Download citation
Download citation
link to html
The reaction of [FeL(MeOH)2] {where L is the tetra­dentate N2O2-coordinating Schiff base-like ligand (E,E)-diethyl 2,2'-[1,2-phenyl­enebis(nitrilo­methyl­idyne)]bis­(3-oxo­butanoate)(2-) and MeOH is methanol} with 3-amino­pyridine (3-apy) in methanol results in the formation of the octa­hedral complex (3-amino­pyridine-[kappa]N1){(E,E)-diethyl 2,2'-[1,2-phen­yl­ene­bis­(nitrilo­methyl­idyne)]bis­(3-oxobutanoato)(2-)-[kappa]4O3,N,N',O3'}(methanol-[kappa]O)iron(II), [Fe(C20H22N2O6)(C5H6N2)(CH4O)] or [FeL(3-apy)(MeOH)], in which the FeII ion is centered in an N3O3 coordination environment with two different axial ligands. This is the first example of an octa­hedral complex of this multidentate ligand type with two different axial ligands, and the title compound can be considered as a precursor for a new class of complexes with potential spin-crossover behavior. An infinite two-dimensional hydrogen-bond network is formed, involving the amine NH group, the methanol OH group and the carbonyl O atoms of the equatorial ligand. T-dependent susceptibility measurements revealed that the complex remains in the high-spin state over the entire temperature range investigated.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108013498/sq3144sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108013498/sq3144Isup2.hkl
Contains datablock I

CCDC reference: 692657

Comment top

Octahedral iron(II) complexes are an interesting class of complexes because of the possible occurrence of the spin crossover phenomenon. The ability to switch between two or more electronic states on the molecular level under changes in temperature, pressure or light is of potential interest for future applications in molecular switches or memory devices. Although spin crossover could be observed for any octahedral complex with dn (n = 4–7) electronic configuration, the spin transition in octahedral iron(II) complexes with the diamagnetic low-spin (LS) and the paramagnetic high-spin (HS) state are by far the most thoroughly investigated. Of those iron(II) complexes that have been studied, about 90% exhibit N6 coordination, while the others have N4O2, N4C2, N3C2O2 or N4S2 coordination environments (Gütlich et al., 1994; Goodwin, 1976; König, 1991; Kahn & Martinez, 1998). So far, no examples with an N3O3 coordination environment are known.

In this paper we present the strucural and magnetic properties of the octahedral iron(II) complex (3-aminopyridine-κN1){(E,E)-diethyl 2,2'-[1,2-phenylenebis(nitrilomethylidyne)]bis(3-oxobutanate)(2-)-κ2O3,N,N',O3'}(methanol-κO)iron(II), (I), in which the iron ion is centered in an N3O3 coordination environment. The complex was obtained in a one-pot reaction under argon by conversion of [FeL(MeOH)2] and 3-aminopyridine (3-apy) in methanol as solvent and heating to reflux for one hour. A 30 molar excess of 3-apy was used in order to obtain a partial substitution of the axial methanol ligands and therefore an unsymmetric complex with two different axial ligands (Fig. 1).

The coordination around the iron(II) ion is almost ideal octahedral, with a displacement of the Fe2+ ion from the N2O2 coordination plane towards the axial 3-apy ligand of about 0.08 Å. This is surprising, because with methanol as a relatively weak ligand in the axial position one could expect some larger distortion towards the stronger 3-apy. Accordingly, the average bond lengths and angles within the first coordination sphere of the iron centre (Table 1) are within the range reported for similar octahedral iron(II) complexes with N4O2 coordination and the iron centre in the high-spin state (Fe–Neq = 2.09 Å and Fe–Oeq = 2.04 Å; Leibeling, 2003; Weber et al., 2008). The equatorial O2—Fe1—O1 angle is a characteristic tool for the determination of the spin state of this type of iron(II) complex, because the angle changes from about 110° in the HS state to about 90° in the LS state. At 110.64 (6)° in (I), this angle is in the region observed for N4O2-coordinated iron(II) complexes in the HS state (Leibeling, 2003; Weber et al., 2008). The heteroatoms of the axial ligands face one another almost linearly. A possible explanation for the minor distortion is the hydrogen-bond network that the amine group of 3-apy is involved in.

Intermolecular interactions such as hydrogen bonding, π-stacking and van der Waals interactions are thought to play a central role for transmitting cooperative interactions during a spin transition in mononuclear complexes. In complex (I), three different hydrogen bonds (see Table 2) form an infinite two-dimensional network along the (101) plane. The base vectors are [010] and [101]. Amine atom N4 acts as a double hydrogen-bond donor, firstly via atom H4A to carboxylate atom O1i [symmetry code: (i) -x, -y, -z + 1], so that complexes facing each other with the axial methanol ligand are linked, and secondly via atom H4B to carboxylate atom O5ii [symmetry code: (ii) x, y - 1, z], linking the asymmetric units into chains along [010] (Fig. 2). The molecules are further linked along [100] by methanol atom O3, acting as a hydrogen-bond donor via atom H31 to carboxylate atom O7iii [symmetry code: (iii) -x + 1, -y, -z] of the equatorial ligand of the neighboring complex (Fig. 3).

At room temperature, the magnetic moment, expressed as the product χMT, is equal to 3.2 cm3 mol-1 K, which is a typical value for iron(II) in the HS state. The moment remains almost constant down to 25 K (χMT = 3.01 cm3 mol-1 K), indicating that no spin crossover occurs. The decrease of χMT below 25 K is due to zero-field splitting. Obviously, the methanol ligand is too weak to put the overall ligand field in the spin crossover region.

Related literature top

For related literature, see: Gütlich et al. (1994); Goodwin (1976); Jäger et al. (1985); König (1991); Kahn & Martinez (1998); Leibeling (2003); Weber et al. (2008).

Experimental top

The synthesis of (I) was carried out under argon using Schlenk tube techniques. [FeL(MeOH)2] (Jäger et al., 1985) and 30 equivalents of 3-aminopyridine (Fluka) were dissolved in 40 ml of absolute methanol and heated to reflux for 1 h. 24 h later, the product was filtered off and washed two times with ice-cold methanol. Pure crystals of (I) were obtained, with a yield of 70%. Analysis found: C 54.8, H 5.5, N 10.1%; C26H32FeN4O7 requires: C 54.9, H 5.7, N 9.9%. IR (PE): ν% 3344 (w, NH), 1676 (m, COO), 1569 (m, CO) cm-1. MS (DEI+,70 eV): m/z (%) 442 (100) [M+].

Refinement top

With the exception of the methanol hydroxy atom H31, all H atoms were located in difference maps and treated as riding on their parent atoms (N—H = 0.88 Å and C—H = 0.95-0.98 Å). One common Uiso(H) parameter for these H atoms was refined to 0.0649 (15). Atom H31 was refined isotropically.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2005); cell refinement: CrysAlis RED (Oxford Diffraction, 2005); data reduction: CrysAlis RED (Oxford Diffraction, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and SCHAKAL99 (Keller, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and anisotropic displacement ellipsoids (drawn at the 50% probability level) for non-H atoms. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The molecular packing of (I), showing N—H···O hydrogen bonds forming chains along [010]. C-bonded H atoms have been omitted for clarity.
[Figure 3] Fig. 3. The molecular packing of (I), showing paired O—H···O hydrogen bonds linking opposite asymmetric units. C-bonded H atoms have been omitted for clarity.
[Figure 4] Fig. 4. The thermal dependence of χMT for (I).
(3-aminopyridine-κN1){(E,E)-diethyl 2,2'-[1,2-phenylenebis(nitrilomethylidyne)]bis(3-oxobutanate)(2-)- κ2O3,N,N',O3'}(methanol-κO)iron(II) top
Crystal data top
[Fe(C20H22N2O6)(C5H6N2)(CH4O)]Z = 2
Mr = 568.40F(000) = 596
Triclinic, P1Dx = 1.394 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.234 (4) ÅCell parameters from 8635 reflections
b = 11.5760 (11) Åθ = 3.7–26.2°
c = 11.834 (3) ŵ = 0.61 mm1
α = 72.740 (17)°T = 200 K
β = 75.67 (3)°Block, brown
γ = 68.91 (2)°0.32 × 0.12 × 0.08 mm
V = 1354.0 (6) Å3
Data collection top
Oxford XCalibur
diffractometer
2998 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
Graphite monochromatorθmax = 25.2°, θmin = 3.7°
ω scansh = 1313
23067 measured reflectionsk = 1414
4708 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 0.94 w = 1/[σ2(Fo2) + (0.045P)2]
where P = (Fo2 + 2Fc2)/3
4708 reflections(Δ/σ)max < 0.001
353 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
[Fe(C20H22N2O6)(C5H6N2)(CH4O)]γ = 68.91 (2)°
Mr = 568.40V = 1354.0 (6) Å3
Triclinic, P1Z = 2
a = 11.234 (4) ÅMo Kα radiation
b = 11.5760 (11) ŵ = 0.61 mm1
c = 11.834 (3) ÅT = 200 K
α = 72.740 (17)°0.32 × 0.12 × 0.08 mm
β = 75.67 (3)°
Data collection top
Oxford XCalibur
diffractometer
2998 reflections with I > 2σ(I)
23067 measured reflectionsRint = 0.037
4708 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 0.94Δρmax = 0.34 e Å3
4708 reflectionsΔρmin = 0.21 e Å3
353 parameters
Special details top

Experimental. Susceptibility measurements were performed using a Quantum Design MPMSR-XL SQUID magnetometer in the temperature range from 295 to 20 K at 500 G.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. C-bonded H: H-atom parameters constrained, N-bonded H: H-atom parameters constrained, anisotrop refinement of all none-hydrogen atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.26975 (3)0.13889 (3)0.24612 (3)0.03288 (13)
O10.23706 (14)0.24756 (14)0.36599 (13)0.0376 (4)
O20.34759 (14)0.04822 (14)0.32078 (13)0.0353 (4)
O30.47277 (17)0.1377 (2)0.21418 (17)0.0525 (5)
O40.16546 (15)0.66097 (14)0.12468 (14)0.0439 (4)
O50.12752 (18)0.64697 (16)0.32171 (16)0.0582 (5)
O60.49180 (16)0.37323 (15)0.19183 (14)0.0502 (5)
O70.45911 (15)0.26432 (14)0.00782 (14)0.0438 (4)
N10.21335 (16)0.31245 (16)0.12293 (15)0.0297 (4)
N20.29832 (17)0.07854 (17)0.08867 (16)0.0300 (4)
N30.07251 (17)0.12383 (17)0.30644 (15)0.0320 (5)
N40.09005 (18)0.11921 (18)0.38595 (16)0.0440 (5)
H4A0.16550.13000.42010.0649 (15)*
H4B0.02720.18110.35890.0649 (15)*
C10.2158 (2)0.3659 (2)0.3551 (2)0.0352 (6)
C20.1918 (2)0.4573 (2)0.24656 (19)0.0326 (6)
C30.1927 (2)0.4259 (2)0.1386 (2)0.0328 (6)
H30.17660.49470.07060.0649 (15)*
C40.2048 (2)0.3014 (2)0.00887 (18)0.0283 (5)
C50.1529 (2)0.4018 (2)0.0823 (2)0.0367 (6)
H50.12080.48600.07030.0649 (15)*
C60.1470 (2)0.3818 (2)0.1900 (2)0.0389 (6)
H60.11250.45170.25180.0649 (15)*
C70.1918 (2)0.2591 (2)0.2071 (2)0.0394 (6)
H70.18790.24440.28080.0649 (15)*
C80.2415 (2)0.1592 (2)0.1179 (2)0.0367 (6)
H80.27070.07540.13020.0649 (15)*
C90.2506 (2)0.1769 (2)0.00948 (18)0.0273 (5)
C100.3581 (2)0.0371 (2)0.0728 (2)0.0314 (6)
H100.37040.04720.00650.0649 (15)*
C110.4067 (2)0.1494 (2)0.16015 (19)0.0305 (6)
C120.4023 (2)0.1482 (2)0.2806 (2)0.0324 (6)
C130.2200 (3)0.4007 (2)0.4664 (2)0.0532 (7)
H13A0.13230.42710.51040.0649 (15)*
H13B0.25680.47090.44410.0649 (15)*
H13C0.27380.32690.51720.0649 (15)*
C140.1603 (2)0.5939 (2)0.2401 (2)0.0360 (6)
C150.1199 (2)0.7980 (2)0.1010 (2)0.0423 (6)
H15A0.17660.82990.12760.0649 (15)*
H15B0.03090.82790.14380.0649 (15)*
C160.1227 (3)0.8440 (2)0.0316 (2)0.0603 (8)
H16A0.20970.80760.07270.0649 (15)*
H16B0.09940.93700.05330.0649 (15)*
H16C0.06080.81760.05560.0649 (15)*
C170.4627 (2)0.2647 (2)0.3719 (2)0.0486 (7)
H17A0.46200.23950.44430.0649 (15)*
H17B0.55200.30550.33830.0649 (15)*
H17C0.41330.32470.39240.0649 (15)*
C180.4546 (2)0.2631 (2)0.1122 (2)0.0354 (6)
C190.5383 (3)0.4887 (2)0.1480 (2)0.0542 (7)
H19A0.60540.48190.07630.0649 (15)*
H19B0.46640.50350.12590.0649 (15)*
C200.5923 (3)0.5928 (3)0.2445 (3)0.0927 (11)
H20A0.66100.57530.26760.0649 (15)*
H20B0.62810.67230.21710.0649 (15)*
H20C0.52420.60080.31370.0649 (15)*
C210.0230 (2)0.2191 (2)0.3454 (2)0.0396 (6)
H210.00790.29770.33440.0649 (15)*
C220.1425 (2)0.2073 (2)0.4010 (2)0.0438 (6)
H220.20800.27650.42870.0649 (15)*
C230.1667 (2)0.0945 (2)0.4163 (2)0.0378 (6)
H230.24870.08530.45500.0649 (15)*
C240.0702 (2)0.0052 (2)0.37487 (19)0.0329 (6)
C250.0479 (2)0.0151 (2)0.32063 (18)0.0327 (6)
H250.11510.05240.29190.0649 (15)*
C260.5549 (2)0.0917 (2)0.3009 (2)0.0527 (7)
H26A0.51890.14150.36230.0649 (15)*
H26B0.64050.09930.26260.0649 (15)*
H26C0.56240.00210.33810.0649 (15)*
H310.493 (3)0.182 (3)0.155 (3)0.070 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0385 (2)0.0325 (2)0.0263 (2)0.01143 (16)0.00592 (16)0.00364 (16)
O10.0485 (11)0.0363 (10)0.0286 (9)0.0144 (8)0.0084 (8)0.0048 (8)
O20.0389 (10)0.0342 (10)0.0287 (9)0.0090 (8)0.0065 (8)0.0033 (8)
O30.0451 (12)0.0788 (15)0.0318 (11)0.0307 (11)0.0119 (10)0.0088 (11)
O40.0639 (12)0.0289 (10)0.0365 (11)0.0142 (8)0.0047 (9)0.0069 (8)
O50.0903 (15)0.0422 (11)0.0403 (11)0.0089 (10)0.0151 (10)0.0175 (10)
O60.0732 (13)0.0309 (10)0.0360 (10)0.0040 (9)0.0144 (9)0.0026 (9)
O70.0583 (12)0.0381 (10)0.0296 (10)0.0116 (8)0.0034 (9)0.0069 (8)
N10.0329 (11)0.0318 (12)0.0253 (11)0.0106 (9)0.0066 (9)0.0058 (9)
N20.0302 (11)0.0312 (12)0.0282 (11)0.0109 (9)0.0063 (9)0.0033 (9)
N30.0360 (12)0.0305 (11)0.0286 (11)0.0078 (10)0.0068 (9)0.0069 (9)
N40.0453 (13)0.0529 (14)0.0445 (13)0.0261 (11)0.0005 (10)0.0193 (11)
C10.0360 (15)0.0419 (16)0.0303 (15)0.0153 (12)0.0015 (11)0.0112 (13)
C20.0385 (15)0.0339 (14)0.0260 (14)0.0105 (11)0.0068 (12)0.0073 (12)
C30.0335 (14)0.0345 (15)0.0272 (13)0.0094 (11)0.0065 (11)0.0026 (11)
C40.0284 (13)0.0331 (14)0.0214 (13)0.0111 (11)0.0051 (10)0.0008 (11)
C50.0432 (15)0.0320 (14)0.0344 (15)0.0103 (12)0.0116 (12)0.0043 (12)
C60.0470 (16)0.0399 (16)0.0265 (14)0.0118 (13)0.0154 (12)0.0028 (12)
C70.0489 (16)0.0431 (16)0.0286 (14)0.0161 (13)0.0114 (12)0.0049 (13)
C80.0456 (16)0.0332 (14)0.0307 (14)0.0115 (12)0.0077 (12)0.0060 (12)
C90.0322 (14)0.0312 (14)0.0199 (13)0.0133 (11)0.0065 (11)0.0016 (11)
C100.0336 (14)0.0366 (15)0.0263 (13)0.0155 (12)0.0036 (11)0.0055 (12)
C110.0310 (14)0.0295 (14)0.0257 (14)0.0071 (11)0.0043 (11)0.0018 (11)
C120.0271 (14)0.0349 (15)0.0299 (15)0.0095 (12)0.0021 (11)0.0021 (12)
C130.079 (2)0.0505 (17)0.0349 (15)0.0196 (15)0.0171 (14)0.0098 (13)
C140.0368 (15)0.0366 (15)0.0330 (15)0.0093 (12)0.0063 (12)0.0074 (14)
C150.0435 (16)0.0303 (14)0.0509 (17)0.0112 (12)0.0078 (13)0.0059 (13)
C160.074 (2)0.0382 (16)0.0526 (19)0.0118 (14)0.0043 (16)0.0005 (14)
C170.0599 (18)0.0439 (16)0.0290 (15)0.0026 (13)0.0112 (13)0.0027 (13)
C180.0307 (14)0.0319 (15)0.0369 (16)0.0085 (11)0.0022 (12)0.0021 (13)
C190.072 (2)0.0308 (15)0.0528 (18)0.0052 (14)0.0141 (15)0.0101 (14)
C200.138 (3)0.0406 (19)0.084 (3)0.0024 (19)0.033 (2)0.0105 (18)
C210.0396 (16)0.0336 (15)0.0420 (16)0.0080 (13)0.0071 (13)0.0070 (13)
C220.0365 (16)0.0452 (17)0.0450 (16)0.0034 (13)0.0067 (13)0.0149 (13)
C230.0314 (15)0.0550 (17)0.0281 (14)0.0131 (13)0.0058 (11)0.0104 (13)
C240.0402 (16)0.0416 (15)0.0206 (13)0.0164 (13)0.0083 (12)0.0053 (11)
C250.0369 (15)0.0373 (15)0.0232 (13)0.0086 (12)0.0061 (11)0.0082 (11)
C260.0496 (17)0.0648 (19)0.0470 (17)0.0185 (14)0.0160 (14)0.0099 (15)
Geometric parameters (Å, º) top
Fe1—O22.0298 (16)C7—H70.9500
Fe1—O12.0489 (16)C8—C91.390 (3)
Fe1—N12.0896 (18)C8—H80.9500
Fe1—N22.0924 (18)C10—C111.424 (3)
Fe1—N32.2071 (19)C10—H100.9500
Fe1—O32.2132 (19)C11—C121.418 (3)
O1—C11.275 (2)C11—C181.458 (3)
O2—C121.271 (2)C12—C171.512 (3)
O3—C261.406 (3)C13—H13A0.9800
O3—H310.77 (3)C13—H13B0.9800
O4—C141.355 (3)C13—H13C0.9800
O4—C151.442 (2)C15—C161.496 (3)
O5—C141.208 (3)C15—H15A0.9900
O6—C181.337 (3)C15—H15B0.9900
O6—C191.451 (3)C16—H16A0.9800
O7—C181.228 (3)C16—H16B0.9800
N1—C31.310 (3)C16—H16C0.9800
N1—C41.422 (3)C17—H17A0.9800
N2—C101.311 (3)C17—H17B0.9800
N2—C91.420 (3)C17—H17C0.9800
N3—C211.336 (3)C19—C201.458 (4)
N3—C251.338 (3)C19—H19A0.9900
N4—C241.379 (3)C19—H19B0.9900
N4—H4A0.8800C20—H20A0.9800
N4—H4B0.8800C20—H20B0.9800
C1—C21.415 (3)C20—H20C0.9800
C1—C131.502 (3)C21—C221.377 (3)
C2—C31.425 (3)C21—H210.9500
C2—C141.473 (3)C22—C231.379 (3)
C3—H30.9500C22—H220.9500
C4—C51.391 (3)C23—C241.386 (3)
C4—C91.409 (3)C23—H230.9500
C5—C61.383 (3)C24—C251.393 (3)
C5—H50.9500C25—H250.9500
C6—C71.385 (3)C26—H26A0.9800
C6—H60.9500C26—H26B0.9800
C7—C81.367 (3)C26—H26C0.9800
O2—Fe1—O1110.64 (6)O2—C12—C11122.6 (2)
O2—Fe1—N1163.09 (6)O2—C12—C17114.2 (2)
O1—Fe1—N185.29 (7)C11—C12—C17123.3 (2)
O2—Fe1—N285.15 (7)C1—C13—H13A109.5
O1—Fe1—N2163.46 (6)C1—C13—H13B109.5
N1—Fe1—N278.54 (7)H13A—C13—H13B109.5
O2—Fe1—N391.17 (7)C1—C13—H13C109.5
O1—Fe1—N390.29 (7)H13A—C13—H13C109.5
N1—Fe1—N394.49 (7)H13B—C13—H13C109.5
N2—Fe1—N394.42 (7)O5—C14—O4120.9 (2)
O2—Fe1—O382.78 (7)O5—C14—C2128.2 (2)
O1—Fe1—O385.81 (7)O4—C14—C2110.7 (2)
N1—Fe1—O393.13 (7)O4—C15—C16106.23 (19)
N2—Fe1—O391.54 (7)O4—C15—H15A110.5
N3—Fe1—O3171.13 (7)C16—C15—H15A110.5
C1—O1—Fe1133.45 (14)O4—C15—H15B110.5
C12—O2—Fe1134.73 (14)C16—C15—H15B110.5
C26—O3—Fe1126.01 (16)H15A—C15—H15B108.7
C26—O3—H31117 (2)C15—C16—H16A109.5
Fe1—O3—H31115 (2)C15—C16—H16B109.5
C14—O4—C15118.66 (18)H16A—C16—H16B109.5
C18—O6—C19117.13 (19)C15—C16—H16C109.5
C3—N1—C4118.54 (19)H16A—C16—H16C109.5
C3—N1—Fe1126.93 (15)H16B—C16—H16C109.5
C4—N1—Fe1114.42 (13)C12—C17—H17A109.5
C10—N2—C9119.02 (19)C12—C17—H17B109.5
C10—N2—Fe1126.51 (16)H17A—C17—H17B109.5
C9—N2—Fe1114.43 (14)C12—C17—H17C109.5
C21—N3—C25117.7 (2)H17A—C17—H17C109.5
C21—N3—Fe1119.87 (15)H17B—C17—H17C109.5
C25—N3—Fe1121.81 (15)O7—C18—O6119.3 (2)
C24—N4—H4A120.0O7—C18—C11125.3 (2)
C24—N4—H4B120.0O6—C18—C11115.4 (2)
H4A—N4—H4B120.0O6—C19—C20107.0 (2)
O1—C1—C2122.8 (2)O6—C19—H19A110.3
O1—C1—C13114.7 (2)C20—C19—H19A110.3
C2—C1—C13122.5 (2)O6—C19—H19B110.3
C1—C2—C3123.5 (2)C20—C19—H19B110.3
C1—C2—C14120.9 (2)H19A—C19—H19B108.6
C3—C2—C14115.6 (2)C19—C20—H20A109.5
N1—C3—C2127.1 (2)C19—C20—H20B109.5
N1—C3—H3116.5H20A—C20—H20B109.5
C2—C3—H3116.5C19—C20—H20C109.5
C5—C4—C9118.8 (2)H20A—C20—H20C109.5
C5—C4—N1125.4 (2)H20B—C20—H20C109.5
C9—C4—N1115.80 (18)N3—C21—C22122.2 (2)
C6—C5—C4121.4 (2)N3—C21—H21118.9
C6—C5—H5119.3C22—C21—H21118.9
C4—C5—H5119.3C21—C22—C23119.7 (2)
C5—C6—C7119.5 (2)C21—C22—H22120.2
C5—C6—H6120.3C23—C22—H22120.2
C7—C6—H6120.3C22—C23—C24119.4 (2)
C8—C7—C6119.8 (2)C22—C23—H23120.3
C8—C7—H7120.1C24—C23—H23120.3
C6—C7—H7120.1N4—C24—C23121.7 (2)
C7—C8—C9121.9 (2)N4—C24—C25121.4 (2)
C7—C8—H8119.1C23—C24—C25116.9 (2)
C9—C8—H8119.1N3—C25—C24124.1 (2)
C8—C9—C4118.7 (2)N3—C25—H25118.0
C8—C9—N2125.5 (2)C24—C25—H25118.0
C4—C9—N2115.83 (18)O3—C26—H26A109.5
N2—C10—C11127.8 (2)O3—C26—H26B109.5
N2—C10—H10116.1H26A—C26—H26B109.5
C11—C10—H10116.1O3—C26—H26C109.5
C12—C11—C10122.6 (2)H26A—C26—H26C109.5
C12—C11—C18125.1 (2)H26B—C26—H26C109.5
C10—C11—C18112.2 (2)
O2—Fe1—O1—C1163.20 (18)Fe1—N1—C4—C5170.70 (16)
N1—Fe1—O1—C110.96 (19)C3—N1—C4—C9168.82 (18)
N2—Fe1—O1—C11.3 (3)Fe1—N1—C4—C97.7 (2)
N3—Fe1—O1—C1105.4 (2)C9—C4—C5—C60.8 (3)
O3—Fe1—O1—C182.5 (2)N1—C4—C5—C6179.1 (2)
O1—Fe1—O2—C12166.91 (18)C4—C5—C6—C71.0 (3)
N1—Fe1—O2—C127.3 (3)C5—C6—C7—C80.2 (3)
N2—Fe1—O2—C128.01 (19)C6—C7—C8—C91.0 (3)
N3—Fe1—O2—C12102.3 (2)C7—C8—C9—C41.2 (3)
O3—Fe1—O2—C1284.2 (2)C7—C8—C9—N2178.56 (19)
O2—Fe1—O3—C2652.5 (2)C5—C4—C9—C80.3 (3)
O1—Fe1—O3—C2658.9 (2)N1—C4—C9—C8178.15 (18)
N1—Fe1—O3—C26144.0 (2)C5—C4—C9—N2177.94 (18)
N2—Fe1—O3—C26137.4 (2)N1—C4—C9—N20.5 (3)
O2—Fe1—N1—C3152.0 (2)C10—N2—C9—C811.6 (3)
O1—Fe1—N1—C38.92 (18)Fe1—N2—C9—C8170.60 (17)
N2—Fe1—N1—C3167.56 (18)C10—N2—C9—C4170.96 (18)
N3—Fe1—N1—C398.83 (18)Fe1—N2—C9—C46.8 (2)
O3—Fe1—N1—C376.62 (18)C9—N2—C10—C11176.44 (19)
O2—Fe1—N1—C424.2 (3)Fe1—N2—C10—C116.1 (3)
O1—Fe1—N1—C4174.95 (14)N2—C10—C11—C123.8 (3)
N2—Fe1—N1—C48.58 (13)N2—C10—C11—C18173.6 (2)
N3—Fe1—N1—C485.03 (14)Fe1—O2—C12—C118.4 (3)
O3—Fe1—N1—C499.52 (14)Fe1—O2—C12—C17171.10 (14)
O2—Fe1—N2—C106.20 (17)C10—C11—C12—O24.4 (3)
O1—Fe1—N2—C10156.87 (19)C18—C11—C12—O2172.6 (2)
N1—Fe1—N2—C10169.30 (18)C10—C11—C12—C17175.1 (2)
N3—Fe1—N2—C1097.00 (17)C18—C11—C12—C177.9 (3)
O3—Fe1—N2—C1076.42 (18)C15—O4—C14—O55.6 (3)
O2—Fe1—N2—C9176.20 (14)C15—O4—C14—C2171.33 (17)
O1—Fe1—N2—C920.7 (3)C1—C2—C14—O515.0 (4)
N1—Fe1—N2—C98.30 (13)C3—C2—C14—O5163.4 (2)
N3—Fe1—N2—C985.40 (14)C1—C2—C14—O4168.31 (19)
O3—Fe1—N2—C9101.18 (14)C3—C2—C14—O413.3 (3)
O2—Fe1—N3—C21141.91 (17)C14—O4—C15—C16173.29 (19)
O1—Fe1—N3—C2131.27 (17)C19—O6—C18—O71.2 (3)
N1—Fe1—N3—C2154.04 (17)C19—O6—C18—C11179.14 (19)
N2—Fe1—N3—C21132.86 (17)C12—C11—C18—O7179.6 (2)
O2—Fe1—N3—C2528.95 (16)C10—C11—C18—O73.1 (3)
O1—Fe1—N3—C25139.60 (16)C12—C11—C18—O62.6 (3)
N1—Fe1—N3—C25135.10 (16)C10—C11—C18—O6174.66 (18)
N2—Fe1—N3—C2556.28 (16)C18—O6—C19—C20170.9 (2)
Fe1—O1—C1—C29.4 (3)C25—N3—C21—C221.5 (3)
Fe1—O1—C1—C13169.77 (15)Fe1—N3—C21—C22169.77 (17)
O1—C1—C2—C31.9 (4)N3—C21—C22—C230.9 (4)
C13—C1—C2—C3177.3 (2)C21—C22—C23—C240.3 (3)
O1—C1—C2—C14176.42 (19)C22—C23—C24—N4178.8 (2)
C13—C1—C2—C144.4 (3)C22—C23—C24—C250.8 (3)
C4—N1—C3—C2177.4 (2)C21—N3—C25—C240.9 (3)
Fe1—N1—C3—C26.6 (3)Fe1—N3—C25—C24170.12 (15)
C1—C2—C3—N10.9 (4)N4—C24—C25—N3179.42 (19)
C14—C2—C3—N1177.4 (2)C23—C24—C25—N30.2 (3)
C3—N1—C4—C512.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O1i0.882.583.215 (3)130
N4—H4B···O5ii0.882.203.068 (3)171
O3—H31···O7iii0.77 (3)1.92 (3)2.676 (3)167 (4)
Symmetry codes: (i) x, y, z+1; (ii) x, y1, z; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Fe(C20H22N2O6)(C5H6N2)(CH4O)]
Mr568.40
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)11.234 (4), 11.5760 (11), 11.834 (3)
α, β, γ (°)72.740 (17), 75.67 (3), 68.91 (2)
V3)1354.0 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.61
Crystal size (mm)0.32 × 0.12 × 0.08
Data collection
DiffractometerOxford XCalibur
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
23067, 4708, 2998
Rint0.037
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.081, 0.94
No. of reflections4708
No. of parameters353
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.21

Computer programs: CrysAlis CCD (Oxford Diffraction, 2005), CrysAlis RED (Oxford Diffraction, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and SCHAKAL99 (Keller, 1999).

Selected geometric parameters (Å, º) top
Fe1—O22.0298 (16)Fe1—N22.0924 (18)
Fe1—O12.0489 (16)Fe1—N32.2071 (19)
Fe1—N12.0896 (18)Fe1—O32.2132 (19)
O2—Fe1—O1110.64 (6)N1—Fe1—N278.54 (7)
O2—Fe1—N1163.09 (6)O2—Fe1—O382.78 (7)
O1—Fe1—N2163.46 (6)N3—Fe1—O3171.13 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O1i0.882.583.215 (3)130
N4—H4B···O5ii0.882.203.068 (3)171
O3—H31···O7iii0.77 (3)1.92 (3)2.676 (3)167 (4)
Symmetry codes: (i) x, y, z+1; (ii) x, y1, z; (iii) x+1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds