Download citation
Download citation
link to html
The title compound, C14H12N4O2, a new N,O,N′-tridentate ligand, is V-shaped with the mean plane through the benzotriazole system [planar to within 0.013 (2) Å] inclined by 67.7 (1)° to the mean plane through the benzene ring. In the mol­ecule there is an intra­molecular N—H...O hydrogen bond involving the amine H atom and the carbonyl O atom. In the crystal structure, symmtry-related mol­ecules are connected by inter­molecular O—H...N and C—H...O hydrogen bonds and C—H...π inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680800740X/su2045sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680800740X/su2045Isup2.hkl
Contains datablock I

CCDC reference: 684534

Key indicators

  • Single-crystal X-ray study
  • T = 291 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.048
  • wR factor = 0.118
  • Data-to-parameter ratio = 12.8

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ?
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

In last decades, extensive investigations have been undertaken to design and synthesize pyrazole-based tridentate ligands, with the aim of mimiking structures and functions of some metalloenzymes (Trofimenko, 1993). Our interests have been focused on the design and syntheses of flexible N,O,N ligands derived from pyrazoles and triazoles since a certain flexibility might afford coordination versitality of the ligands. We have therefore designed and synthesized a number of such ligands as well as their transition-metal complexes (Zhang, Dou et al., 2007; Zhang, Yin et al., 2006; Zhang, Zhou et al., 2007). Here we report on the structure of a new N,O,N tridentate ligand, 2-(benzotriazolylmethylamino)benzoic acid.

The molecular structure of the title compound is illustrated in Fig. 1. Details of the hydrogen bonding and C—H···\p interactions are given in Table 1. The molecule is V-shaped with the best plane through the benzotriazole moiety (planar to within 0.013 (2) Å) inclined by 67.7 (1)° to the best plane through the benzene ring (C8—C13). In the molecule there is an intra-molecular N—H···O hydrogen bond involving the amine (N4) hydrogen, H4D, and the carbonyl O-atom, O1 (Table 1).

In the crystal structure symmetry related molecules form dimers via C—H···π interactions involving C12—H12 and the benzene ring [(C1—C6 = Cg2iii]. Adjacent molecules are linked by O2—H2···N3i hydrogen bonds to form zigzag chains parallel to the a axis, and these chains are further linked by C7—H7A···O1ii intermolecular hydrogen bonds (Table 1).

Related literature top

For related literature, see: Trofimenko (1993); Zhang, Dou et al. (2007); Zhang et al. (2006); Zhang, Zhou et al. (2007).

Experimental top

The NH hydrogen atom was located from a difference Fourier map and freely refined, N—H = 0.86 (2) Å. The remainder of the H-atoms were included in calculated positions and treated as riding atoms: O—H = 0.82 Å and C—H = 0.93 - 0.97 \%A, with Uiso(H) = 1.5Ueq(O) and 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom numbering scheme and dislacement ellipsoids drawn at the 50% probability level.
2-(Benzotriazol-1-ylmethylamino)benzoic acid top
Crystal data top
C14H12N4O2F(000) = 560
Mr = 268.28Dx = 1.386 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.225 (6) ÅCell parameters from 1098 reflections
b = 15.669 (8) Åθ = 2.4–21.9°
c = 8.098 (4) ŵ = 0.10 mm1
β = 97.671 (7)°T = 291 K
V = 1285.8 (12) Å3Block, colourless
Z = 40.19 × 0.16 × 0.07 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2388 independent reflections
Radiation source: fine-focus sealed tube1438 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ϕ and ω scansθmax = 25.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.982, Tmax = 0.993k = 1818
9692 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0885P)2 + 0.2074P]
where P = (Fo2 + 2Fc2)/3
2388 reflections(Δ/σ)max < 0.001
186 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C14H12N4O2V = 1285.8 (12) Å3
Mr = 268.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.225 (6) ŵ = 0.10 mm1
b = 15.669 (8) ÅT = 291 K
c = 8.098 (4) Å0.19 × 0.16 × 0.07 mm
β = 97.671 (7)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2388 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1438 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.993Rint = 0.053
9692 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.14 e Å3
2388 reflectionsΔρmin = 0.17 e Å3
186 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.37616 (15)0.01777 (11)0.3049 (2)0.0594 (5)
O20.23657 (15)0.05486 (12)0.0817 (2)0.0609 (5)
H20.18450.02940.13270.091*
N10.85744 (16)0.01883 (12)0.3449 (2)0.0414 (5)
N20.95246 (18)0.05227 (13)0.2642 (2)0.0511 (5)
N31.02834 (18)0.00961 (14)0.2240 (2)0.0539 (6)
N40.62976 (19)0.06560 (14)0.3142 (3)0.0488 (6)
C10.8708 (2)0.06775 (14)0.3566 (3)0.0393 (5)
C20.8006 (2)0.13078 (16)0.4280 (3)0.0506 (6)
H2A0.72790.11850.48180.061*
C30.8460 (3)0.21219 (17)0.4134 (3)0.0635 (8)
H30.80220.25670.45860.076*
C40.9558 (3)0.23133 (19)0.3332 (4)0.0723 (9)
H40.98270.28780.32700.087*
C51.0235 (3)0.16907 (19)0.2644 (4)0.0657 (8)
H51.09570.18200.21030.079*
C60.9808 (2)0.08513 (16)0.2776 (3)0.0462 (6)
C70.7583 (2)0.07434 (15)0.4056 (3)0.0479 (6)
H7A0.75380.06120.52180.057*
H7B0.78640.13330.39950.057*
C80.5883 (2)0.10492 (13)0.1642 (3)0.0377 (5)
C90.6766 (2)0.15121 (14)0.0805 (3)0.0488 (6)
H90.76500.15470.12570.059*
C100.6343 (2)0.19133 (15)0.0668 (3)0.0578 (7)
H100.69460.22230.11920.069*
C110.5051 (3)0.18711 (16)0.1397 (3)0.0595 (7)
H110.47740.21500.23960.071*
C120.4182 (2)0.14051 (15)0.0609 (3)0.0489 (6)
H120.33100.13610.11030.059*
C130.4559 (2)0.09968 (13)0.0902 (3)0.0372 (5)
C140.3554 (2)0.05360 (15)0.1695 (3)0.0441 (6)
H4D0.568 (2)0.0420 (16)0.360 (3)0.068 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0421 (10)0.0791 (13)0.0586 (12)0.0032 (9)0.0122 (9)0.0203 (10)
O20.0344 (9)0.0840 (14)0.0641 (12)0.0085 (9)0.0054 (9)0.0151 (10)
N10.0287 (10)0.0482 (12)0.0475 (12)0.0040 (9)0.0062 (9)0.0045 (9)
N20.0332 (11)0.0629 (14)0.0563 (13)0.0067 (10)0.0030 (10)0.0090 (11)
N30.0342 (11)0.0726 (15)0.0552 (13)0.0018 (11)0.0078 (10)0.0039 (11)
N40.0306 (11)0.0626 (14)0.0532 (14)0.0003 (10)0.0050 (10)0.0160 (11)
C10.0350 (12)0.0427 (14)0.0385 (13)0.0007 (11)0.0010 (10)0.0001 (11)
C20.0447 (14)0.0559 (16)0.0507 (16)0.0061 (13)0.0050 (12)0.0067 (13)
C30.0670 (19)0.0527 (18)0.0670 (19)0.0078 (15)0.0056 (15)0.0064 (14)
C40.077 (2)0.0529 (18)0.082 (2)0.0130 (16)0.0071 (18)0.0084 (16)
C50.0532 (17)0.073 (2)0.070 (2)0.0111 (15)0.0053 (14)0.0125 (16)
C60.0351 (13)0.0555 (16)0.0465 (15)0.0006 (12)0.0000 (11)0.0029 (12)
C70.0418 (14)0.0496 (15)0.0520 (15)0.0025 (12)0.0055 (11)0.0017 (12)
C80.0368 (12)0.0336 (12)0.0436 (14)0.0024 (10)0.0094 (11)0.0011 (10)
C90.0360 (13)0.0501 (15)0.0611 (17)0.0038 (11)0.0100 (12)0.0061 (13)
C100.0503 (16)0.0570 (17)0.0695 (19)0.0034 (13)0.0205 (14)0.0208 (14)
C110.0541 (17)0.0657 (18)0.0584 (17)0.0023 (14)0.0061 (13)0.0207 (14)
C120.0406 (13)0.0565 (16)0.0488 (15)0.0017 (12)0.0030 (12)0.0026 (13)
C130.0320 (12)0.0379 (13)0.0429 (14)0.0023 (10)0.0096 (10)0.0019 (10)
C140.0360 (13)0.0460 (15)0.0512 (16)0.0025 (11)0.0088 (12)0.0011 (12)
Geometric parameters (Å, º) top
O1—C141.225 (3)C4—C51.358 (4)
O2—C141.323 (3)C4—H40.9300
O2—H20.8200C5—C61.394 (4)
N1—N21.347 (2)C5—H50.9300
N1—C11.365 (3)C7—H7A0.9700
N1—C71.470 (3)C7—H7B0.9700
N2—N31.310 (3)C8—C91.402 (3)
N3—C61.371 (3)C8—C131.408 (3)
N4—C81.377 (3)C9—C101.367 (3)
N4—C71.426 (3)C9—H90.9300
N4—H4D0.86 (2)C10—C111.375 (3)
C1—C21.391 (3)C10—H100.9300
C1—C61.393 (3)C11—C121.372 (3)
C2—C31.368 (3)C11—H110.9300
C2—H2A0.9300C12—C131.389 (3)
C3—C41.402 (4)C12—H120.9300
C3—H30.9300C13—C141.472 (3)
C14—O2—H2109.5N4—C7—N1113.5 (2)
N2—N1—C1110.39 (18)N4—C7—H7A108.9
N2—N1—C7120.44 (19)N1—C7—H7A108.9
C1—N1—C7129.17 (18)N4—C7—H7B108.9
N3—N2—N1108.78 (18)N1—C7—H7B108.9
N2—N3—C6108.27 (18)H7A—C7—H7B107.7
C8—N4—C7124.7 (2)N4—C8—C9121.1 (2)
C8—N4—H4D114.7 (18)N4—C8—C13121.0 (2)
C7—N4—H4D119.7 (18)C9—C8—C13118.0 (2)
N1—C1—C2133.0 (2)C10—C9—C8120.7 (2)
N1—C1—C6104.0 (2)C10—C9—H9119.6
C2—C1—C6123.0 (2)C8—C9—H9119.6
C3—C2—C1115.2 (2)C9—C10—C11121.8 (2)
C3—C2—H2A122.4C9—C10—H10119.1
C1—C2—H2A122.4C11—C10—H10119.1
C2—C3—C4122.8 (3)C12—C11—C10118.1 (2)
C2—C3—H3118.6C12—C11—H11121.0
C4—C3—H3118.6C10—C11—H11121.0
C5—C4—C3121.3 (3)C11—C12—C13122.3 (2)
C5—C4—H4119.3C11—C12—H12118.9
C3—C4—H4119.3C13—C12—H12118.9
C4—C5—C6117.7 (3)C12—C13—C8119.1 (2)
C4—C5—H5121.2C12—C13—C14118.8 (2)
C6—C5—H5121.2C8—C13—C14122.1 (2)
N3—C6—C1108.6 (2)O1—C14—O2121.7 (2)
N3—C6—C5131.4 (2)O1—C14—C13124.6 (2)
C1—C6—C5120.0 (2)O2—C14—C13113.8 (2)
C1—N1—N2—N30.6 (2)C8—N4—C7—N181.5 (3)
C7—N1—N2—N3179.61 (18)N2—N1—C7—N4109.0 (2)
N1—N2—N3—C60.8 (2)C1—N1—C7—N470.8 (3)
N2—N1—C1—C2179.3 (2)C7—N4—C8—C96.5 (3)
C7—N1—C1—C20.9 (4)C7—N4—C8—C13173.6 (2)
N2—N1—C1—C60.1 (2)N4—C8—C9—C10178.8 (2)
C7—N1—C1—C6179.9 (2)C13—C8—C9—C101.3 (3)
N1—C1—C2—C3179.9 (2)C8—C9—C10—C110.9 (4)
C6—C1—C2—C30.9 (3)C9—C10—C11—C120.5 (4)
C1—C2—C3—C40.3 (4)C10—C11—C12—C131.5 (4)
C2—C3—C4—C50.2 (4)C11—C12—C13—C81.1 (3)
C3—C4—C5—C60.6 (4)C11—C12—C13—C14177.8 (2)
N2—N3—C6—C10.8 (2)N4—C8—C13—C12179.8 (2)
N2—N3—C6—C5179.0 (2)C9—C8—C13—C120.3 (3)
N1—C1—C6—N30.4 (2)N4—C8—C13—C141.0 (3)
C2—C1—C6—N3178.9 (2)C9—C8—C13—C14179.1 (2)
N1—C1—C6—C5179.4 (2)C12—C13—C14—O1177.4 (2)
C2—C1—C6—C51.3 (3)C8—C13—C14—O11.4 (3)
C4—C5—C6—N3179.1 (2)C12—C13—C14—O21.6 (3)
C4—C5—C6—C11.2 (4)C8—C13—C14—O2179.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4D···O10.86 (2)1.99 (3)2.691 (3)138 (2)
O2—H2···N3i0.821.952.746 (3)165
C7—H7A···O1ii0.972.403.214 (3)141
C12—H12···Cg2iii0.932.943.836 (3)163
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z+1; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC14H12N4O2
Mr268.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)10.225 (6), 15.669 (8), 8.098 (4)
β (°) 97.671 (7)
V3)1285.8 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.19 × 0.16 × 0.07
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.982, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
9692, 2388, 1438
Rint0.053
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.117, 1.02
No. of reflections2388
No. of parameters186
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.17

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4D···O10.86 (2)1.99 (3)2.691 (3)138 (2)
O2—H2···N3i0.821.952.746 (3)164.9
C7—H7A···O1ii0.972.403.214 (3)141
C12—H12···Cg2iii0.932.93673.836 (3)163.02
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z+1; (iii) x+1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds