Download citation
Download citation
link to html
In the title compound, C13H13NO3·H2O, the dihedral angle between the ethyl ester group [C—C—O—C(=O); maximum deviation = 0.003 (2) Å] and the quinoline ring system is 7.94 (12)°. The water solvent mol­ecule is linked to the title mol­ecule via O—H...O and O—H...N hydrogen bonds. In the crystal, mol­ecules are linked by C—H...O hydrogen bonds, forming chains propagating along [100].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536813008106/su2575sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536813008106/su2575Isup2.hkl
Contains datablock I

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S1600536813008106/su2575Isup3.cml
Supplementary material

CCDC reference: 923142

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.053
  • wR factor = 0.123
  • Data-to-parameter ratio = 14.4

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT906_ALERT_3_C Large K value in the Analysis of Variance ...... 13.776 PLAT906_ALERT_3_C Large K value in the Analysis of Variance ...... 2.346 PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ..... 5
Alert level G PLAT005_ALERT_5_G No _iucr_refine_instructions_details in the CIF ? PLAT128_ALERT_4_G Alternate Setting of Space-group P21/c ....... P21/n PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature 293 K
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 3 ALERT level C = Check. Ensure it is not caused by an omission or oversight 4 ALERT level G = General information/check it is not something unexpected 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check
checkCIF publication errors
Alert level A PUBL024_ALERT_1_A The number of authors is greater than 5. Please specify the role of each of the co-authors for your paper.
Author Response: As the reported work is a part of collaboration between three Universities. Hence the number of authors are greater than 5. Synthesis has been carried out by Mohan Kumar, C. Mallikarjunaswamy, M. A. Sridhar and D.G. Bhadregowda while Kamini Kapoor, Vivek Gupta and Rajnikant are responsible for the single crystal growth, X-ray data collection, refinement of the structure, structure completion in the form of paper and for bearing the financial load for the publication.

1 ALERT level A = Data missing that is essential or data in wrong format 0 ALERT level G = General alerts. Data that may be required is missing

Comment top

In the title molecule, Fig. 1, the bond lengths (Allen et al., 1987) and angles have normal values and are comparable with those reported for similar structures (Sarveswari et al., 2010; Ukrainets et al., 2009). The dihedral angle between the ethyl ester group (C1/C2/O3/C4/O5) and the quinoline (C8—C15/N16/C17) ring system is 7.94 (12)°. The solvent water molecule is linked to the title molecule via O-H···O and O-H···N hydrogen bonds (Fig. 1 and Table 1).

In the crystal, molecules are linked by C—H···O hydrogen bonds (Table 1) forming chains propagating along the a axis direction (Fig. 2).

Related literature top

For related structures see: Sarveswari et al. (2010); Ukrainets et al. (2009). For bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of 8-hydroxy quinoline(0.01 mol) and ethyl chloroacetate (0.015 mol) in the presence of dry acetone (50 ml) and anhydrous potassium carbonate (0.015 mol) was refluxed for 8 h. The residual mass was triturated with cold water to remove potassium carbonate and extracted with ether (30 ml). The ether layer was washed with 10% sodium hydroxide solution (350 ml) followed by water (330 ml) and then dried over anhydrous sodium sulfate and evaporated to dryness. The compound was purified by successive recrystallizations from ethanol yielding colourless block-like crystals (Yield 90%, m.p. 350–352 K).

Refinement top

The water molecule H atoms were located in a difference Fourier map and freely refined. The C-bound H atoms were positioned geometrically and treated as riding atoms: C—H distances of 0.93–0.97 Å with Uiso(H) = 1.5Ueq(methyl C) and = 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 40% probability level. The O-H···O and O-H···N hydrogen bonds are shown as dashed lines (see Table for details).
[Figure 2] Fig. 2. The crystal packing of the title compound view along the a axis, showing the O—H···O, O—H···N and C-H···O hydrogen bonds as dashed lines (see Table 1 for details).
Ethyl 2-(quinolin-8-yloxy)acetate monohydrate top
Crystal data top
C13H13NO3·H2OF(000) = 528
Mr = 249.26Dx = 1.312 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3127 reflections
a = 6.9562 (4) Åθ = 3.5–29.0°
b = 17.5050 (9) ŵ = 0.10 mm1
c = 10.5304 (6) ÅT = 293 K
β = 100.124 (5)°Block, colourless
V = 1262.30 (12) Å30.3 × 0.2 × 0.2 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
2478 independent reflections
Radiation source: fine-focus sealed tube1448 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 16.1049 pixels mm-1θmax = 26.0°, θmin = 3.5°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 2121
Tmin = 0.715, Tmax = 1.000l = 1112
9808 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0382P)2 + 0.1537P]
where P = (Fo2 + 2Fc2)/3
2478 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C13H13NO3·H2OV = 1262.30 (12) Å3
Mr = 249.26Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.9562 (4) ŵ = 0.10 mm1
b = 17.5050 (9) ÅT = 293 K
c = 10.5304 (6) Å0.3 × 0.2 × 0.2 mm
β = 100.124 (5)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
2478 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
1448 reflections with I > 2σ(I)
Tmin = 0.715, Tmax = 1.000Rint = 0.051
9808 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.14 e Å3
2478 reflectionsΔρmin = 0.19 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1064 (4)0.11734 (16)0.0152 (2)0.0746 (9)
H1A0.11360.16080.04100.112*
H1B0.12910.13340.09850.112*
H1C0.02080.09460.02370.112*
C20.2574 (4)0.06026 (15)0.0399 (2)0.0605 (7)
H2A0.38680.08250.04810.073*
H2B0.25110.01600.01600.073*
O30.2179 (2)0.03807 (9)0.16644 (14)0.0527 (5)
C40.3381 (3)0.01324 (13)0.2305 (2)0.0431 (6)
O50.4722 (3)0.04156 (11)0.19103 (16)0.0671 (6)
C60.2763 (3)0.03087 (12)0.35690 (19)0.0407 (6)
H6A0.14720.05370.34210.049*
H6B0.27170.01570.40620.049*
O70.4143 (2)0.08241 (8)0.42563 (13)0.0440 (4)
C80.3737 (3)0.11137 (12)0.5390 (2)0.0374 (5)
C90.2176 (3)0.09077 (14)0.5928 (2)0.0501 (6)
H90.12990.05440.55290.060*
C100.1893 (4)0.12463 (16)0.7087 (2)0.0628 (7)
H100.08240.11000.74510.075*
C110.3136 (4)0.17809 (16)0.7690 (2)0.0630 (8)
H110.29020.20060.84490.076*
C120.4787 (4)0.19961 (13)0.7166 (2)0.0471 (6)
C130.6180 (4)0.25321 (14)0.7755 (2)0.0595 (7)
H130.60030.27770.85100.071*
C140.7760 (4)0.26897 (14)0.7230 (2)0.0582 (7)
H140.86980.30350.76200.070*
C150.7960 (4)0.23238 (13)0.6085 (2)0.0538 (7)
H150.90560.24410.57280.065*
N160.6718 (3)0.18260 (11)0.54715 (17)0.0466 (5)
C170.5122 (3)0.16581 (12)0.6004 (2)0.0383 (5)
O1W0.8236 (3)0.10488 (13)0.3454 (2)0.0723 (6)
H2W0.770 (5)0.1318 (18)0.406 (3)0.123 (14)*
H1W0.728 (5)0.0844 (18)0.295 (3)0.109 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.099 (2)0.0701 (19)0.0512 (16)0.0165 (17)0.0026 (16)0.0184 (14)
C20.0763 (19)0.0683 (18)0.0396 (14)0.0050 (15)0.0171 (13)0.0153 (13)
O30.0602 (11)0.0590 (11)0.0403 (9)0.0135 (9)0.0124 (8)0.0143 (8)
C40.0463 (14)0.0449 (14)0.0378 (13)0.0001 (12)0.0067 (11)0.0053 (11)
O50.0646 (12)0.0882 (14)0.0534 (11)0.0269 (11)0.0243 (9)0.0198 (10)
C60.0409 (13)0.0417 (13)0.0394 (12)0.0017 (10)0.0065 (10)0.0068 (10)
O70.0484 (9)0.0490 (10)0.0359 (8)0.0061 (8)0.0110 (7)0.0102 (7)
C80.0442 (13)0.0353 (12)0.0327 (12)0.0049 (10)0.0067 (10)0.0018 (10)
C90.0499 (15)0.0598 (17)0.0424 (14)0.0055 (13)0.0129 (12)0.0047 (12)
C100.0585 (17)0.083 (2)0.0517 (16)0.0014 (15)0.0234 (13)0.0074 (15)
C110.0686 (18)0.079 (2)0.0443 (15)0.0070 (16)0.0184 (14)0.0182 (14)
C120.0577 (15)0.0410 (14)0.0413 (13)0.0083 (12)0.0054 (12)0.0041 (11)
C130.0715 (19)0.0504 (16)0.0531 (15)0.0103 (14)0.0015 (14)0.0194 (13)
C140.0637 (18)0.0478 (16)0.0590 (17)0.0028 (13)0.0003 (14)0.0094 (13)
C150.0588 (16)0.0491 (15)0.0524 (15)0.0068 (13)0.0073 (13)0.0025 (13)
N160.0512 (12)0.0438 (12)0.0446 (11)0.0055 (10)0.0079 (10)0.0040 (9)
C170.0450 (13)0.0358 (13)0.0335 (12)0.0054 (11)0.0051 (10)0.0010 (10)
O1W0.0525 (12)0.0896 (16)0.0786 (15)0.0139 (11)0.0217 (11)0.0260 (13)
Geometric parameters (Å, º) top
C1—C21.492 (3)C9—H90.9300
C1—H1A0.9600C10—C111.354 (3)
C1—H1B0.9600C10—H100.9300
C1—H1C0.9600C11—C121.410 (3)
C2—O31.460 (3)C11—H110.9300
C2—H2A0.9700C12—C131.412 (3)
C2—H2B0.9700C12—C171.414 (3)
O3—C41.328 (2)C13—C141.344 (3)
C4—O51.194 (3)C13—H130.9300
C4—C61.501 (3)C14—C151.393 (3)
C6—O71.420 (2)C14—H140.9300
C6—H6A0.9700C15—N161.314 (3)
C6—H6B0.9700C15—H150.9300
O7—C81.371 (2)N16—C171.361 (3)
C8—C91.359 (3)O1W—H2W0.93 (4)
C8—C171.427 (3)O1W—H1W0.85 (4)
C9—C101.401 (3)
C2—C1—H1A109.5C8—C9—C10119.7 (2)
C2—C1—H1B109.5C8—C9—H9120.1
H1A—C1—H1B109.5C10—C9—H9120.1
C2—C1—H1C109.5C11—C10—C9121.7 (2)
H1A—C1—H1C109.5C11—C10—H10119.2
H1B—C1—H1C109.5C9—C10—H10119.2
O3—C2—C1107.5 (2)C10—C11—C12119.9 (2)
O3—C2—H2A110.2C10—C11—H11120.1
C1—C2—H2A110.2C12—C11—H11120.1
O3—C2—H2B110.2C11—C12—C13123.3 (2)
C1—C2—H2B110.2C11—C12—C17119.8 (2)
H2A—C2—H2B108.5C13—C12—C17117.0 (2)
C4—O3—C2116.17 (19)C14—C13—C12120.2 (2)
O5—C4—O3124.4 (2)C14—C13—H13119.9
O5—C4—C6125.9 (2)C12—C13—H13119.9
O3—C4—C6109.7 (2)C13—C14—C15118.4 (2)
O7—C6—C4108.00 (18)C13—C14—H14120.8
O7—C6—H6A110.1C15—C14—H14120.8
C4—C6—H6A110.1N16—C15—C14125.0 (3)
O7—C6—H6B110.1N16—C15—H15117.5
C4—C6—H6B110.1C14—C15—H15117.5
H6A—C6—H6B108.4C15—N16—C17117.0 (2)
C8—O7—C6117.01 (17)N16—C17—C12122.4 (2)
C9—C8—O7124.6 (2)N16—C17—C8119.47 (19)
C9—C8—C17120.9 (2)C12—C17—C8118.1 (2)
O7—C8—C17114.56 (19)H2W—O1W—H1W107 (3)
C1—C2—O3—C4179.6 (2)C17—C12—C13—C141.4 (3)
C2—O3—C4—O50.3 (3)C12—C13—C14—C151.2 (4)
C2—O3—C4—C6179.04 (19)C13—C14—C15—N160.4 (4)
O5—C4—C6—O74.6 (3)C14—C15—N16—C170.1 (3)
O3—C4—C6—O7176.69 (16)C15—N16—C17—C120.1 (3)
C4—C6—O7—C8173.95 (17)C15—N16—C17—C8179.14 (19)
C6—O7—C8—C94.0 (3)C11—C12—C17—N16178.0 (2)
C6—O7—C8—C17176.90 (17)C13—C12—C17—N160.9 (3)
O7—C8—C9—C10179.4 (2)C11—C12—C17—C81.0 (3)
C17—C8—C9—C101.5 (3)C13—C12—C17—C8179.91 (19)
C8—C9—C10—C110.3 (4)C9—C8—C17—N16177.0 (2)
C9—C10—C11—C121.4 (4)O7—C8—C17—N162.2 (3)
C10—C11—C12—C13178.1 (2)C9—C8—C17—C122.1 (3)
C10—C11—C12—C170.7 (4)O7—C8—C17—C12178.72 (18)
C11—C12—C13—C14177.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O50.85 (3)2.06 (3)2.907 (3)172
O1W—H2W···N160.92 (3)1.96 (3)2.875 (3)174
C6—H6A···O1Wi0.972.433.388 (3)170
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC13H13NO3·H2O
Mr249.26
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)6.9562 (4), 17.5050 (9), 10.5304 (6)
β (°) 100.124 (5)
V3)1262.30 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.715, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9808, 2478, 1448
Rint0.051
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.123, 1.02
No. of reflections2478
No. of parameters172
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.19

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O50.85 (3)2.06 (3)2.907 (3)172
O1W—H2W···N160.92 (3)1.96 (3)2.875 (3)174
C6—H6A···O1Wi0.972.433.388 (3)170
Symmetry code: (i) x1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds