Download citation
Download citation
link to html
In the crystal structure of the title polymeric compound, [Cu(C12H12O4)(C10H8N2)]n, the asymmetric unit consists of one CuII ion, one 5-tert-butyl­isophthalate (tbip) and one 2,2′-bipyridine (bpy) ligand. The copper(II) ion is four-coordin­ated by two N atoms from bipy and two O atoms from two tbip ligands, leading to a distorted tetrahedral coordination. Each tbip ligand adopts a bis-monodentate coordination mode to connect two symmetry-related copper(II) ions, so forming a zigzag polymer chain parallel to [001]. The tert-butyl methyl groups are disordered over two positions with occupancies of 0.506 (6)/0.494 (6)

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536808035484/su2072sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536808035484/su2072Isup2.hkl
Contains datablock I

CCDC reference: 712271

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.005 Å
  • Disorder in main residue
  • R factor = 0.045
  • wR factor = 0.130
  • Data-to-parameter ratio = 15.2

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) Cu1 -- O4_b .. 15.57 su
Alert level C Value of measurement temperature given = 296.000 Value of melting point given = 0.000 PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.93 Ratio PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.30 Ratio PLAT301_ALERT_3_C Main Residue Disorder ......................... 9.00 Perc. PLAT410_ALERT_2_C Short Intra H...H Contact H7 .. H10E .. 1.93 Ang. PLAT234_ALERT_4_C Large Hirshfeld Difference O1 -- C1 .. 0.10 Ang.
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 91
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

It is well known that organic ligands play a crucial role in the design and construction of desirable frameworks. The changes in flexibility, length and symmetry of organic ligands can result in a remarkable class of materials bearing diverse architectures and functions. Thus, the construction of target molecules is a challenge for synthetic chemists (Ma et al., 2008; Chang et al., 2005; Xu et al., 2006). Benzene-1,3-dicarboxylic acid (isophthalic acid, H2isop) and its derivatives, with special conformations such as, an angle of 120° between two carboxylic groups, present versatile coordination modes that can yield predetermined networks. Such ligands have been widely used to construct coordination polymers (Pan et al., 2006; Yang et al., 2002; Ma et al., 2008).

The title compound, (I), was prepared by hydrothermal synthesis using 5-tert-butyl isophthalic acid, 2,2'-bipyridine and copper(II) actate. The asymmetric unit of (I) consists of one copper(II) ion, one tbip and one bipy ligand molecules (Fig. 1). Each copper(II) ion is four-coordinated by two nitrogen atoms from one bipy molecule and two oxygen atoms from two tbip ligands (Table 1). The coordination geometry of the copper(II) ion is distorted tetrahedral. The Cu—O bond lengths [1.933 (2)–1.965 (2) Å] are within the range reported for tetrahedral environments, and the Cu—N bond lengths [1.983 (3)–1.985 (3) Å] are also similar to those found in other tetrahedral copper complexes of bipy (Allen et al., 1987). Each tbip ligand adopts the bis-monodentated coordination mode to connect two symmetry related copper(II) ions so forming a zigzag polymer chain (Fig. 2).

Related literature top

For related literature on the synthesis of flexible organic ligands, see: Chang et al. (2005); Ma, Chen et al. (2008); Xu et al. (2006). For related literature on coordination polymers, see: Ma, Wang, Huo et al. (2008); Ma, Wang, Wang et al.(2008); Pan et al. (2006); Yang et al. (2002). For bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of 5-tert-butyl isophthalic acid (0.1 mmol, 23.1 mg), 2,2'-bipyridine (0.1 mmol, 15.8 mg), Cu(OAc).2.4H2O (0.05 mmol, 11.5 mg), NaOH (0.1 mmol, 4.0 mg) and H2O (15 ml) was placed in a Teflon-lined stainless steel vessel, and heated to 160 °C for 4 days. It was then cooled to room temperature over a period of 24 h. Blue block-like crystals of compound (I) were obtained.

Refinement top

The tertiary butyl methyl groups are disordered over two almost equally occupied positions: 0.506 (6)/0.494 (6). The H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.93–0.96 Å with Uiso(H) = 1.2 or 1.5Ueq(parent C-atom).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit of compound (I), with thermal ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity. Atoms with label A are related to those without by symmetry operation (x, -y+1.5, z+0.5).
[Figure 2] Fig. 2. A partial view, along the a axis, of the crystal packing of compound (I) showing the zigzag polymer chain. H atoms have been omitted for clarity.
catena-Poly[[(2,2'-bipyridine)copper(II)]-µ-5-tert-butylisophthalato] top
Crystal data top
[Cu(C12H12O4)(C10H8N2)]F(000) = 908
Mr = 439.94Dx = 1.373 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3455 reflections
a = 8.905 (2) Åθ = 2.5–22.5°
b = 20.875 (5) ŵ = 1.06 mm1
c = 11.564 (3) ÅT = 296 K
β = 98.188 (3)°Block, blue
V = 2127.8 (9) Å30.29 × 0.22 × 0.16 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3949 independent reflections
Radiation source: fine-focus sealed tube3021 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1010
Tmin = 0.716, Tmax = 0.845k = 2525
15716 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.065P)2 + 1.7017P]
where P = (Fo2 + 2Fc2)/3
3949 reflections(Δ/σ)max = 0.001
260 parametersΔρmax = 0.64 e Å3
91 restraintsΔρmin = 0.55 e Å3
Crystal data top
[Cu(C12H12O4)(C10H8N2)]V = 2127.8 (9) Å3
Mr = 439.94Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.905 (2) ŵ = 1.06 mm1
b = 20.875 (5) ÅT = 296 K
c = 11.564 (3) Å0.29 × 0.22 × 0.16 mm
β = 98.188 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3949 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
3021 reflections with I > 2σ(I)
Tmin = 0.716, Tmax = 0.845Rint = 0.040
15716 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04591 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.05Δρmax = 0.64 e Å3
3949 reflectionsΔρmin = 0.55 e Å3
260 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C100.2988 (8)0.7849 (4)0.0801 (8)0.0991 (17)0.50
H10A0.38080.78760.12550.149*0.50
H10B0.25800.74220.08510.149*0.50
H10C0.33550.79480.00000.149*0.50
C110.1382 (9)0.8222 (4)0.2581 (6)0.1033 (17)0.50
H11A0.05770.85060.28930.155*0.50
H11B0.10700.77860.27360.155*0.50
H11C0.22660.83100.29430.155*0.50
C120.2268 (8)0.9003 (3)0.1063 (7)0.1019 (19)0.50
H12A0.31130.90850.14730.153*0.50
H12B0.25700.90710.02420.153*0.50
H12C0.14500.92880.13410.153*0.50
C10'0.2432 (9)0.7777 (3)0.1868 (8)0.0991 (17)0.50
H10D0.20730.77910.26910.149*0.50
H10E0.21380.73780.15530.149*0.50
H10F0.35180.78130.17430.149*0.50
C11'0.1082 (9)0.8784 (4)0.2317 (7)0.1033 (17)0.50
H11D0.09670.92080.20210.155*0.50
H11E0.01120.86260.26710.155*0.50
H11F0.17640.87960.28900.155*0.50
C12'0.2878 (8)0.8749 (4)0.0548 (7)0.1019 (19)0.50
H12D0.36580.88710.09980.153*0.50
H12E0.33240.85230.01380.153*0.50
H12F0.23710.91250.03230.153*0.50
Cu10.30126 (5)0.570966 (18)0.17572 (3)0.03784 (16)
O10.1606 (3)0.63474 (11)0.1038 (2)0.0497 (6)
O20.3724 (3)0.67027 (13)0.0490 (3)0.0598 (7)
O30.3259 (3)0.87708 (12)0.1821 (2)0.0507 (6)
O40.1347 (3)0.94173 (12)0.1635 (2)0.0542 (7)
N10.2646 (3)0.50997 (13)0.0430 (2)0.0368 (6)
N20.4556 (3)0.50539 (13)0.2322 (2)0.0371 (6)
C10.2394 (5)0.67826 (18)0.0641 (3)0.0510 (8)
C20.1631 (4)0.74186 (15)0.0367 (3)0.0397 (8)
C30.2214 (4)0.78533 (16)0.0351 (3)0.0394 (8)
H30.30840.77560.06760.047*
C40.1487 (4)0.84380 (15)0.0584 (3)0.0378 (8)
C50.0213 (4)0.85804 (16)0.0065 (3)0.0430 (8)
H50.02610.89740.02200.052*
C60.0377 (4)0.81567 (17)0.0678 (3)0.0460 (9)
C70.0343 (4)0.75671 (16)0.0860 (3)0.0448 (9)
H70.00500.72640.13250.054*
C80.2057 (4)0.89150 (16)0.1391 (3)0.0422 (8)
C90.1753 (6)0.8323 (2)0.1271 (5)0.0809 (12)
C130.1605 (4)0.51736 (18)0.0526 (3)0.0469 (9)
H130.10310.55470.06080.056*
C140.1365 (4)0.4717 (2)0.1382 (3)0.0541 (10)
H140.06250.47750.20260.065*
C150.2233 (5)0.4176 (2)0.1271 (4)0.0575 (11)
H150.20870.38600.18420.069*
C160.3328 (4)0.40997 (18)0.0308 (3)0.0485 (9)
H160.39380.37360.02300.058*
C170.3503 (4)0.45690 (16)0.0533 (3)0.0352 (7)
C180.4614 (4)0.45458 (16)0.1610 (3)0.0353 (7)
C190.5640 (4)0.40508 (18)0.1901 (3)0.0478 (9)
H190.56750.37030.14020.057*
C200.6603 (5)0.4085 (2)0.2941 (4)0.0556 (10)
H200.72890.37550.31560.067*
C210.6549 (5)0.4606 (2)0.3664 (3)0.0548 (10)
H210.72030.46380.43640.066*
C220.5505 (4)0.50766 (18)0.3323 (3)0.0475 (9)
H220.54570.54280.38110.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C100.081 (4)0.096 (3)0.134 (4)0.009 (3)0.061 (3)0.009 (3)
C110.101 (4)0.102 (4)0.118 (4)0.020 (3)0.058 (3)0.004 (3)
C120.087 (4)0.084 (3)0.144 (5)0.035 (3)0.048 (3)0.007 (3)
C10'0.081 (4)0.096 (3)0.134 (4)0.009 (3)0.061 (3)0.009 (3)
C11'0.101 (4)0.102 (4)0.118 (4)0.020 (3)0.058 (3)0.004 (3)
C12'0.087 (4)0.084 (3)0.144 (5)0.035 (3)0.048 (3)0.007 (3)
Cu10.0495 (3)0.0268 (2)0.0376 (3)0.00568 (18)0.00751 (18)0.00124 (16)
O10.0618 (16)0.0312 (13)0.0578 (16)0.0093 (12)0.0143 (13)0.0113 (11)
O20.0639 (14)0.0477 (13)0.0722 (16)0.0222 (12)0.0247 (13)0.0112 (12)
O30.0599 (17)0.0424 (14)0.0514 (16)0.0017 (12)0.0132 (13)0.0113 (12)
O40.0725 (18)0.0373 (14)0.0517 (16)0.0066 (13)0.0042 (13)0.0124 (12)
N10.0414 (16)0.0347 (15)0.0340 (15)0.0035 (12)0.0042 (12)0.0052 (12)
N20.0448 (16)0.0336 (15)0.0322 (14)0.0010 (12)0.0029 (12)0.0018 (12)
C10.0611 (16)0.0381 (16)0.0573 (18)0.0190 (15)0.0207 (15)0.0079 (14)
C20.051 (2)0.0288 (17)0.0407 (19)0.0085 (15)0.0102 (16)0.0041 (14)
C30.046 (2)0.0351 (18)0.0373 (18)0.0047 (15)0.0085 (15)0.0008 (15)
C40.046 (2)0.0293 (16)0.0363 (18)0.0006 (14)0.0008 (15)0.0015 (14)
C50.046 (2)0.0299 (18)0.051 (2)0.0079 (15)0.0001 (16)0.0030 (15)
C60.047 (2)0.0335 (18)0.059 (2)0.0083 (16)0.0106 (17)0.0025 (17)
C70.051 (2)0.0324 (18)0.055 (2)0.0062 (16)0.0187 (17)0.0105 (16)
C80.058 (2)0.0337 (18)0.0317 (17)0.0047 (17)0.0048 (16)0.0022 (14)
C90.075 (3)0.062 (2)0.118 (3)0.021 (2)0.054 (3)0.011 (2)
C130.047 (2)0.049 (2)0.043 (2)0.0062 (17)0.0025 (16)0.0034 (17)
C140.047 (2)0.070 (3)0.043 (2)0.009 (2)0.0010 (17)0.0015 (19)
C150.062 (3)0.060 (3)0.049 (2)0.009 (2)0.0051 (19)0.020 (2)
C160.052 (2)0.042 (2)0.052 (2)0.0024 (17)0.0075 (18)0.0099 (17)
C170.0374 (18)0.0351 (17)0.0343 (17)0.0003 (14)0.0090 (14)0.0010 (14)
C180.0388 (18)0.0322 (17)0.0367 (18)0.0022 (14)0.0112 (14)0.0039 (14)
C190.053 (2)0.043 (2)0.048 (2)0.0117 (18)0.0132 (17)0.0019 (17)
C200.055 (2)0.058 (2)0.053 (2)0.020 (2)0.0061 (19)0.012 (2)
C210.057 (2)0.061 (3)0.044 (2)0.004 (2)0.0044 (18)0.0116 (19)
C220.057 (2)0.043 (2)0.041 (2)0.0016 (18)0.0012 (17)0.0005 (16)
Geometric parameters (Å, º) top
C10—C91.521 (9)N1—C171.341 (4)
C10—H10A0.9600N1—C131.347 (4)
C10—H10B0.9600N2—C221.333 (4)
C10—H10C0.9600N2—C181.348 (4)
C11—C91.519 (9)C1—C21.505 (5)
C11—H11A0.9600C2—C31.381 (5)
C11—H11B0.9600C2—C71.386 (5)
C11—H11C0.9600C3—C41.390 (5)
C12—C91.501 (7)C3—H30.9300
C12—H12A0.9600C4—C51.389 (5)
C12—H12B0.9600C4—C81.502 (5)
C12—H12C0.9600C5—C61.387 (5)
C10'—C91.504 (8)C5—H50.9300
C10'—H10D0.9600C6—C71.390 (5)
C10'—H10E0.9600C6—C91.527 (6)
C10'—H10F0.9600C7—H70.9300
C11'—C91.595 (9)C8—Cu1ii2.538 (4)
C11'—H11D0.9600C13—C141.368 (5)
C11'—H11E0.9600C13—H130.9300
C11'—H11F0.9600C14—C151.365 (6)
C12'—C91.502 (8)C14—H140.9300
C12'—H12D0.9600C15—C161.382 (6)
C12'—H12E0.9600C15—H150.9300
C12'—H12F0.9600C16—C171.373 (5)
Cu1—O11.933 (2)C16—H160.9300
Cu1—O3i1.956 (2)C17—C181.477 (5)
Cu1—N11.985 (3)C18—C191.388 (5)
Cu1—N21.983 (3)C19—C201.376 (5)
Cu1—C8i2.538 (4)C19—H190.9300
O1—C11.273 (4)C20—C211.377 (6)
O2—C11.233 (5)C20—H200.9300
O3—C81.279 (5)C21—C221.372 (5)
O3—Cu1ii1.956 (2)C21—H210.9300
O4—C81.236 (4)C22—H220.9300
C9—C10—H10A109.5C6—C5—C4122.4 (3)
C9—C10—H10B109.5C6—C5—H5118.8
H10A—C10—H10B109.5C4—C5—H5118.8
C9—C10—H10C109.5C5—C6—C7116.8 (3)
H10A—C10—H10C109.5C5—C6—C9122.1 (3)
H10B—C10—H10C109.5C7—C6—C9121.0 (4)
C9—C11—H11A109.5C2—C7—C6121.8 (3)
C9—C11—H11B109.5C2—C7—H7119.1
H11A—C11—H11B109.5C6—C7—H7119.1
C9—C11—H11C109.5O4—C8—O3122.7 (3)
H11A—C11—H11C109.5O4—C8—C4119.8 (4)
H11B—C11—H11C109.5O3—C8—C4117.5 (3)
C9—C12—H12A109.5O4—C8—Cu1ii76.6 (2)
C9—C12—H12B109.5O3—C8—Cu1ii49.07 (17)
H12A—C12—H12B109.5C4—C8—Cu1ii155.9 (2)
C9—C12—H12C109.5C12—C9—C10'131.1 (4)
H12A—C12—H12C109.5C12'—C9—C10'115.1 (5)
H12B—C12—H12C109.5C12—C9—C11108.0 (5)
C9—C10'—H10D109.5C12'—C9—C11132.1 (5)
C9—C10'—H10E109.5C10'—C9—C1158.7 (3)
H10D—C10'—H10E109.5C12—C9—C10111.7 (5)
C9—C10'—H10F109.5C12'—C9—C1078.2 (4)
H10D—C10'—H10F109.5C10'—C9—C1049.7 (2)
H10E—C10'—H10F109.5C11—C9—C10108.0 (4)
C9—C11'—H11D109.5C12—C9—C6112.9 (4)
C9—C11'—H11E109.5C12'—C9—C6113.5 (5)
H11D—C11'—H11E109.5C10'—C9—C6115.8 (4)
C9—C11'—H11F109.5C11—C9—C6110.0 (5)
H11D—C11'—H11F109.5C10—C9—C6106.1 (5)
H11E—C11'—H11F109.5C12—C9—C11'67.9 (3)
C9—C12'—H12D109.5C12'—C9—C11'102.3 (4)
C9—C12'—H12E109.5C10'—C9—C11'103.9 (5)
H12D—C12'—H12E109.5C11—C9—C11'47.3 (2)
C9—C12'—H12F109.5C10—C9—C11'146.9 (5)
H12D—C12'—H12F109.5C6—C9—C11'103.9 (5)
H12E—C12'—H12F109.5N1—C13—C14122.2 (4)
O1—Cu1—O3i88.17 (11)N1—C13—H13118.9
O1—Cu1—N194.83 (11)C14—C13—H13118.9
O3i—Cu1—N1172.79 (11)C15—C14—C13118.7 (4)
O1—Cu1—N2173.34 (11)C15—C14—H14120.6
O3i—Cu1—N296.69 (11)C13—C14—H14120.6
N1—Cu1—N280.88 (11)C14—C15—C16119.8 (4)
O1—Cu1—C8i82.87 (11)C14—C15—H15120.1
O3i—Cu1—C8i29.60 (11)C16—C15—H15120.1
N2—Cu1—C8i103.60 (11)C17—C16—C15119.0 (4)
N1—Cu1—C8i144.33 (12)C17—C16—H16120.5
C1—O1—Cu1106.8 (2)C15—C16—H16120.5
C8—O3—Cu1ii101.3 (2)N1—C17—C16121.4 (3)
C17—N1—C13118.9 (3)N1—C17—C18114.0 (3)
C17—N1—Cu1115.6 (2)C16—C17—C18124.6 (3)
C13—N1—Cu1125.4 (2)N2—C18—C19121.3 (3)
C22—N2—C18118.9 (3)N2—C18—C17114.2 (3)
C22—N2—Cu1125.8 (2)C19—C18—C17124.5 (3)
C18—N2—Cu1115.3 (2)C20—C19—C18118.7 (4)
O2—C1—O1123.0 (3)C20—C19—H19120.7
O2—C1—C2120.3 (3)C18—C19—H19120.7
O1—C1—C2116.7 (3)C19—C20—C21120.0 (4)
C3—C2—C7120.3 (3)C19—C20—H20120.0
C3—C2—C1120.6 (3)C21—C20—H20120.0
C7—C2—C1119.1 (3)C22—C21—C20118.2 (4)
C2—C3—C4119.3 (3)C22—C21—H21120.9
C2—C3—H3120.4C20—C21—H21120.9
C4—C3—H3120.4N2—C22—C21123.0 (4)
C5—C4—C3119.4 (3)N2—C22—H22118.5
C5—C4—C8119.7 (3)C21—C22—H22118.5
C3—C4—C8120.9 (3)
O3i—Cu1—O1—C184.9 (3)C3—C4—C8—Cu1ii47.6 (8)
N1—Cu1—O1—C1101.7 (3)C5—C6—C9—C126.0 (7)
C8i—Cu1—O1—C1114.1 (3)C7—C6—C9—C12174.1 (5)
O1—Cu1—N1—C17176.4 (2)C5—C6—C9—C12'32.7 (7)
N2—Cu1—N1—C171.5 (2)C7—C6—C9—C12'147.2 (5)
C8i—Cu1—N1—C1799.1 (3)C5—C6—C9—C10'169.2 (6)
N2—Cu1—N1—C13180.0 (3)C7—C6—C9—C10'10.7 (8)
C8i—Cu1—N1—C1379.4 (3)C5—C6—C9—C11126.8 (5)
O3i—Cu1—N2—C227.2 (3)C7—C6—C9—C1153.3 (7)
N1—Cu1—N2—C22179.6 (3)C5—C6—C9—C10116.6 (5)
C8i—Cu1—N2—C2236.5 (3)C7—C6—C9—C1063.3 (6)
O3i—Cu1—N2—C18172.5 (2)C5—C6—C9—C11'77.6 (6)
N1—Cu1—N2—C180.6 (2)C7—C6—C9—C11'102.6 (5)
C8i—Cu1—N2—C18143.3 (2)C17—N1—C13—C141.8 (5)
Cu1—O1—C1—O217.2 (5)Cu1—N1—C13—C14176.7 (3)
Cu1—O1—C1—C2162.2 (3)N1—C13—C14—C151.4 (6)
O2—C1—C2—C318.7 (6)C13—C14—C15—C160.1 (6)
O1—C1—C2—C3162.0 (3)C14—C15—C16—C171.1 (6)
O2—C1—C2—C7160.4 (4)C13—N1—C17—C160.7 (5)
O1—C1—C2—C719.0 (5)Cu1—N1—C17—C16178.0 (3)
C7—C2—C3—C40.7 (5)C13—N1—C17—C18179.3 (3)
C1—C2—C3—C4179.7 (3)Cu1—N1—C17—C182.1 (4)
C2—C3—C4—C51.7 (5)C15—C16—C17—N10.7 (6)
C2—C3—C4—C8178.1 (3)C15—C16—C17—C18179.3 (3)
C3—C4—C5—C60.5 (5)C22—N2—C18—C190.1 (5)
C8—C4—C5—C6179.3 (3)Cu1—N2—C18—C19179.8 (3)
C4—C5—C6—C71.7 (6)C22—N2—C18—C17179.5 (3)
C4—C5—C6—C9178.4 (4)Cu1—N2—C18—C170.3 (4)
C3—C2—C7—C61.7 (6)N1—C17—C18—N21.5 (4)
C1—C2—C7—C6177.4 (4)C16—C17—C18—N2178.5 (3)
C5—C6—C7—C22.8 (6)N1—C17—C18—C19178.9 (3)
C9—C6—C7—C2177.3 (4)C16—C17—C18—C191.1 (5)
Cu1ii—O3—C8—O422.7 (4)N2—C18—C19—C200.4 (5)
Cu1ii—O3—C8—C4155.6 (2)C17—C18—C19—C20179.2 (3)
C5—C4—C8—O43.7 (5)C18—C19—C20—C210.8 (6)
C3—C4—C8—O4176.1 (3)C19—C20—C21—C220.9 (6)
C5—C4—C8—O3178.0 (3)C18—N2—C22—C210.2 (5)
C3—C4—C8—O32.2 (5)Cu1—N2—C22—C21180.0 (3)
C5—C4—C8—Cu1ii132.2 (6)C20—C21—C22—N20.6 (6)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cu(C12H12O4)(C10H8N2)]
Mr439.94
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.905 (2), 20.875 (5), 11.564 (3)
β (°) 98.188 (3)
V3)2127.8 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.06
Crystal size (mm)0.29 × 0.22 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.716, 0.845
No. of measured, independent and
observed [I > 2σ(I)] reflections
15716, 3949, 3021
Rint0.040
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.130, 1.05
No. of reflections3949
No. of parameters260
No. of restraints91
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.55

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—O11.933 (2)Cu1—N11.985 (3)
Cu1—O3i1.956 (2)Cu1—N21.983 (3)
O1—Cu1—O3i88.17 (11)O1—Cu1—N2173.34 (11)
O1—Cu1—N194.83 (11)O3i—Cu1—N296.69 (11)
O3i—Cu1—N1172.79 (11)N1—Cu1—N280.88 (11)
Symmetry code: (i) x, y+3/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds