


Supporting information
![]() | Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536811031503/su2280sup1.cif |
![]() | Structure factor file (CIF format) https://doi.org/10.1107/S1600536811031503/su2280Isup2.hkl |
CCDC reference: 845223
Key indicators
- Single-crystal X-ray study
- T = 298 K
- Mean
(C-C) = 0.003 Å
- R factor = 0.032
- wR factor = 0.075
- Data-to-parameter ratio = 16.2
checkCIF/PLATON results
No syntax errors found
Alert level G PLAT004_ALERT_5_G Info: Polymeric Structure Found with Dimension . 1 PLAT005_ALERT_5_G No _iucr_refine_instructions_details in CIF .... ? PLAT128_ALERT_4_G Alternate Setting of Space-group P21/c ....... P21/n
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 0 ALERT level C = Check. Ensure it is not caused by an omission or oversight 3 ALERT level G = General information/check it is not something unexpected 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check
The title compound was prepared by dissolving 20 mg of [NaCu6(gly)3(ClO4)3(H2O)]n (ClO4)2n (Aromi et al., 2008) in 5 ml DMSO. Crystals could be grown out of the blue solution by slow diffusion of THF.
The NH-atoms were located in difference electron-density maps and were freely refined. The C-bound H-atoms were included in calculated positions and treated as riding atoms: C-H = 0.97 Å, with Uiso(H) = 1.2Ueq(C).
Data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA (Stoe & Cie, 2009); data reduction: X-RED (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).
[Cu(C2H4NO2)2] | F(000) = 428 |
Mr = 211.66 | Dx = 2.195 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 5867 reflections |
a = 9.4265 (19) Å | θ = 2.3–30.5° |
b = 5.1159 (10) Å | µ = 3.37 mm−1 |
c = 13.912 (3) Å | T = 298 K |
β = 107.36 (3)° | Block, blue |
V = 640.4 (2) Å3 | 0.21 × 0.15 × 0.09 mm |
Z = 4 |
Stoe IPDS 2 diffractometer | 1876 independent reflections |
Radiation source: fine-focus sealed tube | 1561 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.048 |
Detector resolution: 6.67 pixels mm-1 | θmax = 30.0°, θmin = 2.3° |
rotation method scans | h = −13→13 |
Absorption correction: integration (X-SHAPE and X-RED; Stoe & Cie, 2009) | k = −7→6 |
Tmin = 0.549, Tmax = 0.692 | l = −19→17 |
9012 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.075 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0447P)2] where P = (Fo2 + 2Fc2)/3 |
1876 reflections | (Δ/σ)max = 0.001 |
116 parameters | Δρmax = 0.42 e Å−3 |
0 restraints | Δρmin = −0.58 e Å−3 |
[Cu(C2H4NO2)2] | V = 640.4 (2) Å3 |
Mr = 211.66 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 9.4265 (19) Å | µ = 3.37 mm−1 |
b = 5.1159 (10) Å | T = 298 K |
c = 13.912 (3) Å | 0.21 × 0.15 × 0.09 mm |
β = 107.36 (3)° |
Stoe IPDS 2 diffractometer | 1876 independent reflections |
Absorption correction: integration (X-SHAPE and X-RED; Stoe & Cie, 2009) | 1561 reflections with I > 2σ(I) |
Tmin = 0.549, Tmax = 0.692 | Rint = 0.048 |
9012 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | 0 restraints |
wR(F2) = 0.075 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.42 e Å−3 |
1876 reflections | Δρmin = −0.58 e Å−3 |
116 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | −0.00228 (3) | 0.02678 (5) | 0.26465 (2) | 0.0301 (1) | |
O1 | −0.17587 (17) | −0.1989 (3) | 0.21922 (12) | 0.0270 (4) | |
O2 | −0.3924 (2) | −0.2410 (4) | 0.10081 (14) | 0.0408 (6) | |
O3 | 0.17471 (18) | 0.2461 (3) | 0.30307 (13) | 0.0317 (4) | |
O4 | 0.41730 (18) | 0.2283 (4) | 0.38098 (15) | 0.0392 (5) | |
N1 | −0.1151 (2) | 0.2642 (4) | 0.15535 (16) | 0.0283 (5) | |
N2 | 0.1137 (2) | −0.2140 (4) | 0.37098 (17) | 0.0302 (6) | |
C1 | −0.2742 (2) | −0.1247 (4) | 0.13882 (17) | 0.0260 (6) | |
C2 | −0.2384 (3) | 0.1181 (4) | 0.08778 (17) | 0.0304 (6) | |
C3 | 0.2916 (2) | 0.1351 (4) | 0.36051 (16) | 0.0253 (5) | |
C4 | 0.2694 (2) | −0.1268 (4) | 0.40529 (17) | 0.0282 (6) | |
H1A | 0.112 (5) | −0.378 (10) | 0.340 (3) | 0.076 (13)* | |
H1B | 0.082 (4) | −0.233 (7) | 0.418 (3) | 0.045 (9)* | |
H2A | −0.21240 | 0.06770 | 0.02790 | 0.0360* | |
H2B | −0.32560 | 0.22930 | 0.06700 | 0.0360* | |
H3A | −0.153 (4) | 0.393 (7) | 0.184 (2) | 0.045 (9)* | |
H3B | −0.061 (4) | 0.342 (8) | 0.124 (3) | 0.061 (11)* | |
H4A | 0.33140 | −0.25670 | 0.38670 | 0.0340* | |
H4B | 0.30110 | −0.11300 | 0.47810 | 0.0340* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0249 (1) | 0.0214 (1) | 0.0380 (2) | −0.0026 (1) | −0.0001 (1) | 0.0078 (1) |
O1 | 0.0262 (7) | 0.0191 (7) | 0.0334 (8) | −0.0016 (5) | 0.0052 (6) | 0.0030 (6) |
O2 | 0.0375 (9) | 0.0391 (10) | 0.0389 (10) | −0.0142 (7) | 0.0010 (7) | 0.0043 (7) |
O3 | 0.0277 (7) | 0.0216 (7) | 0.0408 (9) | −0.0028 (6) | 0.0028 (6) | 0.0046 (6) |
O4 | 0.0275 (8) | 0.0350 (9) | 0.0510 (11) | −0.0060 (7) | 0.0057 (7) | 0.0016 (8) |
N1 | 0.0274 (9) | 0.0214 (8) | 0.0340 (10) | −0.0019 (7) | 0.0062 (7) | 0.0055 (7) |
N2 | 0.0291 (9) | 0.0253 (9) | 0.0331 (11) | −0.0023 (7) | 0.0046 (8) | 0.0068 (8) |
C1 | 0.0282 (10) | 0.0234 (9) | 0.0262 (10) | −0.0011 (7) | 0.0080 (8) | −0.0020 (8) |
C2 | 0.0351 (11) | 0.0263 (10) | 0.0264 (11) | −0.0053 (8) | 0.0041 (8) | 0.0017 (8) |
C3 | 0.0267 (9) | 0.0238 (9) | 0.0246 (10) | −0.0018 (7) | 0.0066 (8) | −0.0025 (7) |
C4 | 0.0279 (10) | 0.0272 (10) | 0.0272 (11) | 0.0017 (8) | 0.0049 (8) | 0.0043 (8) |
Cu1—O1 | 1.9475 (17) | N2—C4 | 1.471 (3) |
Cu1—O3 | 1.9483 (18) | N1—H3B | 0.86 (4) |
Cu1—N1 | 1.988 (2) | N1—H3A | 0.90 (4) |
Cu1—N2 | 1.984 (2) | N2—H1A | 0.94 (5) |
Cu1—O2i | 2.648 (2) | N2—H1B | 0.80 (4) |
Cu1—O4ii | 2.837 (2) | C1—C2 | 1.518 (3) |
O1—C1 | 1.279 (3) | C3—C4 | 1.518 (3) |
O2—C1 | 1.234 (3) | C2—H2A | 0.9700 |
O3—C3 | 1.284 (3) | C2—H2B | 0.9700 |
O4—C3 | 1.229 (3) | C4—H4A | 0.9700 |
N1—C2 | 1.463 (3) | C4—H4B | 0.9700 |
O1—Cu1—O3 | 176.59 (8) | H3A—N1—H3B | 105 (4) |
O1—Cu1—N1 | 84.73 (8) | C4—N2—H1A | 107 (3) |
O1—Cu1—N2 | 95.55 (8) | Cu1—N2—H1A | 106 (3) |
O1—Cu1—O2i | 92.26 (7) | Cu1—N2—H1B | 115 (3) |
O1—Cu1—O4ii | 80.68 (7) | C4—N2—H1B | 111 (3) |
O3—Cu1—N1 | 94.41 (8) | H1A—N2—H1B | 108 (4) |
O3—Cu1—N2 | 85.22 (8) | O2—C1—C2 | 119.5 (2) |
O2i—Cu1—O3 | 91.07 (7) | O1—C1—O2 | 123.9 (2) |
O3—Cu1—O4ii | 96.01 (7) | O1—C1—C2 | 116.60 (19) |
N1—Cu1—N2 | 178.27 (9) | N1—C2—C1 | 111.24 (19) |
O2i—Cu1—N1 | 92.22 (8) | O3—C3—O4 | 124.2 (2) |
O4ii—Cu1—N1 | 89.04 (8) | O3—C3—C4 | 116.60 (18) |
O2i—Cu1—N2 | 89.48 (8) | O4—C3—C4 | 119.3 (2) |
O4ii—Cu1—N2 | 89.32 (8) | N2—C4—C3 | 112.39 (18) |
O2i—Cu1—O4ii | 172.69 (7) | N1—C2—H2A | 109.00 |
Cu1—O1—C1 | 115.30 (14) | N1—C2—H2B | 109.00 |
Cu1iii—O2—C1 | 113.23 (15) | C1—C2—H2A | 109.00 |
Cu1—O3—C3 | 114.93 (14) | C1—C2—H2B | 109.00 |
Cu1iv—O4—C3 | 120.10 (16) | H2A—C2—H2B | 108.00 |
Cu1—N1—C2 | 108.68 (14) | N2—C4—H4A | 109.00 |
Cu1—N2—C4 | 109.16 (15) | N2—C4—H4B | 109.00 |
C2—N1—H3A | 108 (2) | C3—C4—H4A | 109.00 |
Cu1—N1—H3A | 107.6 (18) | C3—C4—H4B | 109.00 |
Cu1—N1—H3B | 114 (3) | H4A—C4—H4B | 108.00 |
C2—N1—H3B | 113 (3) | ||
N1—Cu1—O1—C1 | 6.99 (16) | N2—Cu1—O2i—C1i | −157.43 (17) |
N2—Cu1—O1—C1 | −171.29 (16) | O1—Cu1—O4ii—C3ii | −133.24 (18) |
O2i—Cu1—O1—C1 | 99.01 (15) | O3—Cu1—O4ii—C3ii | 47.61 (18) |
O4ii—Cu1—O1—C1 | −82.90 (15) | N1—Cu1—O4ii—C3ii | 141.95 (18) |
N1—Cu1—O3—C3 | −166.00 (16) | N2—Cu1—O4ii—C3ii | −37.51 (18) |
N2—Cu1—O3—C3 | 12.30 (16) | Cu1—O1—C1—O2 | −178.31 (18) |
O2i—Cu1—O3—C3 | 101.69 (16) | Cu1—O1—C1—C2 | 3.1 (2) |
O4ii—Cu1—O3—C3 | −76.51 (16) | Cu1iii—O2—C1—O1 | 32.3 (3) |
O1—Cu1—N1—C2 | −14.98 (16) | Cu1iii—O2—C1—C2 | −149.11 (17) |
O3—Cu1—N1—C2 | 161.71 (16) | Cu1—O3—C3—O4 | 169.39 (19) |
O2i—Cu1—N1—C2 | −107.04 (16) | Cu1—O3—C3—C4 | −11.0 (2) |
O4ii—Cu1—N1—C2 | 65.75 (16) | Cu1iv—O4—C3—O3 | −34.4 (3) |
O1—Cu1—N2—C4 | 166.43 (15) | Cu1iv—O4—C3—C4 | 146.03 (16) |
O3—Cu1—N2—C4 | −10.23 (15) | Cu1—N1—C2—C1 | 19.8 (2) |
O2i—Cu1—N2—C4 | −101.35 (15) | Cu1—N2—C4—C3 | 7.4 (2) |
O4ii—Cu1—N2—C4 | 85.86 (15) | O1—C1—C2—N1 | −15.8 (3) |
O1—Cu1—O2i—C1i | −61.90 (17) | O2—C1—C2—N1 | 165.5 (2) |
O3—Cu1—O2i—C1i | 117.36 (17) | O3—C3—C4—N2 | 2.1 (3) |
N1—Cu1—O2i—C1i | 22.91 (17) | O4—C3—C4—N2 | −178.3 (2) |
Symmetry codes: (i) −x−1/2, y+1/2, −z+1/2; (ii) −x+1/2, y−1/2, −z+1/2; (iii) −x−1/2, y−1/2, −z+1/2; (iv) −x+1/2, y+1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H1A···O3v | 0.94 (5) | 2.12 (5) | 3.029 (3) | 162 (4) |
N2—H1B···O2vi | 0.80 (4) | 2.49 (4) | 3.223 (3) | 154 (4) |
N1—H3A···O1vii | 0.90 (4) | 2.17 (4) | 2.994 (3) | 152 (3) |
N1—H3A···O1i | 0.90 (4) | 2.44 (4) | 3.003 (3) | 121 (3) |
N1—H3B···O4iv | 0.86 (4) | 2.41 (4) | 3.152 (3) | 145 (3) |
Symmetry codes: (i) −x−1/2, y+1/2, −z+1/2; (iv) −x+1/2, y+1/2, −z+1/2; (v) x, y−1, z; (vi) x+1/2, −y−1/2, z+1/2; (vii) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C2H4NO2)2] |
Mr | 211.66 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 298 |
a, b, c (Å) | 9.4265 (19), 5.1159 (10), 13.912 (3) |
β (°) | 107.36 (3) |
V (Å3) | 640.4 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 3.37 |
Crystal size (mm) | 0.21 × 0.15 × 0.09 |
Data collection | |
Diffractometer | Stoe IPDS 2 diffractometer |
Absorption correction | Integration (X-SHAPE and X-RED; Stoe & Cie, 2009) |
Tmin, Tmax | 0.549, 0.692 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9012, 1876, 1561 |
Rint | 0.048 |
(sin θ/λ)max (Å−1) | 0.704 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.075, 1.03 |
No. of reflections | 1876 |
No. of parameters | 116 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.42, −0.58 |
Computer programs: X-AREA (Stoe & Cie, 2009), X-RED (Stoe & Cie, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H1A···O3i | 0.94 (5) | 2.12 (5) | 3.029 (3) | 162 (4) |
N2—H1B···O2ii | 0.80 (4) | 2.49 (4) | 3.223 (3) | 154 (4) |
N1—H3A···O1iii | 0.90 (4) | 2.17 (4) | 2.994 (3) | 152 (3) |
N1—H3A···O1iv | 0.90 (4) | 2.44 (4) | 3.003 (3) | 121 (3) |
N1—H3B···O4v | 0.86 (4) | 2.41 (4) | 3.152 (3) | 145 (3) |
Symmetry codes: (i) x, y−1, z; (ii) x+1/2, −y−1/2, z+1/2; (iii) x, y+1, z; (iv) −x−1/2, y+1/2, −z+1/2; (v) −x+1/2, y+1/2, −z+1/2. |
Different metal glycine complexes and polymeric structures have been known since the 1960's. The first work on a cadmium glycinato complexe was done by (Low et al., 1959), and further studies were reported by (Barrie et al., 1993). Mixed metal glycinato complexes with copper(II) were investigated by (Papavinasam, 1991; Davies et al., 2003; Low et al., 1959).
The complexation of simple copper salts to amino acids is a well investigated reaction and various complexes and clusters have been reported (Low et al., 1959; Davies et al., 2003; Aromi et al., 2008; Bi et al., 2006; Zhang et al., 2005). A three-dimensional copper-glycinate coordination polymer has been reported on by (Chen et al., 2009).
While redissolving the copper cluster [NaCu6(gly)3(ClO4)3(H2O)]n (ClO4)2n (Aromi et al., 2008) in DMSO, blue crystals of the title compound were obtained and were characterized by X-ray diffraction.
The title compound is a two-dimensional coordination polymer (Fig. 1). It consists of a distorted octahedral copper coordination polyhedron with two bidentate glycine ligands chelating the metal through the oxygen and nitrogen atoms (O1, O3, N1, N2) in a trans square planar configuration. The two axial coordination sites are occupied by carbonyl oxygen atoms of the neighbouring glycine molecules (O2 and O4). The Cu—O distances are 2.648 (2) Å (Cu1—O2i) and 2.837 (2) Å (Cu1—O4ii) for the axial oxygen atoms [symmetry codes: (i) -x-1/2, y+1/2, -z+1/2; (ii) -x+1/2, y-1/2, -z+1/2]. In the equatorial plane the Cu-O distances are 1.9474 (15) and 1.9483 (16) Å for Cu1—O1 and Cu1—O3, respectively, while the Cu—N distances are 1.9883 (19) and 1.948 (2) Å for Cu1-N1 and Cu1—N2, respectively. These bond length differences indicate a strong Jahn-Teller effect.
In the crystal the two dimensional networks are linked via N-H···O hydrogen bonds to form a three-dimensional arrangement (Table 1 and Fig. 2).