Download citation
Download citation
link to html
The whole mol­ecule of the title compound, C20H19NO4S2, is generated by twofold rotational symmetry. The N atom is located on the twofold rotation axis and has a trigonal-planar geometry. It is bonded by two S atoms of two symmetry-related 4-methyl­phenyl­sulfonyl groups and by the C atom of the phenyl ring, which is bis­ected by the twofold rotation axis. The benzene and phenyl rings are oriented at a dihedral angle of 51.48 (5)° while the pendant benzene rings are inclined to one another by 87.76 (9)°. In the crystal, weak C—H...O hydrogen bonds link the mol­ecules, forming a three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536814002086/su2692sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536814002086/su2692Isup2.hkl
Contains datablock I

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S1600536814002086/su2692Isup3.cml
Supplementary material

CCDC reference: 939052

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.038
  • wR factor = 0.109
  • Data-to-parameter ratio = 19.5

checkCIF/PLATON results

No syntax errors found



Alert level G PLAT005_ALERT_5_G No _iucr_refine_instructions_details in the CIF Please Do ! PLAT764_ALERT_4_G Overcomplete CIF Bond List Detected (Rep/Expd) . 1.13 Ratio
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 0 ALERT level C = Check. Ensure it is not caused by an omission or oversight 2 ALERT level G = General information/check it is not something unexpected 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Sulfonamides, which are known as sulfa drugs, are an important class of compounds in the field of chemistry and pharmacology. Several sulfonamide derivatives are used as chemotherapeutic agents for their antibacterial, antifungal, antitumor and hypoglycemic (Chohan et al., 2010; El-Sayed et al., 2011; Seri et al., 2000). In addition, some sulfonamide derivatives are reported to have carbonic anhydrases (CA) inhibition properties (Suparan et al., 2000). Disulfonamides are sulfonamide derivatives containing two sulfone groups connected to the nitrogen atom and they are used for their antitumor activity and CA inhibitory properties (Boriack-Sjodin et al., 1998). On the other hand, the complexes obtained from their chiral derivatives are used in asymmetric syntheses as catalysts (Guo et al., 1997). The title compound, belonging to the disulfonimide group, was synthesized and its crystal structure is reported herein.

The asymmetric unit of the title compound contains half a molecule; the whole molecule is generated by two-fold rotational symmetry. Atoms N1, C7 and C10 are located on the two-fold rotation axis (Fig. 1). The geometry around atoms S1 and N1 are distorted tetrahedral and planar trigonal, respectively. The average S—O bond length is 1.4213 (13) Å, while the S—N and S—C bond lengths are 1.6822 (9) and 1.7546 (17), respectively. These distances are close to standard values (Allen et al., 1987) and may be compared with the corresponding values in 5-amino-1-(4-methylphenylsulfonyl)-4-pyrazolin-3-one (Elgemeie et al., 2013). The benzene and phenyl rings are oriented at a dihedral angle of 51.48 (5)°. Atoms S1, C11 and N1 are displaced by -0.0757 (4), -0.0172 (26) and -0.0018 (1) Å from the adjacent ring planes.

In the crystal, Fig. 2, weak C—H···O hydrogen bonds (Table 1) link the molecules into a three-dimensional network.

Related literature top

Several sulfonamide derivatives have been used as chemotherapeutic agents for their antibacterial, antifungal, antitumor and hypoglycemic effects for many years, see: Chohan et al. (2010); El-Sayed et al. (2011); Seri et al. (2000). Some sulfonamide derivatives are reported to have carbonic anhydrases (CA) inhibition properties, see: Suparan et al. (2000). For the use of disulfonamides for their antitumor activity and CA inhibitory properties, see: Boriack-Sjodin et al. (1998). For the use as catalysts in asymmetric syntheses of complexes obtained from disulfonamides chiral derivatives, see: Guo et al. (1997). For sulfonation of aniline by 4-tolylsulfonyl chloride utilizing standard procedures with small modifications, see: DeChristopher et al. (1974). For a related structure involving 4-methylphenylsulfonyl, see: Elgemeie et al. (2013). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared by a two step sulfonylation of aniline by 4-toluenesulfonyl chloride utilizing standard procedures with small modifications (DeChristopher et al., 1974). Aniline (40 mmol) and benzene (10 ml) were placed in a two-necked flask fitted with a dropping funnel and a reflux condenser. A solution of 4-toluenesulfonyl chloride (20 mmol) in benzene (50 ml) was placed in the dropping funnel and was added to the aniline solution in portions with stirring. The mixture was heated under reflux for 2 h. The obtained heterogeneous mixture was cooled and the solvent was evaporated under vacuum. The crude product was treated sequentially with deionized water (20 ml) and NaOH (20%) solution. The mixture was placed in a separation funnel and the water phase was separated and acidified gently with 4M HCl. The precipitate 4-toluene sulfonanilide was collected by filtration, and then dried (yield: 3.66 g, 74%; m.p. 372-373 K). In the second step 4-toluene sulfonanilide (10 mmol) was dissolved in benzene (30 ml) and the mixture stirred under reflux. A solution of 4-toluenesulfonyl chloride (10 mmol) in benzene (30 ml) was added drop wise into the stirring solution, and then potassium tert-butoxide (12 mmol), followed by catalytic amounts of 18-crown-6 were added in portions. After the reaction system was allowed to reflux for 3 h, then the mixture was cooled and the solvent evaporated under vacuum. The crude product was treated with NaOH (20%) solution in order to remove excess 4-toluene sulfonanilide. The insoluble solids were collected by filtration, washed with deionized water, and then dried (yield: 3.21 g, 78%; m.p. 454-456 K). The suitable colourless block-like crystals were obtained by recrystallization from acetone/water (7:3).

Refinement top

The C-bound H-atoms were positioned geometrically with C—H = 0.93 and 0.96 Å for aromatic and methyl H-atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = k × Ueq(C), where k = 1.5 for methyl H-atoms and = 1.2 for other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title molecule, with atom-labelling. Displacement ellipsoids are drawn at the 50% probability level. The two-fold rotation axis bisects atoms N1, C7 and C10.
[Figure 2] Fig. 2. A partial view along the c axis of the crystal packing of the title compound. Hydrogen atoms have been omitted for clarity.
4-Methyl-N-(4-methylphenylsulfonyl)-N-phenylbenzenesulfonamide top
Crystal data top
C20H19NO4S2F(000) = 840
Mr = 401.51Dx = 1.375 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3887 reflections
a = 18.1080 (5) Åθ = 2.3–28.1°
b = 9.3834 (3) ŵ = 0.30 mm1
c = 11.4821 (4) ÅT = 296 K
β = 96.015 (3)°Block, colourless
V = 1940.24 (11) Å30.25 × 0.22 × 0.14 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
1981 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 28.4°, θmin = 2.3°
φ and ω scansh = 2423
9411 measured reflectionsk = 1012
2441 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0574P)2 + 0.990P]
where P = (Fo2 + 2Fc2)/3
2441 reflections(Δ/σ)max < 0.001
125 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C20H19NO4S2V = 1940.24 (11) Å3
Mr = 401.51Z = 4
Monoclinic, C2/cMo Kα radiation
a = 18.1080 (5) ŵ = 0.30 mm1
b = 9.3834 (3) ÅT = 296 K
c = 11.4821 (4) Å0.25 × 0.22 × 0.14 mm
β = 96.015 (3)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
1981 reflections with I > 2σ(I)
9411 measured reflectionsRint = 0.022
2441 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.05Δρmax = 0.24 e Å3
2441 reflectionsΔρmin = 0.39 e Å3
125 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.06888 (2)0.13028 (4)0.33345 (3)0.03537 (14)
O10.08971 (7)0.22464 (13)0.42817 (10)0.0471 (3)
O20.04424 (7)0.00962 (13)0.35650 (11)0.0491 (3)
N10.00000.21329 (18)0.25000.0332 (4)
C10.14280 (9)0.12114 (17)0.24640 (14)0.0369 (3)
C20.20477 (10)0.2045 (2)0.27464 (17)0.0533 (5)
H20.20650.26820.33690.064*
C30.26449 (11)0.1920 (2)0.2089 (2)0.0622 (5)
H30.30660.24720.22840.075*
C40.26270 (10)0.0998 (2)0.11573 (17)0.0502 (4)
C50.19959 (10)0.0185 (2)0.08876 (17)0.0555 (5)
H50.19760.04430.02580.067*
C60.13953 (10)0.0282 (2)0.15261 (17)0.0505 (4)
H60.09740.02700.13300.061*
C70.00000.3675 (2)0.25000.0303 (4)
C80.03282 (9)0.43935 (18)0.16443 (14)0.0416 (4)
H80.05470.38970.10690.050*
C90.03269 (12)0.5865 (2)0.16553 (18)0.0575 (5)
H90.05490.63660.10860.069*
C100.00000.6588 (3)0.25000.0642 (8)
H100.00000.75790.25000.077*
C110.32811 (12)0.0864 (3)0.0452 (2)0.0711 (6)
H11A0.31100.05780.03330.107*
H11B0.36200.01630.08050.107*
H11C0.35290.17670.04350.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0368 (2)0.0329 (2)0.0360 (2)0.00350 (15)0.00149 (15)0.00050 (14)
O10.0507 (7)0.0514 (7)0.0377 (6)0.0076 (6)0.0026 (5)0.0083 (5)
O20.0542 (7)0.0365 (7)0.0565 (7)0.0010 (5)0.0051 (6)0.0118 (5)
N10.0307 (9)0.0270 (9)0.0416 (9)0.0000.0019 (7)0.000
C10.0326 (7)0.0355 (8)0.0421 (8)0.0054 (6)0.0014 (6)0.0017 (6)
C20.0428 (10)0.0543 (12)0.0634 (11)0.0051 (8)0.0085 (8)0.0180 (9)
C30.0400 (10)0.0637 (14)0.0836 (14)0.0079 (9)0.0102 (9)0.0130 (11)
C40.0383 (9)0.0586 (11)0.0542 (10)0.0136 (8)0.0077 (8)0.0061 (9)
C50.0433 (10)0.0721 (13)0.0507 (10)0.0088 (9)0.0036 (8)0.0189 (9)
C60.0373 (9)0.0587 (11)0.0551 (10)0.0005 (8)0.0023 (7)0.0181 (9)
C70.0289 (9)0.0271 (10)0.0353 (10)0.0000.0052 (8)0.000
C80.0416 (9)0.0435 (10)0.0412 (8)0.0051 (7)0.0116 (7)0.0032 (7)
C90.0655 (13)0.0455 (11)0.0606 (11)0.0167 (10)0.0013 (9)0.0166 (9)
C100.076 (2)0.0270 (13)0.084 (2)0.0000.0178 (17)0.000
C110.0481 (11)0.0943 (18)0.0736 (14)0.0158 (12)0.0198 (10)0.0051 (13)
Geometric parameters (Å, º) top
S1—O11.4223 (12)C6—C51.377 (3)
S1—O21.4203 (13)C6—H60.9300
S1—N11.6822 (9)C7—N11.447 (3)
S1—C11.7546 (17)C7—C8i1.3768 (18)
N1—S1i1.6822 (9)C7—C81.3768 (18)
C1—C21.378 (2)C8—C91.380 (3)
C1—C61.382 (2)C8—H80.9300
C2—C31.387 (3)C9—C101.368 (3)
C2—H20.9300C9—H90.9300
C3—H30.9300C10—C9i1.368 (3)
C4—C31.374 (3)C10—H100.9300
C4—C51.382 (3)C11—H11A0.9600
C4—C111.508 (3)C11—H11B0.9600
C5—H50.9300C11—H11C0.9600
O1—S1—N1105.59 (7)C6—C5—H5119.2
O1—S1—C1108.00 (8)C1—C6—H6120.5
O2—S1—O1119.74 (8)C5—C6—C1118.97 (17)
O2—S1—N1107.79 (8)C5—C6—H6120.5
O2—S1—C1109.53 (8)C8i—C7—N1119.33 (10)
N1—S1—C1105.22 (5)C8—C7—N1119.33 (10)
S1i—N1—S1124.83 (11)C8i—C7—C8121.3 (2)
C7—N1—S1117.58 (5)C7—C8—C9118.82 (17)
C7—N1—S1i117.58 (5)C7—C8—H8120.6
C2—C1—S1119.29 (13)C9—C8—H8120.6
C2—C1—C6120.59 (16)C8—C9—H9119.9
C6—C1—S1120.10 (13)C10—C9—C8120.26 (19)
C1—C2—C3119.09 (17)C10—C9—H9119.9
C1—C2—H2120.5C9i—C10—C9120.5 (3)
C3—C2—H2120.5C9i—C10—H10119.8
C2—C3—H3119.3C9—C10—H10119.8
C4—C3—C2121.38 (18)C4—C11—H11A109.5
C4—C3—H3119.3C4—C11—H11B109.5
C3—C4—C5118.27 (17)C4—C11—H11C109.5
C3—C4—C11120.97 (19)H11A—C11—H11B109.5
C5—C4—C11120.76 (19)H11A—C11—H11C109.5
C4—C5—H5119.2H11B—C11—H11C109.5
C6—C5—C4121.70 (17)
O1—S1—N1—S1i151.02 (6)C2—C1—C6—C50.9 (3)
O1—S1—N1—C728.98 (6)C1—C2—C3—C40.8 (3)
O2—S1—N1—S1i21.94 (6)C5—C4—C3—C20.2 (3)
O2—S1—N1—C7158.06 (6)C11—C4—C3—C2179.7 (2)
C1—S1—N1—S1i94.88 (6)C3—C4—C5—C60.1 (3)
C1—S1—N1—C785.12 (6)C11—C4—C5—C6179.42 (19)
O1—S1—C1—C23.00 (17)C1—C6—C5—C40.3 (3)
O1—S1—C1—C6175.15 (14)C8—C7—N1—S194.21 (8)
O2—S1—C1—C2134.97 (15)C8i—C7—N1—S185.79 (8)
O2—S1—C1—C643.18 (16)C8—C7—N1—S1i85.79 (8)
N1—S1—C1—C2109.41 (15)C8i—C7—N1—S1i94.21 (8)
N1—S1—C1—C672.44 (16)N1—C7—C8—C9179.79 (12)
S1—C1—C2—C3177.00 (16)C8i—C7—C8—C90.21 (12)
C6—C1—C2—C31.1 (3)C7—C8—C9—C100.4 (2)
S1—C1—C6—C5177.22 (15)C8—C9—C10—C9i0.21 (13)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.932.593.337 (2)138
C9—H9···O1ii0.932.583.496 (2)168
C10—H10···O2iii0.932.593.408 (3)147
C10—H10···O2iv0.932.593.408 (3)147
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+1, z1/2; (iii) x, y+1, z; (iv) x, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.932.593.337 (2)138
C9—H9···O1ii0.932.583.496 (2)168
C10—H10···O2iii0.932.593.408 (3)147
C10—H10···O2iv0.932.593.408 (3)147
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+1, z1/2; (iii) x, y+1, z; (iv) x, y+1, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds