Download citation
Download citation
link to html
In the title compound, C27H24N2O3, the dihedral angle between the mean planes of the di­hydro­furan and 3,4-di­hydro­quinoline ring systems is 70.65 (9)°. The di­hydro­furan ring adopts an envelope conformation with the C atom adjacent to the methyl­ene C atom of the pyrrolidine ring as the flap. The five-membered pyrrolidine ring adopts a twist conformation on the N—C(tetra­substituted) bond. In the crystal, mol­ecules are linked via pairs of N—H...O hydrogen bonds, forming inversion dimers with an R22(8) ring motif. The dimers are linked via pairs of C—H...O hydrogen bonds, forming ribbons enclosing R22(12) ring motifs lying in a plane parallel to (01-1).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2056989015002017/su5066sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2056989015002017/su5066Isup2.hkl
Contains datablock I

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2056989015002017/su5066Isup3.cml
Supplementary material

CCDC reference: 1046441

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.040
  • wR factor = 0.157
  • Data-to-parameter ratio = 13.0

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT919_ALERT_3_B Reflection # Likely Affected by the Beamstop ... 1 Check PLAT939_ALERT_3_B Large Value of Not (SHELXL) Weight Optimized S . 298.81
Alert level C PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) Range 3.2 Ratio PLAT905_ALERT_3_C Negative K value in the Analysis of Variance ... -2.118 Report PLAT918_ALERT_3_C Reflection(s) with I(obs) much smaller I(calc) . 1 Check PLAT934_ALERT_3_C Number of (Iobs-Icalc)/SigmaW > 10 Outliers .... 1 Check
Alert level G PLAT005_ALERT_5_G No _iucr_refine_instructions_details in the CIF Please Do ! PLAT066_ALERT_1_G Predicted and Reported Tmin&Tmax Range Identical ? Check PLAT072_ALERT_2_G SHELXL First Parameter in WGHT Unusually Large. 0.11 Report PLAT154_ALERT_1_G The su's on the Cell Angles are Equal .......... 0.00200 Degree PLAT199_ALERT_1_G Reported _cell_measurement_temperature ..... (K) 293 Check PLAT200_ALERT_1_G Reported _diffrn_ambient_temperature ..... (K) 293 Check PLAT793_ALERT_4_G The Model has Chirality at C11 (Centro SPGR) S Verify PLAT793_ALERT_4_G The Model has Chirality at C13 (Centro SPGR) R Verify PLAT793_ALERT_4_G The Model has Chirality at C14 (Centro SPGR) R Verify PLAT793_ALERT_4_G The Model has Chirality at C16 (Centro SPGR) S Verify PLAT899_ALERT_4_G SHELXL97 is Deprecated and Succeeded by SHELXL 2014 Note PLAT909_ALERT_3_G Percentage of Observed Data at Theta(Max) still 62 %
0 ALERT level A = Most likely a serious problem - resolve or explain 2 ALERT level B = A potentially serious problem, consider carefully 4 ALERT level C = Check. Ensure it is not caused by an omission or oversight 12 ALERT level G = General information/check it is not something unexpected 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 6 ALERT type 3 Indicator that the structure quality may be low 5 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Structural commentary top

A large number of natural products contain the quinoline and indole heterocycles, and are found in numerous commercial products, including pharmaceuticals, fragrances and dyes (Padwa et al., 1999). In view of the above importance we have synthesized the title compound and report herein on its crystal structure.

The molecular structure of the title molecule is shown in Fig. 1. The furan ring system has an envelope conformation with atom C14 as the flap. The quinoline ring adopts a planar conformation with a maximum deviation of 0.326 (2) Å for the spiro C atom, C14. The five-membered pyrrolidine ring (N2/C13–C16) is twisted on N2—C13. The sum of the bond angles around atom N2 of the o­cta­hydro­indolizine ring is 338.61° and for N1 of the quinoline ring it is 359.71°, confirming the sp3 and sp2 hybridization, respectively.

In the crystal, molecules are linked by two pairs of N1—H1A···O3, C24—H24···O1 hydrogen bonds (Table 1), forming two inversion dimers and containing two R22(8), R22(12) ring motifs, respectively; see Fig. 2. In the crystal structure, inter­molecular C24—H24···O1, N1—H1A···O3 hydrogen bonds link the molecules into ribbons lying parallel to the (011; Fig. 3 and Table 1.

Synthesis and crystallization top

A mixture of methyl 2-((hydroxyl(naphthalene-2-yl) methyl) acrylate (1 mmol), isatin (1.1 mmol) and pipecolic acid (1.1 mmol) was placed in a round bottom flask and melted at 180°C until completion of the reaction was evidenced by TLC analysis. After completion of the reaction, the crude product was washed with 5 ml of ethyl­acetate and hexane mixture (1:4 ratio) which successfully provided the pure product as colorless solid. The product was dissolved in ethyl acetate and heated for two minutes. The resulting solution was subjected to crystallization by slow evaporation of the solvent for 48 hours resulting in the formation of single crystals.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93-0.98 Å with Uiso (H) = 1.5Ueq(C) for methyl H 1.2Ueq(C) for other H atoms.

Related literature top

For general background to quinoline and pyrrolidine derivatives, see: Padwa et al. (1999). For a related structure, see: Govindan et al. (2014).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial view along the b axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1 for details).
[Figure 3] Fig. 3. The molecular packing viewed along the a axis. Dashed lines shows the intermolecular C—H···O and N—H···O hydrogen bonds (see Table 1 for details).
15-(Naphthalen-1-yl)-7,7a,8,9,10,11-hexahydro-6a,12a-(methanoepoxymethano)indolizino[2,3-c]quinoline-6,13(5H)-dione top
Crystal data top
C27H24N2O3Z = 2
Mr = 424.49F(000) = 448
Triclinic, P1Dx = 1.302 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.4184 (3) ÅCell parameters from 3817 reflections
b = 9.8804 (4) Åθ = 1.7–25.0°
c = 12.5401 (5) ŵ = 0.09 mm1
α = 95.341 (2)°T = 293 K
β = 107.535 (2)°Block, colourless
γ = 99.940 (2)°0.35 × 0.30 × 0.30 mm
V = 1082.87 (7) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3817 independent reflections
Radiation source: fine-focus sealed tube3007 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω and ϕ scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1111
Tmin = 0.971, Tmax = 0.975k = 1111
28346 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H atoms treated by a mixture of independent and constrained refinement
S = 0.87 w = 1/[σ2(Fo2) + (0.1054P)2 + 0.6313P]
where P = (Fo2 + 2Fc2)/3
3817 reflections(Δ/σ)max < 0.001
293 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C27H24N2O3γ = 99.940 (2)°
Mr = 424.49V = 1082.87 (7) Å3
Triclinic, P1Z = 2
a = 9.4184 (3) ÅMo Kα radiation
b = 9.8804 (4) ŵ = 0.09 mm1
c = 12.5401 (5) ÅT = 293 K
α = 95.341 (2)°0.35 × 0.30 × 0.30 mm
β = 107.535 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3817 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3007 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.975Rint = 0.023
28346 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.157H atoms treated by a mixture of independent and constrained refinement
S = 0.87Δρmax = 0.17 e Å3
3817 reflectionsΔρmin = 0.21 e Å3
293 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.03845 (17)0.39247 (17)0.35495 (13)0.0396 (4)
O30.17604 (14)0.48033 (14)0.50098 (11)0.0464 (4)
N20.20514 (17)0.37970 (17)0.19482 (12)0.0406 (4)
O20.20942 (17)0.07713 (15)0.31755 (11)0.0536 (4)
C130.12431 (19)0.26604 (18)0.23296 (13)0.0340 (4)
O10.19536 (18)0.07035 (17)0.13733 (12)0.0619 (5)
C220.12077 (19)0.30793 (18)0.25108 (14)0.0357 (4)
C210.10973 (19)0.40178 (18)0.41158 (14)0.0351 (4)
C240.1323 (2)0.1598 (2)0.08548 (15)0.0422 (5)
H240.08380.11490.04270.051*
C110.1637 (2)0.16082 (19)0.39818 (15)0.0427 (5)
H110.05410.12840.38260.051*
C140.18956 (19)0.30545 (18)0.36204 (13)0.0346 (4)
C230.04632 (19)0.24314 (18)0.18736 (14)0.0338 (4)
C160.3652 (2)0.3986 (2)0.26462 (16)0.0446 (5)
H160.40820.32450.23700.054*
C250.2888 (2)0.1423 (2)0.04654 (17)0.0494 (5)
H250.34530.08700.02250.059*
C260.3607 (2)0.2069 (2)0.11008 (18)0.0528 (5)
H260.46620.19480.08410.063*
C150.3561 (2)0.3777 (2)0.38191 (15)0.0445 (5)
H15A0.38230.46630.43100.053*
H15B0.42520.31990.41640.053*
C270.2778 (2)0.2894 (2)0.21180 (18)0.0482 (5)
H270.32740.33290.25440.058*
C170.1838 (2)0.3772 (3)0.07473 (16)0.0536 (5)
H17A0.07620.36270.03250.064*
H17B0.22340.30160.04720.064*
C120.1767 (2)0.1274 (2)0.21866 (15)0.0434 (5)
C10.1724 (3)0.1607 (2)0.60132 (17)0.0569 (6)
C190.4345 (3)0.5443 (3)0.1301 (2)0.0723 (7)
H19A0.48380.63610.12310.087*
H19B0.48420.47710.10270.087*
C180.2675 (3)0.5145 (3)0.0586 (2)0.0695 (7)
H18A0.22090.58850.07960.083*
H18B0.25920.51230.02060.083*
C20.0310 (3)0.1993 (3)0.5812 (2)0.0656 (7)
H20.02320.21010.50820.079*
C200.4522 (3)0.5368 (3)0.2539 (2)0.0614 (6)
H20A0.55910.54820.29700.074*
H20B0.41390.61140.28430.074*
C100.2439 (3)0.1421 (2)0.51715 (17)0.0552 (6)
C60.2489 (4)0.1394 (3)0.71308 (19)0.0754 (8)
C50.1817 (5)0.1622 (3)0.7981 (2)0.0969 (12)
H50.23100.14860.87140.116*
C30.0285 (4)0.2215 (3)0.6662 (2)0.0888 (9)
H30.12130.24910.65100.107*
C90.3821 (3)0.1050 (3)0.5444 (2)0.0792 (9)
H90.42890.09490.48950.095*
C70.3883 (5)0.0989 (3)0.7356 (2)0.0964 (12)
H70.43700.08300.80830.116*
C80.4544 (4)0.0820 (3)0.6556 (3)0.1010 (12)
H80.54770.05520.67330.121*
C40.0487 (5)0.2030 (4)0.7754 (3)0.1065 (13)
H40.00780.21910.83310.128*
H1A0.091 (3)0.440 (2)0.393 (2)0.059 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0337 (8)0.0502 (9)0.0332 (8)0.0164 (7)0.0089 (6)0.0094 (7)
O30.0422 (7)0.0548 (8)0.0349 (7)0.0115 (6)0.0082 (6)0.0179 (6)
N20.0341 (8)0.0564 (10)0.0288 (8)0.0092 (7)0.0095 (6)0.0019 (7)
O20.0661 (9)0.0510 (8)0.0385 (8)0.0316 (7)0.0030 (7)0.0080 (6)
C130.0320 (9)0.0450 (10)0.0234 (8)0.0132 (7)0.0067 (7)0.0056 (7)
O10.0664 (10)0.0727 (10)0.0443 (8)0.0301 (8)0.0147 (7)0.0206 (7)
C220.0324 (9)0.0414 (9)0.0305 (9)0.0107 (7)0.0068 (7)0.0019 (7)
C210.0357 (9)0.0398 (9)0.0282 (9)0.0101 (7)0.0097 (7)0.0048 (7)
C240.0429 (10)0.0480 (11)0.0297 (9)0.0134 (8)0.0042 (8)0.0048 (8)
C110.0524 (11)0.0426 (10)0.0297 (9)0.0186 (8)0.0064 (8)0.0029 (7)
C140.0318 (9)0.0452 (10)0.0233 (8)0.0139 (7)0.0039 (7)0.0064 (7)
C230.0330 (9)0.0387 (9)0.0265 (8)0.0104 (7)0.0052 (7)0.0006 (7)
C160.0314 (9)0.0609 (12)0.0380 (10)0.0119 (8)0.0093 (8)0.0076 (9)
C250.0440 (11)0.0504 (11)0.0382 (10)0.0071 (9)0.0044 (8)0.0053 (9)
C260.0317 (10)0.0616 (13)0.0539 (12)0.0101 (9)0.0007 (9)0.0017 (10)
C150.0316 (9)0.0626 (12)0.0345 (10)0.0145 (8)0.0052 (8)0.0068 (8)
C270.0340 (10)0.0602 (12)0.0491 (11)0.0155 (9)0.0113 (8)0.0013 (9)
C170.0490 (11)0.0771 (15)0.0322 (10)0.0095 (10)0.0128 (9)0.0046 (10)
C120.0402 (10)0.0516 (11)0.0327 (10)0.0176 (8)0.0040 (8)0.0111 (8)
C10.0829 (16)0.0431 (11)0.0329 (11)0.0028 (11)0.0078 (10)0.0049 (8)
C190.0646 (15)0.0815 (17)0.0676 (16)0.0036 (13)0.0276 (13)0.0107 (13)
C180.0693 (15)0.0873 (18)0.0520 (14)0.0087 (13)0.0214 (12)0.0196 (13)
C20.0790 (17)0.0698 (15)0.0427 (12)0.0030 (13)0.0229 (11)0.0061 (11)
C200.0452 (12)0.0704 (15)0.0592 (14)0.0003 (10)0.0137 (10)0.0018 (11)
C100.0737 (15)0.0474 (11)0.0347 (11)0.0220 (10)0.0004 (10)0.0013 (9)
C60.116 (2)0.0507 (13)0.0370 (12)0.0002 (14)0.0025 (13)0.0049 (10)
C50.149 (3)0.082 (2)0.0337 (14)0.018 (2)0.0167 (17)0.0072 (12)
C30.095 (2)0.105 (2)0.0605 (16)0.0118 (17)0.0393 (16)0.0013 (15)
C90.096 (2)0.0807 (18)0.0517 (14)0.0534 (16)0.0060 (13)0.0000 (12)
C70.147 (3)0.0656 (17)0.0456 (15)0.0313 (19)0.0193 (18)0.0083 (13)
C80.131 (3)0.090 (2)0.0613 (18)0.066 (2)0.0203 (18)0.0001 (15)
C40.132 (3)0.123 (3)0.0484 (17)0.026 (3)0.0393 (19)0.0020 (17)
Geometric parameters (Å, º) top
N1—C211.344 (2)C15—H15B0.9700
N1—C221.400 (2)C27—H270.9300
N1—H1A0.94 (3)C17—C181.510 (3)
O3—C211.224 (2)C17—H17A0.9700
N2—C131.447 (2)C17—H17B0.9700
N2—C171.455 (2)C1—C21.405 (4)
N2—C161.466 (2)C1—C61.423 (3)
O2—C121.348 (2)C1—C101.427 (3)
O2—C111.456 (2)C19—C181.519 (4)
C13—C231.503 (2)C19—C201.521 (3)
C13—C141.533 (2)C19—H19A0.9700
C13—C121.547 (2)C19—H19B0.9700
O1—C121.193 (2)C18—H18A0.9700
C22—C271.384 (3)C18—H18B0.9700
C22—C231.392 (2)C2—C31.363 (4)
C21—C141.508 (2)C2—H20.9300
C24—C251.380 (3)C20—H20A0.9700
C24—C231.384 (2)C20—H20B0.9700
C24—H240.9300C10—C91.365 (4)
C11—C101.500 (3)C6—C71.394 (5)
C11—C141.541 (3)C6—C51.414 (5)
C11—H110.9800C5—C41.340 (5)
C14—C151.541 (3)C5—H50.9300
C16—C201.506 (3)C3—C41.390 (5)
C16—C151.530 (3)C3—H30.9300
C16—H160.9800C9—C81.414 (4)
C25—C261.371 (3)C9—H90.9300
C25—H250.9300C7—C81.343 (5)
C26—C271.374 (3)C7—H70.9300
C26—H260.9300C8—H80.9300
C15—H15A0.9700C4—H40.9300
C21—N1—C22125.41 (15)N2—C17—C18108.53 (18)
C21—N1—H1A115.6 (14)N2—C17—H17A110.0
C22—N1—H1A118.7 (15)C18—C17—H17A110.0
C13—N2—C17120.05 (15)N2—C17—H17B110.0
C13—N2—C16105.17 (14)C18—C17—H17B110.0
C17—N2—C16113.39 (15)H17A—C17—H17B108.4
C12—O2—C11109.27 (14)O1—C12—O2121.41 (18)
N2—C13—C23114.84 (14)O1—C12—C13128.67 (19)
N2—C13—C14102.34 (14)O2—C12—C13109.83 (14)
C23—C13—C14113.67 (14)C2—C1—C6117.6 (2)
N2—C13—C12114.32 (14)C2—C1—C10124.17 (19)
C23—C13—C12110.67 (14)C6—C1—C10118.2 (3)
C14—C13—C1299.78 (13)C18—C19—C20111.0 (2)
C27—C22—C23119.98 (16)C18—C19—H19A109.4
C27—C22—N1119.28 (16)C20—C19—H19A109.4
C23—C22—N1120.73 (15)C18—C19—H19B109.4
O3—C21—N1122.18 (16)C20—C19—H19B109.4
O3—C21—C14121.21 (15)H19A—C19—H19B108.0
N1—C21—C14116.56 (14)C17—C18—C19111.0 (2)
C25—C24—C23120.89 (18)C17—C18—H18A109.4
C25—C24—H24119.6C19—C18—H18A109.4
C23—C24—H24119.6C17—C18—H18B109.4
O2—C11—C10110.77 (15)C19—C18—H18B109.4
O2—C11—C14101.78 (15)H18A—C18—H18B108.0
C10—C11—C14119.79 (16)C3—C2—C1121.5 (3)
O2—C11—H11108.0C3—C2—H2119.2
C10—C11—H11108.0C1—C2—H2119.2
C14—C11—H11108.0C16—C20—C19109.81 (19)
C21—C14—C13114.24 (14)C16—C20—H20A109.7
C21—C14—C11111.47 (15)C19—C20—H20A109.7
C13—C14—C11100.47 (14)C16—C20—H20B109.7
C21—C14—C15110.41 (14)C19—C20—H20B109.7
C13—C14—C15103.12 (14)H20A—C20—H20B108.2
C11—C14—C15116.61 (15)C9—C10—C1120.2 (2)
C24—C23—C22118.81 (16)C9—C10—C11120.6 (2)
C24—C23—C13122.87 (16)C1—C10—C11119.1 (2)
C22—C23—C13118.32 (14)C7—C6—C5122.1 (3)
N2—C16—C20109.22 (17)C7—C6—C1119.1 (3)
N2—C16—C15103.46 (14)C5—C6—C1118.8 (3)
C20—C16—C15117.31 (17)C4—C5—C6121.4 (3)
N2—C16—H16108.8C4—C5—H5119.3
C20—C16—H16108.8C6—C5—H5119.3
C15—C16—H16108.8C2—C3—C4120.3 (4)
C26—C25—C24119.69 (17)C2—C3—H3119.9
C26—C25—H25120.2C4—C3—H3119.9
C24—C25—H25120.2C10—C9—C8120.5 (3)
C25—C26—C27120.44 (18)C10—C9—H9119.8
C25—C26—H26119.8C8—C9—H9119.8
C27—C26—H26119.8C8—C7—C6122.0 (2)
C16—C15—C14105.51 (14)C8—C7—H7119.0
C16—C15—H15A110.6C6—C7—H7119.0
C14—C15—H15A110.6C7—C8—C9119.9 (3)
C16—C15—H15B110.6C7—C8—H8120.0
C14—C15—H15B110.6C9—C8—H8120.0
H15A—C15—H15B108.8C5—C4—C3120.4 (3)
C26—C27—C22120.18 (19)C5—C4—H4119.8
C26—C27—H27119.9C3—C4—H4119.8
C22—C27—H27119.9
C17—N2—C13—C2360.8 (2)C24—C25—C26—C270.4 (3)
C16—N2—C13—C23169.99 (14)N2—C16—C15—C1416.5 (2)
C17—N2—C13—C14175.55 (16)C20—C16—C15—C14136.84 (18)
C16—N2—C13—C1446.34 (16)C21—C14—C15—C16112.10 (16)
C17—N2—C13—C1268.7 (2)C13—C14—C15—C1610.35 (19)
C16—N2—C13—C1260.50 (17)C11—C14—C15—C16119.34 (17)
C21—N1—C22—C27168.63 (18)C25—C26—C27—C220.0 (3)
C21—N1—C22—C2311.5 (3)C23—C22—C27—C260.1 (3)
C22—N1—C21—O3178.26 (18)N1—C22—C27—C26179.97 (18)
C22—N1—C21—C144.4 (3)C13—N2—C17—C18173.85 (18)
C12—O2—C11—C10160.48 (17)C16—N2—C17—C1860.7 (2)
C12—O2—C11—C1432.03 (19)C11—O2—C12—O1175.29 (19)
O3—C21—C14—C13153.33 (17)C11—O2—C12—C137.8 (2)
N1—C21—C14—C1329.3 (2)N2—C13—C12—O148.6 (3)
O3—C21—C14—C1193.6 (2)C23—C13—C12—O183.0 (2)
N1—C21—C14—C1183.75 (19)C14—C13—C12—O1157.0 (2)
O3—C21—C14—C1537.7 (2)N2—C13—C12—O2128.05 (16)
N1—C21—C14—C15144.95 (16)C23—C13—C12—O2100.40 (17)
N2—C13—C14—C2185.93 (17)C14—C13—C12—O219.64 (19)
C23—C13—C14—C2138.5 (2)N2—C17—C18—C1955.8 (3)
C12—C13—C14—C21156.33 (15)C20—C19—C18—C1754.5 (3)
N2—C13—C14—C11154.64 (13)C6—C1—C2—C32.6 (4)
C23—C13—C14—C1180.93 (17)C10—C1—C2—C3177.1 (2)
C12—C13—C14—C1136.89 (16)N2—C16—C20—C1956.7 (2)
N2—C13—C14—C1533.92 (17)C15—C16—C20—C19173.89 (19)
C23—C13—C14—C15158.35 (15)C18—C19—C20—C1654.5 (3)
C12—C13—C14—C1583.83 (17)C2—C1—C10—C9179.6 (2)
O2—C11—C14—C21164.11 (14)C6—C1—C10—C90.1 (3)
C10—C11—C14—C2173.4 (2)C2—C1—C10—C111.6 (3)
O2—C11—C14—C1342.69 (16)C6—C1—C10—C11178.66 (19)
C10—C11—C14—C13165.16 (18)O2—C11—C10—C926.4 (3)
O2—C11—C14—C1567.84 (17)C14—C11—C10—C991.6 (3)
C10—C11—C14—C1554.6 (2)O2—C11—C10—C1152.35 (19)
C25—C24—C23—C220.9 (3)C14—C11—C10—C189.7 (3)
C25—C24—C23—C13179.63 (18)C2—C1—C6—C7179.0 (2)
C27—C22—C23—C240.5 (3)C10—C1—C6—C71.3 (3)
N1—C22—C23—C24179.61 (17)C2—C1—C6—C51.9 (3)
C27—C22—C23—C13179.96 (17)C10—C1—C6—C5177.8 (2)
N1—C22—C23—C130.1 (3)C7—C6—C5—C4179.1 (3)
N2—C13—C23—C2487.6 (2)C1—C6—C5—C40.0 (4)
C14—C13—C23—C24155.05 (17)C1—C2—C3—C41.5 (4)
C12—C13—C23—C2443.7 (2)C1—C10—C9—C81.3 (4)
N2—C13—C23—C2292.97 (19)C11—C10—C9—C8177.5 (3)
C14—C13—C23—C2224.4 (2)C5—C6—C7—C8177.6 (3)
C12—C13—C23—C22135.75 (17)C1—C6—C7—C81.4 (4)
C13—N2—C16—C20165.09 (15)C6—C7—C8—C90.3 (5)
C17—N2—C16—C2061.9 (2)C10—C9—C8—C71.1 (5)
C13—N2—C16—C1539.42 (18)C6—C5—C4—C31.3 (5)
C17—N2—C16—C15172.47 (17)C2—C3—C4—C50.6 (5)
C23—C24—C25—C260.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.94 (3)1.92 (3)2.8413 (19)167 (2)
C24—H24···O1ii0.932.593.268 (2)131
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.94 (3)1.92 (3)2.8413 (19)167 (2)
C24—H24···O1ii0.932.593.268 (2)131
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds