Download citation
Download citation
link to html
The title compound, [Tl2(C3H10NO9P3)]n, a TlI organic–inorganic hybrid complex, was synthesized by the reaction of nitrilo­tris(methyl­enephospho­nic acid) with thallium(I) nitrate. There are two types of Tl+ ions in the complex, with coordination numbers of eight and seven and with stereochemically active and inactive lone-pair electrons, respectively. In the crystal, the doubly deprotonated ligands form two-dimensional hydrogen-bonded layers through O—H...O hydrogen bonds. The NH group is involved in a trifurcated intra­molecular hydrogen bond. Coordination of the phospho­nate ligands to the Tl+ ions creates a three-dimensional structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536809031006/su2128sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536809031006/su2128Isup2.hkl
Contains datablock I

CCDC reference: 647434

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](N-C) = 0.008 Å
  • R factor = 0.025
  • wR factor = 0.055
  • Data-to-parameter ratio = 16.8

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT220_ALERT_2_C Large Non-Solvent O Ueq(max)/Ueq(min) ... 3.05 Ratio PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 4.00 Ratio
Alert level G ABSTM02_ALERT_3_G The ratio of expected to reported Tmax/Tmin(RR) is > 1.50 Tmin and Tmax reported: 0.104 0.183 Tmin and Tmax expected: 0.027 0.076 RR = 1.616 Please check that your absorption correction is appropriate. PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 12 PLAT154_ALERT_1_G The su's on the Cell Angles are Equal (x 10000) 100 Deg. PLAT180_ALERT_4_G Check Cell Rounding: # of Values Ending with 0 = 3 PLAT764_ALERT_4_G Overcomplete CIF Bond List Detected (Rep/Expd) . 1.43 Ratio PLAT793_ALERT_4_G The Model has Chirality at N1 (Verify) .... S
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 6 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Metal phosphonate complexes of the ligand nitrilotris(methylenephosphonic acid (H6L), giving two different types of 1:1 (M/L) metal phosphonate complexes, M[NH(CH2PO3H)3(H2O)3](M = Mn, Co, Ni, Cu, Zn, Cd), with two-dimensional hydrogen-bonded layered structures, have been prepared previously by (Sharma et al., 2001).

In the structure of the title compound, synthesized by the reaction of the same ligand with thallium(I) nitrate, the nitrilotris(methylenephosphonate) (H4L2-) group is doublely deprotonated and two different environments for the Thallium atoms are observed, as shown in Figs. 1 and 2. Eight O-atoms of five H4L2- phosphonate ligands are coordinated to the Tl1 ion (Fig. 1), while seven oxygen atoms of five H4L2- phosphonate ligands are coordinated to the Tl2 ion (Fig. 2).

The conformation of the doublely deprotonated nitrilotris(methylenephosphonate) ligand is illustrated in Fig. 3. The hydrogen atoms on atoms O1 and O2 are positionally disordered with relative occupancies of 0.5:0.5. Each H4L2- dianion links to five Tl1 and five Tl2 ions (Fig. 4).

The doublely deprotonated H4L2- ligand forms two-dimensional hydrogen bonded layers via O—H···O hydrogen bonds involving hydroxyl groups O1, O2, O6 and O7 (Table 1 and Fig. 5). Atoms O3, O5 and O8 do not contribute in this type of hydrogen bond, rather they coordinate only to the Tl+ions. The NH group is involved in a 4-centre trifurcated intramolecular hydrogen bond with O-atoms O3, O5 and O8 (Table 1). Coordination of the ligand to the metal ions in the interlayer space creates a three-dimensional structure (Fig. 6).

Related literature top

For related metal phosphonate complexes of the same ligand, see: Sharma et al. (2001).

Experimental top

Thallium(I)nitrate (0.133 g, 0.5 mmol) was added in several portions to a solution of nitrilotris(methylenephosphonicacid) (H6L) (0.104 g, 0.35 mmol) in 12 ml of a deionized water-ethanol mixture (3:5). The solution was stirred for seven days and a white precipitate was obtained. This was filtered off and recrystallized from deionized water at rt. Colorless prism-like crystals of the title compound were obtained in 68% yield (based on the Tl atom). Elemental analysis for Tl2(H4L), C3H10NO9P3Tl2:C, 5.06; H, 1.36; N, 2.03%. Calc.: C, 5.10; H, 1.41; N, 1.98%.

Refinement top

The NH and OH H-atoms were located in a difference electron-density map and were refined with distance restraints: O—H = 0.82 (2) and N—H = 0.86 (2) Å, with Uiso(H) = 1.2Ueq(N,O). The C-bound H atoms were positioned geometrically and refined using a riding model: C—H = 0.99 Å, with Uiso(H) = 1.2 times Ueq(C).

Structure description top

Metal phosphonate complexes of the ligand nitrilotris(methylenephosphonic acid (H6L), giving two different types of 1:1 (M/L) metal phosphonate complexes, M[NH(CH2PO3H)3(H2O)3](M = Mn, Co, Ni, Cu, Zn, Cd), with two-dimensional hydrogen-bonded layered structures, have been prepared previously by (Sharma et al., 2001).

In the structure of the title compound, synthesized by the reaction of the same ligand with thallium(I) nitrate, the nitrilotris(methylenephosphonate) (H4L2-) group is doublely deprotonated and two different environments for the Thallium atoms are observed, as shown in Figs. 1 and 2. Eight O-atoms of five H4L2- phosphonate ligands are coordinated to the Tl1 ion (Fig. 1), while seven oxygen atoms of five H4L2- phosphonate ligands are coordinated to the Tl2 ion (Fig. 2).

The conformation of the doublely deprotonated nitrilotris(methylenephosphonate) ligand is illustrated in Fig. 3. The hydrogen atoms on atoms O1 and O2 are positionally disordered with relative occupancies of 0.5:0.5. Each H4L2- dianion links to five Tl1 and five Tl2 ions (Fig. 4).

The doublely deprotonated H4L2- ligand forms two-dimensional hydrogen bonded layers via O—H···O hydrogen bonds involving hydroxyl groups O1, O2, O6 and O7 (Table 1 and Fig. 5). Atoms O3, O5 and O8 do not contribute in this type of hydrogen bond, rather they coordinate only to the Tl+ions. The NH group is involved in a 4-centre trifurcated intramolecular hydrogen bond with O-atoms O3, O5 and O8 (Table 1). Coordination of the ligand to the metal ions in the interlayer space creates a three-dimensional structure (Fig. 6).

For related metal phosphonate complexes of the same ligand, see: Sharma et al. (2001).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Environment of the Tl1 atom.
[Figure 2] Fig. 2. Environment of the Tl2 atom.
[Figure 3] Fig. 3. The conformation of the doubly deprotonated nitrilotris(methylenephosphonate) ligand.
[Figure 4] Fig. 4. Each H4L2- dianion links to five Tl1 and five Tl2 ions.
[Figure 5] Fig. 5. Two-dimensional hydrogen-bonded layers formed via O—H···O hydrogen bonds involving hydroxyl groups.
[Figure 6] Fig. 6. The three-dimensional structure resulting from the coordination of the ligand to the metal ions in the interlayer space.
[Figure 7] Fig. 7. Reaction scheme.
Poly[{µ-[(phosphonomethyl)iminodimethylene]diphosphonato}dithallium(I)] top
Crystal data top
[Tl2(C3H10NO9P3)]Z = 2
Mr = 705.77F(000) = 628
Triclinic, P1Dx = 3.691 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9236 (6) ÅCell parameters from 266 reflections
b = 8.0932 (6) Åθ = 3–26°
c = 10.9136 (8) ŵ = 25.76 mm1
α = 81.422 (1)°T = 100 K
β = 79.023 (1)°Prism, colorless
γ = 68.085 (1)°0.16 × 0.14 × 0.10 mm
V = 635.06 (8) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2744 independent reflections
Radiation source: fine-focus sealed tube2437 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 27.0°, θmin = 1.9°
Absorption correction: numerical
(XPREP; Bruker, 2007)
h = 1010
Tmin = 0.104, Tmax = 0.183k = 1010
6627 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.055H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0225P)2 + 1.104P]
where P = (Fo2 + 2Fc2)/3
2744 reflections(Δ/σ)max = 0.003
163 parametersΔρmax = 1.72 e Å3
12 restraintsΔρmin = 1.83 e Å3
Crystal data top
[Tl2(C3H10NO9P3)]γ = 68.085 (1)°
Mr = 705.77V = 635.06 (8) Å3
Triclinic, P1Z = 2
a = 7.9236 (6) ÅMo Kα radiation
b = 8.0932 (6) ŵ = 25.76 mm1
c = 10.9136 (8) ÅT = 100 K
α = 81.422 (1)°0.16 × 0.14 × 0.10 mm
β = 79.023 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2744 independent reflections
Absorption correction: numerical
(XPREP; Bruker, 2007)
2437 reflections with I > 2σ(I)
Tmin = 0.104, Tmax = 0.183Rint = 0.029
6627 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02512 restraints
wR(F2) = 0.055H-atom parameters constrained
S = 1.05Δρmax = 1.72 e Å3
2744 reflectionsΔρmin = 1.83 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Tl10.29076 (3)0.05875 (3)0.25484 (2)0.01064 (7)
Tl20.23248 (3)0.24843 (3)0.54672 (2)0.01703 (8)
P10.7521 (3)0.2462 (3)0.42352 (16)0.0201 (4)
P20.7554 (2)0.0669 (2)0.10302 (14)0.0090 (3)
P30.2557 (2)0.4329 (2)0.20298 (14)0.0091 (3)
O10.6684 (8)0.4387 (7)0.4597 (5)0.0331 (13)
H1O0.57530.48940.50720.040*0.50
O20.9424 (7)0.1622 (8)0.4631 (5)0.0311 (12)
H2O0.98280.05860.49360.037*0.50
O30.6291 (6)0.1391 (5)0.4655 (4)0.0119 (9)
O40.7469 (6)0.1263 (6)0.0199 (4)0.0148 (9)
O50.6365 (6)0.1126 (6)0.2173 (4)0.0151 (9)
O60.9564 (6)0.1194 (5)0.1274 (4)0.0129 (9)
H6O1.00470.21570.16600.015*
O70.2360 (6)0.4303 (6)0.0624 (4)0.0145 (9)
H7O0.24180.33130.04850.017*
O80.2641 (6)0.2594 (5)0.2794 (4)0.0108 (8)
O90.1203 (6)0.6039 (6)0.2530 (4)0.0141 (9)
N10.6274 (7)0.2583 (6)0.2032 (4)0.0086 (10)
H1N0.55900.20940.25600.010*
C10.7944 (8)0.2553 (8)0.2523 (6)0.0116 (12)
H1A0.82250.36380.21770.014*
H1B0.90180.14970.22510.014*
C20.6768 (8)0.1763 (8)0.0791 (5)0.0089 (11)
H2A0.77490.21300.02570.011*
H2B0.56770.22090.03510.011*
C30.4836 (8)0.4433 (8)0.1986 (6)0.0111 (12)
H3A0.51400.51330.12090.013*
H3B0.48280.50470.27080.013*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tl10.00946 (12)0.01138 (12)0.01117 (12)0.00463 (9)0.00049 (9)0.00006 (9)
Tl20.01643 (14)0.01862 (14)0.00967 (13)0.00101 (10)0.00066 (10)0.00088 (10)
P10.0291 (10)0.0340 (10)0.0090 (8)0.0260 (9)0.0018 (7)0.0005 (7)
P20.0088 (7)0.0092 (7)0.0072 (7)0.0023 (6)0.0003 (6)0.0001 (6)
P30.0081 (7)0.0095 (7)0.0080 (7)0.0021 (6)0.0001 (6)0.0003 (6)
O10.048 (3)0.031 (2)0.028 (2)0.026 (2)0.006 (2)0.0084 (19)
O20.023 (2)0.051 (3)0.027 (2)0.0233 (19)0.0095 (18)0.0074 (19)
O30.011 (2)0.012 (2)0.013 (2)0.0062 (17)0.0001 (18)0.0018 (17)
O40.023 (2)0.010 (2)0.011 (2)0.0034 (18)0.0045 (19)0.0010 (17)
O50.010 (2)0.020 (2)0.011 (2)0.0038 (18)0.0011 (18)0.0028 (18)
O60.010 (2)0.010 (2)0.015 (2)0.0028 (17)0.0031 (18)0.0090 (17)
O70.020 (2)0.012 (2)0.011 (2)0.0045 (19)0.0062 (19)0.0013 (17)
O80.010 (2)0.009 (2)0.012 (2)0.0033 (17)0.0013 (17)0.0001 (16)
O90.011 (2)0.013 (2)0.014 (2)0.0010 (18)0.0017 (18)0.0027 (18)
N10.009 (2)0.011 (2)0.007 (2)0.005 (2)0.0031 (19)0.0031 (19)
C10.009 (3)0.016 (3)0.014 (3)0.007 (2)0.001 (2)0.004 (2)
C20.006 (3)0.011 (3)0.007 (3)0.001 (2)0.002 (2)0.001 (2)
C30.010 (3)0.012 (3)0.009 (3)0.003 (2)0.004 (2)0.006 (2)
Geometric parameters (Å, º) top
Tl1—O82.555 (4)P3—C31.830 (6)
Tl1—O52.569 (4)O1—Tl2iii2.906 (5)
Tl1—O4i2.778 (4)O1—H1O0.8200
Tl1—O3ii3.159 (4)O2—Tl2vi2.965 (5)
Tl2—O5ii2.870 (4)O2—H2O0.8201
Tl2—O82.871 (4)O3—Tl2ii2.926 (4)
Tl2—O1iii2.906 (5)O3—Tl1ii3.159 (4)
Tl2—O32.922 (4)O4—Tl1i2.778 (4)
Tl2—O3ii2.926 (4)O5—Tl2ii2.870 (4)
Tl2—O2iv2.965 (5)O6—H6O0.8200
Tl2—O9v3.159 (4)O7—H7O0.8201
P1—O31.501 (4)O9—Tl2v3.159 (4)
P1—O21.522 (5)N1—C31.506 (7)
P1—O11.529 (6)N1—C11.510 (7)
P1—C11.829 (6)N1—C21.517 (7)
P2—O51.502 (5)N1—H1N0.8699
P2—O41.512 (4)C1—H1A0.9900
P2—O61.552 (4)C1—H1B0.9900
P2—C21.823 (6)C2—H2A0.9900
P3—O91.503 (4)C2—H2B0.9900
P3—O81.507 (4)C3—H3A0.9900
P3—O71.576 (4)C3—H3B0.9900
O8—Tl1—O582.65 (14)O9—P3—O7109.6 (2)
O8—Tl1—O4i73.72 (13)O8—P3—O7112.4 (2)
O5—Tl1—O4i90.64 (13)O9—P3—C3105.9 (3)
O8—Tl1—O3ii84.83 (12)O8—P3—C3104.2 (3)
O5—Tl1—O3ii80.14 (12)O7—P3—C3105.6 (3)
O4i—Tl1—O3ii157.62 (11)P1—O1—Tl2iii140.5 (3)
O8—Tl1—Tl242.43 (9)P1—O1—H1O131.2
O5—Tl1—Tl288.38 (10)Tl2iii—O1—H1O87.0
O4i—Tl1—Tl2115.70 (8)P1—O2—Tl2vi142.9 (3)
O3ii—Tl1—Tl244.31 (7)P1—O2—H2O122.8
O5ii—Tl2—O8153.26 (12)Tl2vi—O2—H2O91.4
O5ii—Tl2—O1iii90.93 (14)P1—O3—Tl2131.5 (2)
O8—Tl2—O1iii94.48 (13)P1—O3—Tl2ii121.5 (2)
O5ii—Tl2—O379.76 (12)Tl2—O3—Tl2ii106.77 (13)
O8—Tl2—O376.90 (12)P1—O3—Tl1ii95.14 (19)
O1iii—Tl2—O372.87 (14)Tl2—O3—Tl1ii91.85 (11)
O5ii—Tl2—O3ii76.88 (12)Tl2ii—O3—Tl1ii86.74 (11)
O8—Tl2—O3ii84.01 (11)P2—O4—Tl1i130.9 (2)
O1iii—Tl2—O3ii145.49 (14)P2—O5—Tl1130.2 (2)
O3—Tl2—O3ii73.23 (13)P2—O5—Tl2ii122.6 (2)
O5ii—Tl2—O2iv123.69 (14)Tl1—O5—Tl2ii106.85 (15)
O8—Tl2—O2iv66.41 (13)P2—O6—H6O119.1
O1iii—Tl2—O2iv137.28 (16)P3—O7—H7O111.0
O3—Tl2—O2iv132.04 (14)P3—O8—Tl1141.1 (2)
O3ii—Tl2—O2iv73.22 (14)P3—O8—Tl2118.2 (2)
O5ii—Tl2—O9v76.06 (12)Tl1—O8—Tl2100.67 (13)
O8—Tl2—O9v129.64 (11)P3—O9—Tl2v141.9 (3)
O1iii—Tl2—O9v92.73 (14)C3—N1—C1111.4 (4)
O3—Tl2—O9v151.59 (11)C3—N1—C2112.6 (4)
O3ii—Tl2—O9v114.72 (11)C1—N1—C2112.4 (4)
O2iv—Tl2—O9v74.91 (13)C3—N1—H1N95.5
O5ii—Tl2—Tl1125.55 (9)C1—N1—H1N113.9
O8—Tl2—Tl136.90 (8)C2—N1—H1N109.9
O1iii—Tl2—Tl1129.09 (10)N1—C1—P1110.2 (4)
O3—Tl2—Tl179.78 (8)N1—C1—H1A109.6
O3ii—Tl2—Tl148.95 (8)P1—C1—H1A109.6
O2iv—Tl2—Tl152.33 (11)N1—C1—H1B109.6
O9v—Tl2—Tl1126.82 (8)P1—C1—H1B109.6
O3—P1—O2115.2 (3)H1A—C1—H1B108.1
O3—P1—O1114.5 (3)N1—C2—P2110.9 (4)
O2—P1—O1108.2 (3)N1—C2—H2A109.5
O3—P1—C1106.0 (3)P2—C2—H2A109.5
O2—P1—C1104.8 (3)N1—C2—H2B109.5
O1—P1—C1107.4 (3)P2—C2—H2B109.5
O5—P2—O4117.4 (3)H2A—C2—H2B108.1
O5—P2—O6111.2 (2)N1—C3—P3110.7 (4)
O4—P2—O6112.0 (3)N1—C3—H3A109.5
O5—P2—C2106.8 (3)P3—C3—H3A109.5
O4—P2—C2104.8 (3)N1—C3—H3B109.5
O6—P2—C2103.2 (3)P3—C3—H3B109.5
O9—P3—O8118.1 (3)H3A—C3—H3B108.1
O8—Tl1—Tl2—O5ii151.22 (18)O5—P2—O4—Tl1i132.5 (3)
O5—Tl1—Tl2—O5ii70.36 (17)O6—P2—O4—Tl1i97.0 (3)
O4i—Tl1—Tl2—O5ii160.29 (15)C2—P2—O4—Tl1i14.2 (4)
O3ii—Tl1—Tl2—O5ii7.15 (15)O4—P2—O5—Tl151.5 (4)
O5—Tl1—Tl2—O880.86 (17)O6—P2—O5—Tl1177.6 (3)
O4i—Tl1—Tl2—O89.07 (17)C2—P2—O5—Tl165.7 (4)
O3ii—Tl1—Tl2—O8158.37 (18)O4—P2—O5—Tl2ii136.2 (3)
O8—Tl1—Tl2—O1iii23.9 (2)O6—P2—O5—Tl2ii5.3 (3)
O5—Tl1—Tl2—O1iii56.95 (18)C2—P2—O5—Tl2ii106.6 (3)
O4i—Tl1—Tl2—O1iii32.99 (19)O8—Tl1—O5—P277.8 (3)
O3ii—Tl1—Tl2—O1iii134.46 (19)O4i—Tl1—O5—P24.3 (3)
O8—Tl1—Tl2—O381.77 (16)O3ii—Tl1—O5—P2163.8 (3)
O5—Tl1—Tl2—O30.90 (12)Tl2—Tl1—O5—P2120.0 (3)
O4i—Tl1—Tl2—O390.84 (13)O8—Tl1—O5—Tl2ii95.39 (16)
O3ii—Tl1—Tl2—O376.60 (15)O4i—Tl1—O5—Tl2ii168.88 (15)
O8—Tl1—Tl2—O3ii158.37 (18)O3ii—Tl1—O5—Tl2ii9.39 (13)
O5—Tl1—Tl2—O3ii77.51 (15)Tl2—Tl1—O5—Tl2ii53.19 (12)
O4i—Tl1—Tl2—O3ii167.44 (15)O9—P3—O8—Tl1137.8 (3)
O8—Tl1—Tl2—O2iv100.75 (19)O7—P3—O8—Tl18.7 (5)
O5—Tl1—Tl2—O2iv178.39 (16)C3—P3—O8—Tl1105.1 (4)
O4i—Tl1—Tl2—O2iv91.67 (17)O9—P3—O8—Tl239.7 (3)
O3ii—Tl1—Tl2—O2iv100.88 (17)O7—P3—O8—Tl2168.8 (2)
O8—Tl1—Tl2—O9v109.29 (17)C3—P3—O8—Tl277.3 (3)
O5—Tl1—Tl2—O9v169.85 (14)O5—Tl1—O8—P386.5 (4)
O4i—Tl1—Tl2—O9v100.22 (15)O4i—Tl1—O8—P36.3 (4)
O3ii—Tl1—Tl2—O9v92.34 (15)O3ii—Tl1—O8—P3167.2 (4)
O3—P1—O1—Tl2iii173.5 (4)Tl2—Tl1—O8—P3177.8 (5)
O2—P1—O1—Tl2iii43.6 (5)O5—Tl1—O8—Tl295.68 (14)
C1—P1—O1—Tl2iii69.0 (5)O4i—Tl1—O8—Tl2171.49 (16)
O3—P1—O2—Tl2vi143.4 (4)O3ii—Tl1—O8—Tl214.98 (12)
O1—P1—O2—Tl2vi13.9 (6)O5ii—Tl2—O8—P3121.0 (3)
C1—P1—O2—Tl2vi100.4 (5)O1iii—Tl2—O8—P320.0 (3)
O2—P1—O3—Tl2144.1 (3)O3—Tl2—O8—P391.2 (2)
O1—P1—O3—Tl217.7 (4)O3ii—Tl2—O8—P3165.3 (3)
C1—P1—O3—Tl2100.5 (3)O2iv—Tl2—O8—P3120.4 (3)
O2—P1—O3—Tl2ii42.3 (4)O9v—Tl2—O8—P377.3 (3)
O1—P1—O3—Tl2ii168.6 (3)Tl1—Tl2—O8—P3178.4 (3)
C1—P1—O3—Tl2ii73.1 (3)O5ii—Tl2—O8—Tl160.5 (3)
O2—P1—O3—Tl1ii47.0 (3)O1iii—Tl2—O8—Tl1161.60 (16)
O1—P1—O3—Tl1ii79.3 (3)O3—Tl2—O8—Tl190.36 (14)
C1—P1—O3—Tl1ii162.5 (2)O3ii—Tl2—O8—Tl116.23 (13)
O5ii—Tl2—O3—P1106.4 (3)O2iv—Tl2—O8—Tl158.05 (16)
O8—Tl2—O3—P186.7 (3)O9v—Tl2—O8—Tl1101.10 (16)
O1iii—Tl2—O3—P112.2 (3)O8—P3—O9—Tl2v15.8 (5)
O3ii—Tl2—O3—P1174.3 (4)O7—P3—O9—Tl2v114.7 (4)
O2iv—Tl2—O3—P1127.0 (3)C3—P3—O9—Tl2v131.9 (4)
O9v—Tl2—O3—P174.5 (4)C3—N1—C1—P180.8 (5)
Tl1—Tl2—O3—P1124.3 (3)C2—N1—C1—P1151.7 (4)
O5ii—Tl2—O3—Tl2ii79.25 (14)O3—P1—C1—N133.2 (5)
O8—Tl2—O3—Tl2ii87.61 (13)O2—P1—C1—N1155.5 (4)
O1iii—Tl2—O3—Tl2ii173.44 (17)O1—P1—C1—N189.7 (5)
O3ii—Tl2—O3—Tl2ii0.0C3—N1—C2—P2152.4 (4)
O2iv—Tl2—O3—Tl2ii47.3 (2)C1—N1—C2—P280.8 (5)
O9v—Tl2—O3—Tl2ii111.2 (2)O5—P2—C2—N139.1 (4)
Tl1—Tl2—O3—Tl2ii50.01 (10)O4—P2—C2—N1164.3 (4)
O5ii—Tl2—O3—Tl1ii7.90 (11)O6—P2—C2—N178.3 (4)
O8—Tl2—O3—Tl1ii174.76 (12)C1—N1—C3—P3156.6 (4)
O1iii—Tl2—O3—Tl1ii86.28 (14)C2—N1—C3—P376.0 (5)
O3ii—Tl2—O3—Tl1ii87.15 (13)O9—P3—C3—N1156.2 (4)
O2iv—Tl2—O3—Tl1ii134.49 (15)O8—P3—C3—N131.0 (4)
O9v—Tl2—O3—Tl1ii24.0 (3)O7—P3—C3—N187.6 (4)
Tl1—Tl2—O3—Tl1ii137.17 (9)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1; (iii) x+1, y+1, z+1; (iv) x1, y, z; (v) x, y+1, z+1; (vi) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O30.872.392.882 (5)116
N1—H1N···O50.872.532.957 (6)111
N1—H1N···O80.872.192.837 (7)131
O1—H1O···O1iii0.821.782.504 (8)147
O2—H2O···O2vii0.821.682.497 (7)171
O6—H6O···O9viii0.821.672.484 (6)171
O7—H7O···O4i0.821.702.521 (6)180
Symmetry codes: (i) x+1, y, z; (iii) x+1, y+1, z+1; (vii) x+2, y, z+1; (viii) x+1, y1, z.

Experimental details

Crystal data
Chemical formula[Tl2(C3H10NO9P3)]
Mr705.77
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.9236 (6), 8.0932 (6), 10.9136 (8)
α, β, γ (°)81.422 (1), 79.023 (1), 68.085 (1)
V3)635.06 (8)
Z2
Radiation typeMo Kα
µ (mm1)25.76
Crystal size (mm)0.16 × 0.14 × 0.10
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionNumerical
(XPREP; Bruker, 2007)
Tmin, Tmax0.104, 0.183
No. of measured, independent and
observed [I > 2σ(I)] reflections
6627, 2744, 2437
Rint0.029
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.055, 1.05
No. of reflections2744
No. of parameters163
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.72, 1.83

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O30.872.392.882 (5)116
N1—H1N···O50.872.532.957 (6)111
N1—H1N···O80.872.192.837 (7)131
O1—H1O···O1i0.821.782.504 (8)147
O2—H2O···O2ii0.821.682.497 (7)171
O6—H6O···O9iii0.821.672.484 (6)171
O7—H7O···O4iv0.821.702.521 (6)180
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y, z+1; (iii) x+1, y1, z; (iv) x+1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds