Download citation
Download citation
link to html
In the title Schiff base compound, C18H13N3O4, prepared by the reaction of 2-hydr­oxy-1-naphthaldehyde with 2-nitro­benzohydrazide, the dihedral angle between the benzene ring and naphthyl ring system is 23.0 (2)°. There is an intra­molecular O—H...N hydrogen bond involving the naphthalene hydr­oxy substituent and a hydrazide N atom. In the crystal structure, symmetry-related mol­ecules are linked through inter­molecular N—H...O hydrogen bonds, forming chains propagating in [101].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053681001490X/su2174sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053681001490X/su2174Isup2.hkl
Contains datablock I

CCDC reference: 778061

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.044
  • wR factor = 0.111
  • Data-to-parameter ratio = 12.9

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ..... 1 PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 15 PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 27
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 1 PLAT128_ALERT_4_G Non-standard setting of Space-group P21/c .... P21/n
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Schiff base compounds are a class of important materials used as pharmaceuticals and in various medicinal fields of interest (Dao et al., 2000; Sriram et al., 2006; Karthikeyan et al., 2006). Schiff bases have also been used as versatile ligands in coordination chemistry (Ali et al., 2008; Kargar et al., 2009; Yeap et al., 2009). Recently, the crystal structures of a large number of new Schiff base compounds have been reported (Fun et al., 2009; Nadeem et al., 2009; Eltayeb et al., 2008). As a continuation of our work on such compounds (Hao, 2009a,b,c,d) we report herein on the crystal structure of a new title Schiff base compound, prepared by the reaction of 2-hydroxy-1-naphthyaldehyde with 2-nitrobenzohydrazide.

The molecular structure of the title compound is illustrated in Fig. 1. In the molecule there is an intramolecular O—H···N hydrogen bond, involving the naphthalene hydroxyl substituent and the hydrazide N-atom (Fig.1 and Table 1). The molecule is twisted with the dihedral angle between the benzene and the naphthyl ring mean planes being 23.0 (2)°. All the bond lengths are within normal values (Allen et al., 1987).

In the crystal structure, symmetry related molecules are linked through intermolecular N—H···O hydrogen bonds, forming chains propagating in [101] (see Table 1 and Fig. 2).

Related literature top

For the pharmaceutical and medicinal activity of Schiff bases, see: Dao et al. (2000); Sriram et al. (2006); Karthikeyan et al. (2006). For the coordination chemistry of Schiff bases, see: Ali et al. (2008); Kargar et al. (2009); Yeap et al. (2009). For the crystal structures of Schiff base compounds, see: Fun et al. (2009); Nadeem et al. (2009); Eltayeb et al. (2008). For Schiff base compounds reported by the author, see: Hao (2009a,b,c,d). For reference structural data, see: Allen et al. (1987).

Experimental top

2-Hydroxy-1-naphthyaldehyde (0.1 mmol, 17.2 mg) and 2-nitrobenzohydrazide (0.1 mmol, 18.1 mg) in 30 ml of methanol were refluxed for 30 min to give a clear colourless solution. Colourless block-shaped single crystals of the title compound were formed by slow evaporation of the solvent over several days at room temperature.

Refinement top

Hydrogen atom H2 was located in a difference Fourier map and refined isotropically, with the N—H distance restrained to 0.90 (1)Å, and Uiso(H) restrained to 0.08 Å2. The other H-atoms were included in calculated positions and treated as riding atoms: d(C—H) = 0.93 Å, d(O—H) = 0.82 Å with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).

Structure description top

Schiff base compounds are a class of important materials used as pharmaceuticals and in various medicinal fields of interest (Dao et al., 2000; Sriram et al., 2006; Karthikeyan et al., 2006). Schiff bases have also been used as versatile ligands in coordination chemistry (Ali et al., 2008; Kargar et al., 2009; Yeap et al., 2009). Recently, the crystal structures of a large number of new Schiff base compounds have been reported (Fun et al., 2009; Nadeem et al., 2009; Eltayeb et al., 2008). As a continuation of our work on such compounds (Hao, 2009a,b,c,d) we report herein on the crystal structure of a new title Schiff base compound, prepared by the reaction of 2-hydroxy-1-naphthyaldehyde with 2-nitrobenzohydrazide.

The molecular structure of the title compound is illustrated in Fig. 1. In the molecule there is an intramolecular O—H···N hydrogen bond, involving the naphthalene hydroxyl substituent and the hydrazide N-atom (Fig.1 and Table 1). The molecule is twisted with the dihedral angle between the benzene and the naphthyl ring mean planes being 23.0 (2)°. All the bond lengths are within normal values (Allen et al., 1987).

In the crystal structure, symmetry related molecules are linked through intermolecular N—H···O hydrogen bonds, forming chains propagating in [101] (see Table 1 and Fig. 2).

For the pharmaceutical and medicinal activity of Schiff bases, see: Dao et al. (2000); Sriram et al. (2006); Karthikeyan et al. (2006). For the coordination chemistry of Schiff bases, see: Ali et al. (2008); Kargar et al. (2009); Yeap et al. (2009). For the crystal structures of Schiff base compounds, see: Fun et al. (2009); Nadeem et al. (2009); Eltayeb et al. (2008). For Schiff base compounds reported by the author, see: Hao (2009a,b,c,d). For reference structural data, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability ellipsoids. The intramolecular O-H···N hydrogenbond is shown as a dashed line.
[Figure 2] Fig. 2. Molecular packing of the title compound, viewed along the c-axis, with the N-H···O hydrogen bonds drawn as dashed lines (see Table 1 for details).
N'-[(2-Hydroxy-1-naphthyl)methylidene]-2-nitrobenzohydrazide top
Crystal data top
C18H13N3O4F(000) = 696
Mr = 335.31Dx = 1.434 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1415 reflections
a = 7.4473 (6) Åθ = 2.6–24.5°
b = 29.068 (2) ŵ = 0.10 mm1
c = 7.8504 (6) ÅT = 298 K
β = 113.963 (4)°Block, colourless
V = 1553.0 (2) Å30.30 × 0.28 × 0.27 mm
Z = 4
Data collection top
Bruker SMART CCD area detector
diffractometer
2972 independent reflections
Radiation source: fine-focus sealed tube1856 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω scansθmax = 25.9°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.970, Tmax = 0.973k = 3530
8499 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0464P)2 + 0.0232P]
where P = (Fo2 + 2Fc2)/3
2972 reflections(Δ/σ)max < 0.001
230 parametersΔρmax = 0.16 e Å3
1 restraintΔρmin = 0.22 e Å3
Crystal data top
C18H13N3O4V = 1553.0 (2) Å3
Mr = 335.31Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.4473 (6) ŵ = 0.10 mm1
b = 29.068 (2) ÅT = 298 K
c = 7.8504 (6) Å0.30 × 0.28 × 0.27 mm
β = 113.963 (4)°
Data collection top
Bruker SMART CCD area detector
diffractometer
2972 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1856 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.973Rint = 0.038
8499 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0441 restraint
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.16 e Å3
2972 reflectionsΔρmin = 0.22 e Å3
230 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.9372 (2)0.21679 (5)0.1587 (2)0.0397 (4)
N20.8992 (2)0.24623 (5)0.0095 (2)0.0391 (4)
N30.8947 (3)0.38594 (6)0.0264 (2)0.0484 (5)
O10.9712 (2)0.20162 (5)0.49534 (18)0.0565 (4)
H10.97520.21670.40870.085*
O21.1317 (2)0.29693 (4)0.18479 (17)0.0468 (4)
O30.8562 (2)0.36371 (5)0.1378 (2)0.0621 (5)
O40.9318 (3)0.42719 (5)0.0425 (2)0.0876 (6)
C10.8835 (3)0.14285 (6)0.2610 (3)0.0380 (5)
C20.9240 (3)0.15757 (6)0.4402 (3)0.0411 (5)
C30.9145 (3)0.12727 (7)0.5760 (3)0.0517 (6)
H30.93850.13800.69490.062*
C40.8703 (3)0.08250 (8)0.5329 (3)0.0570 (6)
H40.86430.06280.62360.068*
C50.8329 (3)0.06477 (7)0.3541 (3)0.0506 (6)
C60.7861 (4)0.01817 (8)0.3104 (4)0.0742 (8)
H60.78020.00160.40120.089*
C70.7492 (5)0.00153 (8)0.1374 (4)0.0952 (10)
H70.71820.02940.11010.114*
C80.7582 (4)0.03098 (8)0.0022 (4)0.0897 (9)
H80.73430.01950.11560.108*
C90.8014 (4)0.07638 (7)0.0383 (3)0.0661 (7)
H90.80570.09540.05530.079*
C100.8398 (3)0.09508 (6)0.2155 (3)0.0439 (5)
C110.8723 (3)0.17566 (6)0.1180 (3)0.0402 (5)
H110.81670.16660.00630.048*
C120.9971 (3)0.28614 (6)0.0366 (2)0.0348 (4)
C130.9339 (3)0.31554 (6)0.1353 (2)0.0331 (4)
C140.8952 (3)0.36234 (6)0.1387 (2)0.0352 (5)
C150.8493 (3)0.38854 (7)0.2967 (3)0.0479 (5)
H150.82600.41990.29470.057*
C160.8383 (3)0.36763 (7)0.4579 (3)0.0528 (6)
H160.80610.38490.56600.063*
C170.8747 (3)0.32149 (7)0.4602 (3)0.0487 (6)
H170.86710.30760.56960.058*
C180.9226 (3)0.29568 (6)0.3002 (2)0.0406 (5)
H180.94780.26440.30290.049*
H20.808 (3)0.2378 (7)0.1025 (18)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0456 (10)0.0343 (9)0.0344 (9)0.0023 (8)0.0112 (8)0.0062 (7)
N20.0450 (10)0.0332 (9)0.0301 (9)0.0065 (8)0.0061 (8)0.0051 (7)
N30.0534 (12)0.0479 (11)0.0422 (11)0.0055 (9)0.0176 (9)0.0051 (9)
O10.0807 (12)0.0454 (9)0.0459 (9)0.0007 (8)0.0283 (9)0.0018 (7)
O20.0517 (9)0.0414 (8)0.0320 (7)0.0067 (7)0.0014 (7)0.0027 (6)
O30.0759 (12)0.0751 (11)0.0434 (9)0.0037 (9)0.0325 (9)0.0006 (8)
O40.1449 (18)0.0426 (10)0.0877 (14)0.0041 (10)0.0601 (13)0.0203 (9)
C10.0375 (12)0.0358 (11)0.0377 (11)0.0007 (9)0.0123 (9)0.0057 (9)
C20.0415 (12)0.0365 (11)0.0443 (12)0.0048 (9)0.0165 (10)0.0045 (9)
C30.0574 (15)0.0562 (14)0.0440 (13)0.0084 (11)0.0231 (11)0.0134 (11)
C40.0537 (15)0.0567 (15)0.0612 (16)0.0096 (11)0.0241 (13)0.0288 (12)
C50.0436 (13)0.0421 (12)0.0598 (15)0.0019 (10)0.0145 (11)0.0140 (11)
C60.0713 (18)0.0451 (14)0.088 (2)0.0054 (13)0.0132 (15)0.0221 (13)
C70.121 (3)0.0380 (14)0.097 (2)0.0154 (15)0.013 (2)0.0023 (15)
C80.131 (3)0.0440 (15)0.0764 (18)0.0076 (16)0.0243 (18)0.0090 (14)
C90.091 (2)0.0417 (13)0.0582 (16)0.0089 (12)0.0226 (14)0.0033 (11)
C100.0407 (12)0.0372 (11)0.0481 (12)0.0010 (9)0.0120 (10)0.0063 (10)
C110.0405 (12)0.0379 (11)0.0376 (11)0.0001 (9)0.0112 (9)0.0011 (9)
C120.0373 (11)0.0350 (11)0.0291 (10)0.0008 (9)0.0104 (9)0.0013 (8)
C130.0311 (10)0.0350 (10)0.0300 (10)0.0032 (8)0.0092 (8)0.0003 (8)
C140.0366 (11)0.0366 (11)0.0303 (10)0.0017 (9)0.0115 (9)0.0032 (8)
C150.0555 (14)0.0377 (11)0.0472 (13)0.0027 (10)0.0174 (11)0.0089 (10)
C160.0670 (16)0.0523 (14)0.0358 (12)0.0011 (11)0.0176 (11)0.0114 (10)
C170.0616 (15)0.0537 (13)0.0313 (12)0.0040 (11)0.0193 (11)0.0034 (10)
C180.0470 (13)0.0376 (11)0.0350 (11)0.0022 (9)0.0145 (10)0.0023 (9)
Geometric parameters (Å, º) top
N1—C111.281 (2)C6—C71.360 (3)
N1—N21.3838 (19)C6—H60.9300
N2—C121.341 (2)C7—C81.386 (4)
N2—H20.899 (9)C7—H70.9300
N3—O31.212 (2)C8—C91.360 (3)
N3—O41.225 (2)C8—H80.9300
N3—C141.468 (2)C9—C101.411 (3)
O1—C21.352 (2)C9—H90.9300
O1—H10.8200C11—H110.9300
O2—C121.229 (2)C12—C131.502 (2)
C1—C21.381 (2)C13—C181.388 (2)
C1—C101.438 (2)C13—C141.389 (2)
C1—C111.449 (2)C14—C151.375 (2)
C2—C31.407 (3)C15—C161.376 (3)
C3—C41.351 (3)C15—H150.9300
C3—H30.9300C16—C171.370 (3)
C4—C51.413 (3)C16—H160.9300
C4—H40.9300C17—C181.380 (3)
C5—C61.406 (3)C17—H170.9300
C5—C101.417 (3)C18—H180.9300
C11—N1—N2116.07 (15)C7—C8—H8119.3
C12—N2—N1119.34 (15)C8—C9—C10121.0 (2)
C12—N2—H2122.4 (14)C8—C9—H9119.5
N1—N2—H2118.3 (14)C10—C9—H9119.5
O3—N3—O4123.87 (18)C9—C10—C5117.49 (19)
O3—N3—C14118.30 (17)C9—C10—C1123.50 (18)
O4—N3—C14117.83 (18)C5—C10—C1119.01 (18)
C2—O1—H1109.5N1—C11—C1121.60 (17)
C2—C1—C10119.08 (17)N1—C11—H11119.2
C2—C1—C11120.32 (17)C1—C11—H11119.2
C10—C1—C11120.47 (17)O2—C12—N2123.57 (16)
O1—C2—C1122.73 (17)O2—C12—C13122.88 (16)
O1—C2—C3115.90 (17)N2—C12—C13113.46 (16)
C1—C2—C3121.36 (18)C18—C13—C14117.16 (16)
C4—C3—C2119.7 (2)C18—C13—C12118.64 (16)
C4—C3—H3120.2C14—C13—C12124.12 (16)
C2—C3—H3120.2C15—C14—C13122.20 (17)
C3—C4—C5122.0 (2)C15—C14—N3116.68 (17)
C3—C4—H4119.0C13—C14—N3121.09 (16)
C5—C4—H4119.0C14—C15—C16119.03 (19)
C6—C5—C4121.5 (2)C14—C15—H15120.5
C6—C5—C10119.6 (2)C16—C15—H15120.5
C4—C5—C10118.81 (19)C17—C16—C15120.40 (19)
C7—C6—C5121.0 (2)C17—C16—H16119.8
C7—C6—H6119.5C15—C16—H16119.8
C5—C6—H6119.5C16—C17—C18120.01 (19)
C6—C7—C8119.5 (2)C16—C17—H17120.0
C6—C7—H7120.3C18—C17—H17120.0
C8—C7—H7120.3C17—C18—C13121.19 (18)
C9—C8—C7121.4 (3)C17—C18—H18119.4
C9—C8—H8119.3C13—C18—H18119.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.872.5881 (18)146
N2—H2···O2i0.90 (1)1.94 (1)2.8133 (19)164 (2)
Symmetry code: (i) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC18H13N3O4
Mr335.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)7.4473 (6), 29.068 (2), 7.8504 (6)
β (°) 113.963 (4)
V3)1553.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.28 × 0.27
Data collection
DiffractometerBruker SMART CCD area detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.970, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
8499, 2972, 1856
Rint0.038
(sin θ/λ)max1)0.614
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.111, 1.05
No. of reflections2972
No. of parameters230
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.22

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.872.5881 (18)146
N2—H2···O2i0.899 (9)1.938 (11)2.8133 (19)164 (2)
Symmetry code: (i) x1/2, y+1/2, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds