700.050*
C2210.365 (2)0.5386 (19)0.4006 (13)0.0414 (17)
H22A0.31800.52710.33210.062*
H22B0.47230.52110.41340.062*
H22C0.35280.61430.41730.062*
C2310.496 (2)0.5056 (19)0.6045 (13)0.0414 (17)
H23A0.52320.49470.67450.062*
H23B0.47920.58260.59040.062*
H23C0.57760.47960.57680.062*
C2410.354 (2)0.3347 (18)0.7130 (12)0.0414 (17)
C2420.273 (2)0.3307 (18)0.7864 (10)0.0414 (17)
H2420.17390.35930.77310.050*
C2430.334 (2)0.2856 (17)0.8788 (11)0.0414 (17)
H2430.27960.28250.92740.050*
C2440.482 (2)0.2459 (18)0.8932 (13)0.0414 (17)
H2440.53010.22040.95570.050*
C2450.565 (2)0.2412 (17)0.8205 (10)0.0414 (17)
H2450.66030.20720.83230.050*
C2460.499 (2)0.2893 (17)0.7295 (11)0.0414 (17)
H2460.55250.29080.68030.050*
C1000.041 (3)0.3599 (19)0.0763 (14)0.0414 (17)
H10A0.01070.32900.12390.050*
H10B0.14200.38340.11230.050*
Cl30.0634 (10)0.2539 (7)0.0054 (5)0.095 (3)
Cl40.0524 (9)0.4657 (7)0.0290 (6)0.085 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0243 (9)0.0167 (8)0.0300 (7)0.0006 (10)0.0095 (5)0.0001 (9)
Cl10.038 (4)0.042 (5)0.028 (3)0.013 (3)0.014 (2)0.003 (2)
Cl20.022 (3)0.026 (3)0.037 (3)0.001 (3)0.010 (2)0.003 (3)
P10.024 (3)0.026 (5)0.025 (3)0.003 (3)0.005 (2)0.003 (2)
P20.021 (3)0.014 (3)0.027 (2)0.009 (3)0.0001 (19)0.008 (3)
C10.040 (4)0.027 (3)0.027 (3)0.002 (3)0.002 (2)0.001 (2)
C20.040 (4)0.027 (3)0.027 (3)0.002 (3)0.002 (2)0.001 (2)
C30.040 (4)0.027 (3)0.027 (3)0.002 (3)0.002 (2)0.001 (2)
C40.040 (4)0.027 (3)0.027 (3)0.002 (3)0.002 (2)0.001 (2)
C110.040 (4)0.027 (3)0.027 (3)0.002 (3)0.002 (2)0.001 (2)
C120.040 (4)0.027 (3)0.027 (3)0.002 (3)0.002 (2)0.001 (2)
C130.040 (4)0.027 (3)0.027 (3)0.002 (3)0.002 (2)0.001 (2)
C140.040 (4)0.027 (3)0.027 (3)0.002 (3)0.002 (2)0.001 (2)
C210.040 (4)0.027 (3)0.027 (3)0.002 (3)0.002 (2)0.001 (2)
C220.040 (4)0.027 (3)0.027 (3)0.002 (3)0.002 (2)0.001 (2)
C230.040 (4)0.027 (3)0.027 (3)0.002 (3)0.002 (2)0.001 (2)
C240.040 (4)0.027 (3)0.027 (3)0.002 (3)0.002 (2)0.001 (2)
C1210.040 (4)0.027 (3)0.027 (3)0.002 (3)0.002 (2)0.001 (2)
C1310.040 (4)0.027 (3)0.027 (3)0.002 (3)0.002 (2)0.001 (2)
C1410.040 (4)0.027 (3)0.027 (3)0.002 (3)0.002 (2)0.001 (2)
C1420.040 (4)0.027 (3)0.027 (3)0.002 (3)0.002 (2)0.001 (2)
C1430.045 (4)0.048 (4)0.031 (3)0.003 (3)0.008 (3)0.007 (3)
C1440.045 (4)0.048 (4)0.031 (3)0.003 (3)0.008 (3)0.007 (3)
C1450.045 (4)0.048 (4)0.031 (3)0.003 (3)0.008 (3)0.007 (3)
C1460.045 (4)0.048 (4)0.031 (3)0.003 (3)0.008 (3)0.007 (3)
C2210.045 (4)0.048 (4)0.031 (3)0.003 (3)0.008 (3)0.007 (3)
C2310.045 (4)0.048 (4)0.031 (3)0.003 (3)0.008 (3)0.007 (3)
C2410.045 (4)0.048 (4)0.031 (3)0.003 (3)0.008 (3)0.007 (3)
C2420.045 (4)0.048 (4)0.031 (3)0.003 (3)0.008 (3)0.007 (3)
C2430.045 (4)0.048 (4)0.031 (3)0.003 (3)0.008 (3)0.007 (3)
C2440.045 (4)0.048 (4)0.031 (3)0.003 (3)0.008 (3)0.007 (3)
C2450.045 (4)0.048 (4)0.031 (3)0.003 (3)0.008 (3)0.007 (3)
C2460.045 (4)0.048 (4)0.031 (3)0.003 (3)0.008 (3)0.007 (3)
C1000.045 (4)0.048 (4)0.031 (3)0.003 (3)0.008 (3)0.007 (3)
Cl30.111 (7)0.075 (6)0.080 (5)0.010 (5)0.017 (5)0.026 (4)
Cl40.080 (7)0.066 (6)0.107 (6)0.006 (5)0.015 (5)0.008 (4)
Geometric parameters (Å, º) top
Pd1—P12.239 (5)C121—H12C0.9600
Pd1—P22.264 (5)C131—H13A0.9600
Pd1—Cl12.339 (5)C131—H13B0.9600
Pd1—Cl22.345 (5)C131—H13C0.9600
P1—C141.814 (16)C141—C1421.401 (10)
P1—C111.82 (2)C141—C1461.406 (10)
P1—C11.85 (2)C142—C1431.421 (9)
P2—C211.80 (2)C142—H1420.9300
P2—C241.85 (2)C143—C1441.415 (10)
P2—C21.89 (2)C143—H1430.9300
C1—C41.52 (3)C144—C1451.395 (10)
C1—C31.70 (3)C144—H1440.9300
C1—H10.9800C145—C1461.417 (10)
C2—C31.51 (3)C145—H1450.9300
C2—H2A0.9700C146—H1460.9300
C2—H2B0.9700C221—H22A0.9600
C3—H3A0.9700C221—H22B0.9600
C3—H3B0.9700C221—H22C0.9600
C4—H4A0.9600C231—H23A0.9600
C4—H4B0.9600C231—H23B0.9600
C4—H4C0.9600C231—H23C0.9600
C11—C121.29 (2)C241—C2461.381 (9)
C11—C211.46 (2)C241—C2421.391 (9)
C12—C131.38 (3)C242—C2431.389 (9)
C12—C1211.47 (3)C242—H2420.9300
C13—C141.46 (3)C243—C2441.378 (9)
C13—C1311.57 (2)C243—H2430.9300
C14—C1411.36 (3)C244—C2451.395 (10)
C21—C221.42 (3)C244—H2440.9300
C22—C231.47 (3)C245—C2461.396 (9)
C22—C2211.49 (3)C245—H2450.9300
C23—C2311.32 (3)C246—H2460.9300
C23—C241.37 (3)C100—Cl41.59 (2)
C24—C2411.40 (2)C100—Cl31.77 (2)
C121—H12A0.9600C100—H10A0.9700
C121—H12B0.9600C100—H10B0.9700
P1—Pd1—P277.94 (19)C12—C121—H12A109.5
P1—Pd1—Cl1174.0 (2)C12—C121—H12B109.5
P2—Pd1—Cl196.11 (18)H12A—C121—H12B109.5
P1—Pd1—Cl292.39 (18)C12—C121—H12C109.5
P2—Pd1—Cl2170.24 (17)H12A—C121—H12C109.5
Cl1—Pd1—Cl293.56 (17)H12B—C121—H12C109.5
C14—P1—C1195.7 (10)C13—C131—H13A109.5
C14—P1—C1106.5 (10)C13—C131—H13B109.5
C11—P1—C1112.9 (10)H13A—C131—H13B109.5
C14—P1—Pd1127.5 (7)C13—C131—H13C109.5
C11—P1—Pd1101.1 (6)H13A—C131—H13C109.5
C1—P1—Pd1111.6 (6)H13B—C131—H13C109.5
C21—P2—C2492.7 (9)C14—C141—C142120.6 (17)
C21—P2—C2108.1 (9)C14—C141—C146120.3 (17)
C24—P2—C299.1 (9)C142—C141—C146119.0 (19)
C21—P2—Pd1102.1 (7)C141—C142—C143114.6 (18)
C24—P2—Pd1139.5 (7)C141—C142—H142122.7
C2—P2—Pd1111.2 (7)C143—C142—H142122.7
C4—C1—C3108.7 (17)C144—C143—C142129 (2)
C4—C1—P1113.2 (14)C144—C143—H143115.3
C3—C1—P1109.3 (13)C142—C143—H143115.3
C4—C1—H1108.5C145—C144—C143112 (2)
C3—C1—H1108.5C145—C144—H144123.8
P1—C1—H1108.5C143—C144—H144123.8
C3—C2—P2110.9 (15)C144—C145—C146121 (2)
C3—C2—H2A109.5C144—C145—H145119.3
P2—C2—H2A109.5C146—C145—H145119.3
C3—C2—H2B109.5C141—C146—C145123 (2)
P2—C2—H2B109.5C141—C146—H146118.5
H2A—C2—H2B108.0C145—C146—H146118.5
C2—C3—C1117.5 (16)C22—C221—H22A109.5
C2—C3—H3A107.9C22—C221—H22B109.5
C1—C3—H3A107.9H22A—C221—H22B109.5
C2—C3—H3B107.9C22—C221—H22C109.5
C1—C3—H3B107.9H22A—C221—H22C109.5
H3A—C3—H3B107.2H22B—C221—H22C109.5
C1—C4—H4A109.5C23—C231—H23A109.5
C1—C4—H4B109.5C23—C231—H23B109.5
H4A—C4—H4B109.5H23A—C231—H23B109.5
C1—C4—H4C109.5C23—C231—H23C109.5
H4A—C4—H4C109.5H23A—C231—H23C109.5
H4B—C4—H4C109.5H23B—C231—H23C109.5
C12—C11—C21140 (2)C246—C241—C242119.9 (17)
C12—C11—P1106.7 (16)C246—C241—C24112.7 (14)
C21—C11—P1110.8 (14)C242—C241—C24127.3 (17)
C11—C12—C13118 (2)C243—C242—C241122.7 (17)
C11—C12—C121128.1 (19)C243—C242—H242118.6
C13—C12—C121113.9 (17)C241—C242—H242118.6
C12—C13—C14119.1 (17)C244—C243—C242115.2 (17)
C12—C13—C131120.9 (18)C244—C243—H243122.4
C14—C13—C131119.9 (17)C242—C243—H243122.4
C141—C14—C13132.0 (17)C243—C244—C245124.5 (18)
C141—C14—P1127.6 (17)C243—C244—H244117.7
C13—C14—P1100.1 (13)C245—C244—H244117.7
C22—C21—C11137.2 (19)C244—C245—C246117.8 (18)
C22—C21—P2109.3 (13)C244—C245—H245121.1
C11—C21—P2113.5 (16)C246—C245—H245121.1
C21—C22—C23112.9 (17)C241—C246—C245119.6 (17)
C21—C22—C221129.4 (17)C241—C246—H246120.2
C23—C22—C221117.8 (18)C245—C246—H246120.2
C231—C23—C24123.1 (18)Cl4—C100—Cl3116.7 (12)
C231—C23—C22120.1 (19)Cl4—C100—H10A108.1
C24—C23—C22116.7 (19)Cl3—C100—H10A108.1
C23—C24—C241131.8 (19)Cl4—C100—H10B108.1
C23—C24—P2107.9 (14)Cl3—C100—H10B108.1
C241—C24—P2119.4 (15)H10A—C100—H10B107.3
P1—C11—C21—P27 (2)

Experimental details

(4a)(4b)
Crystal data
Chemical formula[PdCl2(C28H30P2)]·CH2Cl2[PdCl2(C28H30P2)]·CH2Cl2
Mr690.69690.69
Crystal system, space groupMonoclinic, P21Monoclinic, P21
Temperature (K)180180
a, b, c (Å)8.9333 (4), 12.1598 (4), 14.0088 (6)8.963 (3), 12.139 (5), 13.989 (6)
β (°) 103.678 (4) 103.87 (3)
V3)1478.58 (10)1477.6 (10)
Z22
Radiation typeMo KαMo Kα
µ (mm1)1.121.12
Crystal size (mm)0.47 × 0.14 × 0.110.38 × 0.24 × 0.21
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer
Oxford Diffraction Xcalibur
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006) (empirical (using intensity measurements) absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm)
Multi-scan
(CrysAlis RED; Oxford Diffraction, 2006) (empirical (using intensity measurements) absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm)
Tmin, Tmax0.597, 0.8850.688, 0.791
No. of measured, independent and
observed [I > 2σ(I)] reflections
10919, 4911, 4022 5431, 4033, 1900
Rint0.0450.079
(sin θ/λ)max1)0.6250.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.143, 1.09 0.080, 0.226, 0.97
No. of reflections49114033
No. of parameters330168
No. of restraints113
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.05, 1.081.66, 1.30
Absolute structureFlack (1983), with how many Friedel pairs?Flack (1983), with how many Friedel pairs?
Absolute structure parameter0.03 (5)0.02 (11)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Comparison of geometric structural parameters between (4a), (4b) and related structures (Å, °) top
Parameter(4a)(4b)(a)BIPHOSb
Pd1-P12.2415 (19)2.242 (5)2.2735 (6)
Pd1-P22.2529 (16)2.263 (5)2.2479 (6)
Pd1-Cl22.3404 (16)2.341 (5)2.3514 (6)
Pd1-Cl12.3452 (18)2.338 (5)2.3381 (7)
P1-Pd1-P277.99 (7)77.87 (18)78.02 (2)
P1-Pd1-Cl292.01 (7)92.31 (18)91.29 (2)
P2-Pd1-Cl2169.80 (6)170.07 (16)169.31 (2)
P1-Pd1-Cl1174.41 (7)174.0 (2)176.14 (3)
P2-Pd1-Cl196.43 (7)96.12 (18)98.16 (2)
Cl2-Pd1-Cl193.58 (7)93.70 (17)92.53 (2)
I/II68.3 (2)67.6 (5)68.62 (7)
I/III51.4 (2)52.2 (5)48.24 (6)
II/III60.3 (2)60.2 (5)63.16 (7)
P1-C11-C21-P29.8 (7)-8(1)-8.3 (3)-39.7 (2)
I/II refers to the dihedral angle between the P1/C11/C21/P2 and P1/C1/C2/P2 planes. I/III refers to the dihedral angle between the P1/C11/C21/P2 and P1/P2/Pd1/Cl1/Cl2 planes. II/III refers to the dihedral angle between the P1/C1/C2/P2 and P1/P2/Pd1/Cl1/Cl2 planes. (a) Please define this compound; Ortéga et al. (2003). (b) Please give reference for this datum.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds