Download citation
Download citation
link to html
The title compound, C15H14BrN, has an E conformation about the C=N bond and the dihedral angle between the benzene rings is 50.7 (2)°. In the crystal, mol­ecules are linked via C—H...π inter­actions, forming columns propagating along [010].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536813008088/su2578sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536813008088/su2578Isup2.hkl
Contains datablock I

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S1600536813008088/su2578Isup3.cml
Supplementary material

CCDC reference: 954219

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.042
  • wR factor = 0.112
  • Data-to-parameter ratio = 16.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT026_ALERT_3_C Ratio Observed / Unique Reflections too Low .... 46 Perc. PLAT230_ALERT_2_C Hirshfeld Test Diff for C3 -- C4 .. 5.2 su PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C3 PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds ............... 0.0068 Ang PLAT905_ALERT_3_C Negative K value in the Analysis of Variance ... -11.780 PLAT905_ALERT_3_C Negative K value in the Analysis of Variance ... -1.050 PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ..... 1 PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 18
Alert level G PLAT005_ALERT_5_G No _iucr_refine_instructions_details in the CIF ? PLAT128_ALERT_4_G Alternate Setting of Space-group P21/c ....... P21/n
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 8 ALERT level C = Check. Ensure it is not caused by an omission or oversight 2 ALERT level G = General information/check it is not something unexpected 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 6 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Schiff base ligands have received much more attention during the past years. They have many pharmaceutical activities, such as antifungal effects (Aziz et al., 2010), radical scavenging activity (Lu et al., 2012), inhibition of enzyme activity (Schmidt et al., 2009), and antibacterial activities (Shi et al., 2010). We report herein on the crystal structure of a new Schiff base compound.

In the title molecule, Fig. 1, the bond lengths (Allen et al., 1987) and angles are normal and comparable to the values observed in similar compounds (Sun et al., 2011a,b; Guo et al., 2011). The molecule has an E conformation about the C7N1 bond and is twisted with the dihedral angle between the two aromatic rings being 50.7 (2) °.

In the crystal, molecules are linked via C-H···π interactions (Table 1).

Related literature top

Schiff base derivativies have many pharmaceutical activities. For their antifungal effects, see: Aziz et al. (2010), for their radical scavenging activity, see: Lu et al. (2012), for their inhibition of enzyme activity, see: Schmidt et al. (2009) and for their antibacterial activity, see: Shi et al. (2010). For related structures, see: Sun et al. (2011a,b); Guo et al. (2011). For standard bond lengths, see: Allen et al. (1987).

Experimental top

A mixture of 4-bromobenzaldehyde (5 mmol), 2,3-dimethylaniline (5 mmol) and methanol (50 ml) was refluxed for 6 h. The mixture was then allowed to cool and filtered. Recrystallization of the crude product from methanol yielded yellow block-like crystals.

Refinement top

H atoms were positioned geometrically and refined using the riding-model approximation: C—H = 0.93 and 0.96 Å for CH and CH3 H atoms, respectively, with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H atoms.

Structure description top

Schiff base ligands have received much more attention during the past years. They have many pharmaceutical activities, such as antifungal effects (Aziz et al., 2010), radical scavenging activity (Lu et al., 2012), inhibition of enzyme activity (Schmidt et al., 2009), and antibacterial activities (Shi et al., 2010). We report herein on the crystal structure of a new Schiff base compound.

In the title molecule, Fig. 1, the bond lengths (Allen et al., 1987) and angles are normal and comparable to the values observed in similar compounds (Sun et al., 2011a,b; Guo et al., 2011). The molecule has an E conformation about the C7N1 bond and is twisted with the dihedral angle between the two aromatic rings being 50.7 (2) °.

In the crystal, molecules are linked via C-H···π interactions (Table 1).

Schiff base derivativies have many pharmaceutical activities. For their antifungal effects, see: Aziz et al. (2010), for their radical scavenging activity, see: Lu et al. (2012), for their inhibition of enzyme activity, see: Schmidt et al. (2009) and for their antibacterial activity, see: Shi et al. (2010). For related structures, see: Sun et al. (2011a,b); Guo et al. (2011). For standard bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom labelling. The displacement ellipsoids are drawn at the 50% probability level.
N-[(E)-4-Bromobenzylidene]-2,3-dimethylaniline top
Crystal data top
C15H14BrNF(000) = 584
Mr = 288.18Dx = 1.414 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2505 reflections
a = 12.945 (9) Åθ = 2.7–25.5°
b = 7.857 (5) ŵ = 3.02 mm1
c = 14.497 (10) ÅT = 296 K
β = 113.384 (8)°Block, yellow
V = 1353.3 (16) Å30.25 × 0.20 × 0.19 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2525 independent reflections
Radiation source: fine-focus sealed tube1154 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
φ and ω scansθmax = 25.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1510
Tmin = 0.519, Tmax = 0.598k = 97
5865 measured reflectionsl = 1517
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0477P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max < 0.001
2525 reflectionsΔρmax = 0.35 e Å3
157 parametersΔρmin = 0.25 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0298 (19)
Crystal data top
C15H14BrNV = 1353.3 (16) Å3
Mr = 288.18Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.945 (9) ŵ = 3.02 mm1
b = 7.857 (5) ÅT = 296 K
c = 14.497 (10) Å0.25 × 0.20 × 0.19 mm
β = 113.384 (8)°
Data collection top
Bruker APEXII CCD
diffractometer
2525 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1154 reflections with I > 2σ(I)
Tmin = 0.519, Tmax = 0.598Rint = 0.058
5865 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 0.94Δρmax = 0.35 e Å3
2525 reflectionsΔρmin = 0.25 e Å3
157 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.07853 (5)0.88838 (7)0.11686 (4)0.0919 (4)
C10.0611 (4)0.8732 (5)0.3942 (3)0.0581 (13)
H10.00910.90560.42050.070*
C20.0362 (4)0.8999 (5)0.2939 (3)0.0643 (13)
H20.03150.95040.25290.077*
C30.1122 (5)0.8513 (5)0.2554 (3)0.0547 (12)
C40.2111 (4)0.7767 (7)0.3137 (4)0.0736 (15)
H40.26160.74310.28600.088*
C50.2363 (4)0.7508 (6)0.4154 (3)0.0682 (15)
H50.30420.70020.45570.082*
C60.1617 (4)0.7992 (5)0.4572 (3)0.0477 (11)
C70.1882 (4)0.7675 (5)0.5637 (3)0.0513 (12)
H70.25920.72580.60360.062*
C80.1554 (4)0.7691 (5)0.7095 (3)0.0434 (11)
C90.2578 (4)0.8290 (6)0.7761 (3)0.0582 (13)
H90.30600.88420.75250.070*
C100.2887 (4)0.8071 (7)0.8781 (3)0.0713 (14)
H100.35860.84520.92310.086*
C110.2169 (4)0.7295 (6)0.9130 (3)0.0602 (13)
H110.23820.71630.98180.072*
C120.1130 (4)0.6702 (5)0.8474 (3)0.0500 (12)
C130.0802 (3)0.6918 (5)0.7437 (3)0.0449 (11)
C140.0371 (4)0.5812 (6)0.8890 (4)0.0776 (16)
H14A0.07500.57180.96070.116*
H14B0.01910.46950.86020.116*
H14C0.03090.64570.87260.116*
C150.0326 (4)0.6292 (6)0.6700 (3)0.0758 (15)
H15A0.08690.63840.69950.114*
H15B0.02620.51240.65350.114*
H15C0.05640.69700.61000.114*
N10.1199 (3)0.7938 (4)0.6039 (2)0.0501 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1350 (6)0.0914 (5)0.0529 (3)0.0264 (4)0.0410 (3)0.0038 (3)
C10.064 (3)0.061 (3)0.052 (3)0.015 (3)0.025 (3)0.005 (2)
C20.075 (4)0.054 (3)0.061 (3)0.021 (3)0.024 (3)0.008 (3)
C30.069 (3)0.050 (3)0.044 (2)0.006 (3)0.023 (3)0.005 (2)
C40.069 (4)0.104 (4)0.061 (3)0.012 (3)0.039 (3)0.015 (3)
C50.051 (3)0.095 (4)0.060 (3)0.013 (3)0.024 (3)0.000 (3)
C60.051 (3)0.047 (3)0.048 (3)0.001 (2)0.023 (2)0.001 (2)
C70.058 (3)0.047 (3)0.050 (3)0.002 (2)0.022 (3)0.000 (2)
C80.047 (3)0.034 (3)0.049 (3)0.004 (2)0.018 (2)0.001 (2)
C90.062 (3)0.055 (3)0.063 (3)0.015 (3)0.030 (3)0.005 (2)
C100.065 (3)0.089 (4)0.057 (3)0.024 (3)0.021 (3)0.020 (3)
C110.072 (4)0.066 (4)0.044 (3)0.004 (3)0.024 (3)0.002 (2)
C120.062 (3)0.043 (3)0.053 (3)0.002 (2)0.032 (3)0.003 (2)
C130.051 (3)0.037 (3)0.046 (2)0.002 (2)0.018 (2)0.005 (2)
C140.093 (4)0.080 (4)0.070 (3)0.008 (3)0.042 (3)0.009 (3)
C150.059 (3)0.100 (4)0.062 (3)0.015 (3)0.018 (3)0.005 (3)
N10.061 (2)0.048 (2)0.048 (2)0.004 (2)0.028 (2)0.0032 (17)
Geometric parameters (Å, º) top
Br1—C31.901 (4)C8—N11.426 (5)
C1—C21.375 (6)C9—C101.380 (6)
C1—C61.387 (5)C9—H90.9300
C1—H10.9300C10—C111.366 (6)
C2—C31.365 (6)C10—H100.9300
C2—H20.9300C11—C121.383 (6)
C3—C41.355 (6)C11—H110.9300
C4—C51.393 (6)C12—C131.401 (5)
C4—H40.9300C12—C141.513 (6)
C5—C61.382 (5)C13—C151.509 (6)
C5—H50.9300C14—H14A0.9600
C6—C71.464 (5)C14—H14B0.9600
C7—N11.253 (5)C14—H14C0.9600
C7—H70.9300C15—H15A0.9600
C8—C91.377 (5)C15—H15B0.9600
C8—C131.395 (5)C15—H15C0.9600
C2—C1—C6121.6 (4)C10—C9—H9120.1
C2—C1—H1119.2C11—C10—C9120.1 (4)
C6—C1—H1119.2C11—C10—H10120.0
C3—C2—C1119.1 (4)C9—C10—H10120.0
C3—C2—H2120.5C10—C11—C12121.0 (4)
C1—C2—H2120.5C10—C11—H11119.5
C4—C3—C2121.5 (4)C12—C11—H11119.5
C4—C3—Br1119.2 (4)C11—C12—C13119.6 (4)
C2—C3—Br1119.3 (4)C11—C12—C14119.3 (4)
C3—C4—C5119.3 (4)C13—C12—C14121.0 (4)
C3—C4—H4120.4C8—C13—C12118.5 (4)
C5—C4—H4120.4C8—C13—C15120.3 (4)
C6—C5—C4120.9 (4)C12—C13—C15121.1 (4)
C6—C5—H5119.6C12—C14—H14A109.5
C4—C5—H5119.6C12—C14—H14B109.5
C5—C6—C1117.7 (4)H14A—C14—H14B109.5
C5—C6—C7120.2 (4)C12—C14—H14C109.5
C1—C6—C7122.1 (4)H14A—C14—H14C109.5
N1—C7—C6123.3 (4)H14B—C14—H14C109.5
N1—C7—H7118.4C13—C15—H15A109.5
C6—C7—H7118.4C13—C15—H15B109.5
C9—C8—C13120.8 (4)H15A—C15—H15B109.5
C9—C8—N1121.1 (4)C13—C15—H15C109.5
C13—C8—N1117.9 (4)H15A—C15—H15C109.5
C8—C9—C10119.9 (4)H15B—C15—H15C109.5
C8—C9—H9120.1C7—N1—C8119.4 (4)
C6—C1—C2—C30.4 (7)C9—C10—C11—C120.6 (8)
C1—C2—C3—C40.4 (7)C10—C11—C12—C130.8 (7)
C1—C2—C3—Br1179.8 (3)C10—C11—C12—C14178.5 (4)
C2—C3—C4—C50.7 (7)C9—C8—C13—C122.6 (6)
Br1—C3—C4—C5179.5 (4)N1—C8—C13—C12178.6 (4)
C3—C4—C5—C60.3 (7)C9—C8—C13—C15179.0 (4)
C4—C5—C6—C10.4 (7)N1—C8—C13—C153.0 (6)
C4—C5—C6—C7178.6 (4)C11—C12—C13—C81.7 (6)
C2—C1—C6—C50.8 (7)C14—C12—C13—C8177.6 (4)
C2—C1—C6—C7178.9 (4)C11—C12—C13—C15179.9 (4)
C5—C6—C7—N1173.1 (4)C14—C12—C13—C150.9 (6)
C1—C6—C7—N14.9 (7)C6—C7—N1—C8176.2 (4)
C13—C8—C9—C102.5 (6)C9—C8—N1—C744.6 (6)
N1—C8—C9—C10178.4 (4)C13—C8—N1—C7139.3 (4)
C8—C9—C10—C111.5 (7)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C8–C13 and C1–C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2···Cg2i0.932.993.830 (6)151
C15—H15B···Cg1ii0.962.993.781 (6)140
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC15H14BrN
Mr288.18
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)12.945 (9), 7.857 (5), 14.497 (10)
β (°) 113.384 (8)
V3)1353.3 (16)
Z4
Radiation typeMo Kα
µ (mm1)3.02
Crystal size (mm)0.25 × 0.20 × 0.19
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.519, 0.598
No. of measured, independent and
observed [I > 2σ(I)] reflections
5865, 2525, 1154
Rint0.058
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.112, 0.94
No. of reflections2525
No. of parameters157
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.25

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C8–C13 and C1–C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2···Cg2i0.932.993.830 (6)151
C15—H15B···Cg1ii0.962.993.781 (6)140
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds