Download citation
Download citation
link to html
The title compound is non-planar, with the mean plane of the pyrene ring system and the terminal N-phenyl ring being inclined to the central p-phenyl­enedi­amine ring by 29.34 (4) and 43.43 (7)°, respectively. In the crystal, mol­ecules are linked by a number of weak N—H...π, C—H...π and π–π inter­actions [inter-centroid distances = 3.5569 (11)–3.708 (1) Å], forming slabs lying parallel to (30\overline{4}).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2056989015001814/su5072sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2056989015001814/su5072Isup2.hkl
Contains datablock I

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2056989015001814/su5072Isup3.cml
Supplementary material

CCDC reference: 1045835

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.056
  • wR factor = 0.136
  • Data-to-parameter ratio = 13.6

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT420_ALERT_2_C D-H Without Acceptor N1 - H1A .. Please Check PLAT906_ALERT_3_C Large K value in the Analysis of Variance ...... 8.664 Check
Alert level G PLAT005_ALERT_5_G No _iucr_refine_instructions_details in the CIF Please Do ! PLAT066_ALERT_1_G Predicted and Reported Tmin&Tmax Range Identical ? Check PLAT899_ALERT_4_G SHELXL97 is Deprecated and Succeeded by SHELXL 2014 Note PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Th(Min) ... 2 Report PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600 20 Note
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 2 ALERT level C = Check. Ensure it is not caused by an omission or oversight 5 ALERT level G = General information/check it is not something unexpected 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Chemical context top

Schiff bases often exhibit various biological activities, and in many cases have been shown to have anti­bacterial, anti­cancer, anti-inflammatory and anti­toxic properties (Lozier et al., 1975). They are used as anion sensors (Dalapati et al., 2011), as non-linear optical compounds (Sun et al., 2012) and as versatile polynuclear ligands for multinuclear magnetic exchange clusters (Moroz et al., 2012). The pyrene unit is one of the most commonly used fluoro­phores due to its strong luminescence and chemical stability (Aoki et al., 1991; Nishizawa et al., 1999; van der Veen et al., 2000). Another inter­esting feature of the pyrene unit is the ππ inter­action between pyrene aromatic rings in the crystal packing, which can permit the formation of highly ordered molecular aggregates in the solid state by architecturally controlled self-assembly (Desiraju et al., 1989; Munakata et al., 1994). Pyrene is a commonly used fluoro­phore due to its unusual fluorescent properties: intense fluorescence signals, vibronic band dependence with the media (Karpovich & Blanchard, 1995), and use in fluorescence sensors (Bell & Hext, 2004) and excimer formation (Lodeiro et al., 2006). As a result of these particular properties and because of its chemical stability, it is also employed as a probe for solid-state studies (Corma et al., 2002) and polymer association (Seixas de Melo et al., 2003). We report herein on the crystal structure of the title compound, synthesized by the condensation reaction of 1-pyrenecarboxaldehyde and N-phenyl-p-phenyl­enedi­amine.

Structural commentary top

The molecular structure of the title compound is illustrated in Fig. 1. The compound is non-planar, the dihedral angles between the central benzene ring (C7–C12) and the terminal phenyl ring (C1–C6) and the mean plane of the pyrenyl ring system (C14–C29; r.m.s. deviation = 0.027 Å) being 43.43 (9) and 29.33 (7)°, respectively. The conformation about the C13N2 bond is E with a C10—N2—C13—C14 torsion angle of 178.13 (15)°.

Supra­molecular features top

In the crystal, molecules are connected via N—H···π and C—H···π inter­actions forming zigzag chains propagating along [102]; see Table 1 and Fig 2. These chains are linked via ππ inter­actions involving inversion-related pyrenyl rings, forming two-dimensional networks lying parallel to (304); see Fig. 3. The inter-centroid distances are 3.7051 (11), 3.708 (1), 3.6905 (11) and 3.5569 (11) Å for ππ inter­actions involving Cg3···Cg5i, Cg3···Cg6i, Cg4···Cg6i and Cg6···Cg6i, respectively, where Cg3, Cg4, Cg5 and Cg6 are the centroids of the C14–C17/C28–C27, C17–C20/C28–C29, C20–C24/C29 and C24–C29 rings, respectively [symmetry code: (i) = -x + 1, -y, -z]. Inter­action Cg6···Cg6i is a slipped parallel ππ inter­action with an inter­planar distance of 3.3614 (7) Å and a slippage of 1.163 Å.

Database survey top

A search of the Cambridge Structural Database (Version 5.36; last update November 2014; Groom & Allen, 2014) gave 20 hits for Schiff bases derived from pyrene-1-carbaldehyde. A search for Schiff base compounds involving N-phenyl-p-phenyl­enedi­amine gave three hits. Of these three compounds, N1-phenyl-N4 -(quinolin-2-yl­methyl­ene)benzene-1,4-di­amine {synonym: N-phenyl-4-[(quinolin-2-yl­methyl­ene)amino]­aniline; WOJJIQ; Faizi et al., 2014} is the most similar to the title compound. Here the dihedral angles between the central benzene ring and the terminal phenyl ring and the quinoline ring system (r.m.s. deviation = 0.027 Å) are 44.72 (7) and 9.02 (4)°, respectively. In the title compound, the dihedral angles between the central benzene ring and the terminal phenyl ring and the pyrenyl ring system (r.m.s. deviation = 0.027 Å) are 43.43 (9) and 29.33 (7)°, respectively.

Synthesis and crystallization top

80 mg (0.435 mmol) of N-phenyl-p-phenyl­enedi­amine were dissolved in 10 ml of absolute ethanol. To this solution, 100 mg (0.435 mmol) of pyrene-1-carbaldehyde in 5 ml of absolute ethanol was added dropwise under stirring. The mixture was stirred for 10 min, two drops of glacial acetic acid were then added and the mixture was further refluxed for 2h. The resulting yellow precipitate was recovered by filtration, washed several times with small portions of ice-cold ethanol and then with di­ethyl ether to give 150 mg (87%) of the title compound. Yellow block-like crystals suitable for X-ray analysis was obtained within 3 days by slow evaporation of a solution in MeOH.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The NH and C-bound H atoms were located from difference Fourier maps and freely refined.

Related literature top

For related literature, see: Aoki et al. (1991); Bell & Hext (2004); Corma et al. (2002); Dalapati et al. (2011); Desiraju & Gavezzotti (1989); Faizi et al. (2014); Groom & Allen (2014); Karpovich & Blanchard (1995); Lodeiro et al. (2006); Lozier et al. (1975); Moroz et al. (2012); Munakata et al. (1994); Nishizawa et al. (1999); Seixas de Melo, Costa, Miguel, Lindman & Schillén (2003); Sun et al. (2012); van der Veen et al. (2000).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenberg & Putz, 2006) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2015) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. A view along the b axis of the zigzag chain in the crystal of the title compound. The C—H···π and N—H···π interactions are shown as dashed lines (see Table 1 for details).
[Figure 3] Fig. 3. A view along the b axis of the crystal packing of the title compound. The C—H···π, N—H···π and ππ interactions are shown as dashed lines (see Table 1 for details).
N1-Phenyl-N4-[(E)-(pyren-1-yl)methylidene]benzene-1,4-diamine top
Crystal data top
C29H20N2F(000) = 832
Mr = 396.47Dx = 1.337 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4765 reflections
a = 13.0433 (6) Åθ = 2.5–28.1°
b = 12.2700 (5) ŵ = 0.08 mm1
c = 13.4981 (7) ÅT = 100 K
β = 114.269 (2)°Block, yellow
V = 1969.34 (16) Å30.18 × 0.14 × 0.12 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
4882 independent reflections
Radiation source: fine-focus sealed tube3015 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ϕ and ω scansθmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1317
Tmin = 0.986, Tmax = 0.991k = 1516
19561 measured reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136All H-atom parameters refined
S = 1.02 w = 1/[σ2(Fo2) + (0.0618P)2 + 0.3614P]
where P = (Fo2 + 2Fc2)/3
4882 reflections(Δ/σ)max < 0.001
360 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C29H20N2V = 1969.34 (16) Å3
Mr = 396.47Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.0433 (6) ŵ = 0.08 mm1
b = 12.2700 (5) ÅT = 100 K
c = 13.4981 (7) Å0.18 × 0.14 × 0.12 mm
β = 114.269 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
4882 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3015 reflections with I > 2σ(I)
Tmin = 0.986, Tmax = 0.991Rint = 0.058
19561 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.136All H-atom parameters refined
S = 1.02Δρmax = 0.27 e Å3
4882 reflectionsΔρmin = 0.31 e Å3
360 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.81481 (12)0.07101 (12)0.38507 (11)0.0234 (4)
C270.53428 (14)0.02897 (14)0.16435 (13)0.0185 (4)
C170.49949 (14)0.16939 (14)0.13951 (13)0.0209 (4)
C290.35640 (14)0.04116 (14)0.02242 (13)0.0185 (4)
C140.64048 (14)0.00667 (14)0.24975 (13)0.0192 (4)
C200.28576 (14)0.13001 (14)0.03213 (13)0.0209 (4)
C150.67242 (15)0.10188 (15)0.27839 (14)0.0223 (4)
C100.89081 (14)0.15581 (14)0.43730 (13)0.0216 (4)
C130.71978 (14)0.09325 (15)0.30778 (13)0.0211 (4)
N11.12616 (13)0.39778 (14)0.60829 (12)0.0289 (4)
C61.28287 (16)0.47750 (15)0.75618 (15)0.0262 (4)
C180.42695 (15)0.25720 (15)0.08151 (15)0.0237 (4)
C280.46352 (13)0.06019 (14)0.10921 (12)0.0177 (4)
C230.21349 (15)0.08409 (15)0.09503 (13)0.0223 (4)
C250.39177 (15)0.15502 (15)0.04656 (13)0.0207 (4)
C240.31949 (14)0.06726 (14)0.00974 (13)0.0186 (4)
C11.18326 (14)0.41717 (14)0.71999 (13)0.0218 (4)
C160.60457 (15)0.18739 (15)0.22482 (14)0.0227 (4)
C210.18068 (15)0.10853 (15)0.11566 (14)0.0227 (4)
C190.32537 (15)0.23874 (15)0.00075 (15)0.0248 (4)
C81.04477 (14)0.21599 (15)0.60259 (14)0.0225 (4)
C21.14291 (15)0.38326 (15)0.79601 (14)0.0218 (4)
C260.49341 (14)0.13708 (15)0.12909 (13)0.0205 (4)
C31.20224 (16)0.40741 (15)0.90521 (14)0.0243 (4)
C220.14500 (15)0.00301 (15)0.14681 (14)0.0242 (4)
C90.96797 (14)0.13737 (16)0.54378 (14)0.0224 (4)
C41.30180 (16)0.46528 (15)0.94087 (15)0.0277 (4)
C71.04841 (14)0.31582 (15)0.55524 (14)0.0230 (4)
C120.97321 (15)0.33348 (16)0.44705 (14)0.0255 (4)
C51.34123 (17)0.50082 (16)0.86574 (15)0.0288 (5)
C110.89664 (15)0.25524 (16)0.38926 (14)0.0251 (4)
H1A1.1460 (18)0.4403 (18)0.5660 (18)0.047 (7)*
H110.8478 (13)0.2685 (13)0.3158 (14)0.018 (4)*
H150.7446 (15)0.1160 (14)0.3384 (14)0.023 (5)*
H90.9661 (14)0.0706 (15)0.5772 (14)0.021 (5)*
H81.0955 (14)0.2013 (14)0.6739 (14)0.021 (5)*
H160.6282 (14)0.2600 (15)0.2463 (14)0.021 (5)*
H61.3112 (15)0.5027 (15)0.7024 (15)0.030 (5)*
H21.0753 (15)0.3456 (14)0.7734 (13)0.020 (5)*
H120.9774 (15)0.4012 (16)0.4143 (14)0.028 (5)*
H31.1711 (16)0.3855 (15)0.9576 (16)0.034 (5)*
H260.5406 (14)0.1991 (15)0.1644 (14)0.021 (5)*
H220.0715 (15)0.0126 (14)0.2071 (14)0.020 (5)*
H180.4536 (14)0.3307 (15)0.1048 (13)0.022 (5)*
H41.3450 (15)0.4810 (14)1.0175 (15)0.029 (5)*
H230.1887 (15)0.1603 (15)0.1163 (14)0.026 (5)*
H51.4111 (17)0.5434 (16)0.8905 (16)0.041 (6)*
H210.1325 (14)0.1709 (14)0.1498 (13)0.018 (4)*
H190.2740 (15)0.2977 (15)0.0384 (15)0.030 (5)*
H130.6979 (14)0.1714 (15)0.2880 (14)0.024 (5)*
H250.3679 (14)0.2288 (15)0.0244 (14)0.022 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0218 (8)0.0270 (9)0.0196 (7)0.0022 (7)0.0067 (6)0.0027 (6)
C270.0209 (9)0.0220 (10)0.0159 (8)0.0004 (7)0.0110 (7)0.0008 (7)
C170.0223 (9)0.0228 (10)0.0225 (9)0.0006 (8)0.0142 (8)0.0022 (7)
C290.0200 (9)0.0212 (10)0.0184 (8)0.0007 (7)0.0119 (7)0.0010 (7)
C140.0199 (9)0.0241 (10)0.0161 (8)0.0012 (7)0.0099 (7)0.0009 (7)
C200.0212 (9)0.0233 (10)0.0222 (9)0.0035 (8)0.0131 (7)0.0016 (7)
C150.0207 (9)0.0289 (11)0.0177 (9)0.0035 (8)0.0084 (7)0.0027 (8)
C100.0176 (9)0.0247 (10)0.0227 (9)0.0010 (8)0.0087 (7)0.0021 (7)
C130.0223 (9)0.0237 (10)0.0191 (8)0.0021 (8)0.0103 (7)0.0016 (7)
N10.0320 (9)0.0360 (10)0.0192 (8)0.0125 (8)0.0109 (7)0.0018 (7)
C60.0296 (10)0.0274 (11)0.0268 (9)0.0048 (9)0.0170 (8)0.0038 (8)
C180.0284 (10)0.0182 (10)0.0294 (9)0.0011 (8)0.0168 (8)0.0022 (8)
C280.0198 (9)0.0203 (10)0.0164 (8)0.0002 (7)0.0111 (7)0.0004 (7)
C230.0236 (9)0.0247 (10)0.0194 (9)0.0042 (8)0.0095 (7)0.0025 (8)
C250.0252 (9)0.0185 (10)0.0205 (9)0.0038 (8)0.0115 (8)0.0006 (7)
C240.0201 (9)0.0223 (10)0.0166 (8)0.0005 (8)0.0108 (7)0.0016 (7)
C10.0224 (9)0.0218 (10)0.0206 (8)0.0015 (8)0.0081 (7)0.0006 (7)
C160.0259 (10)0.0198 (10)0.0242 (9)0.0032 (8)0.0122 (8)0.0055 (8)
C210.0210 (9)0.0273 (11)0.0221 (9)0.0059 (8)0.0112 (8)0.0052 (8)
C190.0267 (10)0.0217 (10)0.0304 (10)0.0070 (9)0.0163 (8)0.0041 (8)
C80.0186 (9)0.0290 (11)0.0181 (9)0.0043 (8)0.0057 (7)0.0007 (8)
C20.0192 (9)0.0209 (10)0.0243 (9)0.0017 (8)0.0080 (8)0.0002 (7)
C260.0235 (9)0.0191 (10)0.0199 (9)0.0018 (8)0.0100 (8)0.0027 (7)
C30.0295 (10)0.0214 (10)0.0240 (9)0.0037 (8)0.0131 (8)0.0007 (8)
C220.0194 (9)0.0331 (11)0.0190 (9)0.0004 (8)0.0069 (7)0.0008 (8)
C90.0216 (9)0.0223 (10)0.0228 (9)0.0027 (8)0.0086 (8)0.0005 (8)
C40.0317 (11)0.0263 (11)0.0201 (9)0.0004 (9)0.0057 (8)0.0055 (8)
C70.0214 (9)0.0294 (11)0.0206 (8)0.0029 (8)0.0109 (7)0.0051 (8)
C120.0264 (10)0.0286 (11)0.0227 (9)0.0009 (9)0.0113 (8)0.0024 (8)
C50.0262 (10)0.0277 (11)0.0306 (10)0.0054 (9)0.0097 (9)0.0091 (8)
C110.0212 (9)0.0345 (11)0.0169 (8)0.0004 (9)0.0052 (7)0.0002 (8)
Geometric parameters (Å, º) top
N2—C131.279 (2)C23—C221.384 (3)
N2—C101.410 (2)C23—C241.404 (2)
C27—C141.418 (2)C23—H230.992 (18)
C27—C281.428 (2)C25—C261.354 (2)
C27—C261.436 (2)C25—C241.427 (2)
C17—C161.399 (2)C25—H250.964 (18)
C17—C281.423 (2)C1—C21.395 (2)
C17—C181.435 (2)C16—H160.949 (18)
C29—C241.421 (2)C21—C221.382 (3)
C29—C201.422 (2)C21—H210.977 (17)
C29—C281.426 (2)C19—H190.980 (19)
C14—C151.402 (2)C8—C91.382 (2)
C14—C131.465 (2)C8—C71.391 (3)
C20—C211.396 (2)C8—H80.934 (17)
C20—C191.434 (3)C2—C31.386 (2)
C15—C161.371 (3)C2—H20.928 (18)
C15—H150.972 (17)C26—H260.972 (18)
C10—C91.393 (2)C3—C41.381 (3)
C10—C111.398 (3)C3—H30.99 (2)
C13—H131.004 (18)C22—H220.988 (17)
N1—C71.398 (2)C9—H90.941 (18)
N1—C11.401 (2)C4—C51.383 (3)
N1—H1A0.89 (2)C4—H40.972 (18)
C6—C51.387 (3)C7—C121.401 (2)
C6—C11.397 (2)C12—C111.374 (3)
C6—H60.990 (19)C12—H120.954 (19)
C18—C191.344 (2)C5—H50.98 (2)
C18—H180.971 (18)C11—H110.947 (16)
C13—N2—C10119.79 (15)C2—C1—C6118.58 (16)
C14—C27—C28118.84 (15)C2—C1—N1123.14 (16)
C14—C27—C26123.60 (16)C6—C1—N1118.22 (16)
C28—C27—C26117.57 (15)C15—C16—C17120.99 (17)
C16—C17—C28118.76 (16)C15—C16—H16120.0 (10)
C16—C17—C18122.26 (16)C17—C16—H16119.0 (10)
C28—C17—C18118.98 (15)C22—C21—C20121.25 (17)
C24—C29—C20119.58 (15)C22—C21—H21121.3 (9)
C24—C29—C28119.93 (15)C20—C21—H21117.5 (10)
C20—C29—C28120.49 (16)C18—C19—C20121.16 (17)
C15—C14—C27119.20 (16)C18—C19—H19122.7 (11)
C15—C14—C13118.50 (15)C20—C19—H19116.2 (11)
C27—C14—C13122.28 (16)C9—C8—C7120.27 (16)
C21—C20—C29119.05 (16)C9—C8—H8119.8 (11)
C21—C20—C19122.34 (16)C7—C8—H8120.0 (11)
C29—C20—C19118.61 (16)C3—C2—C1120.25 (18)
C16—C15—C14121.83 (16)C3—C2—H2119.7 (11)
C16—C15—H15119.8 (10)C1—C2—H2120.0 (11)
C14—C15—H15118.4 (10)C25—C26—C27121.84 (17)
C9—C10—C11117.78 (16)C25—C26—H26119.0 (10)
C9—C10—N2117.22 (16)C27—C26—H26119.1 (10)
C11—C10—N2124.96 (15)C4—C3—C2120.95 (18)
N2—C13—C14121.06 (17)C4—C3—H3119.7 (11)
N2—C13—H13119.6 (10)C2—C3—H3119.3 (11)
C14—C13—H13119.3 (10)C21—C22—C23120.21 (16)
C7—N1—C1128.77 (17)C21—C22—H22121.6 (10)
C7—N1—H1A115.8 (14)C23—C22—H22118.2 (10)
C1—N1—H1A115.2 (14)C8—C9—C10121.67 (18)
C5—C6—C1120.40 (18)C8—C9—H9119.2 (10)
C5—C6—H6120.7 (11)C10—C9—H9119.1 (11)
C1—C6—H6118.9 (11)C3—C4—C5119.10 (17)
C19—C18—C17121.66 (18)C3—C4—H4121.5 (11)
C19—C18—H18121.4 (10)C5—C4—H4119.4 (11)
C17—C18—H18116.9 (10)C8—C7—N1123.53 (16)
C17—C28—C27120.37 (15)C8—C7—C12118.25 (16)
C17—C28—C29119.10 (15)N1—C7—C12118.16 (17)
C27—C28—C29120.53 (15)C11—C12—C7121.18 (18)
C22—C23—C24120.94 (17)C11—C12—H12120.8 (11)
C22—C23—H23121.0 (10)C7—C12—H12118.0 (11)
C24—C23—H23118.0 (10)C4—C5—C6120.69 (18)
C26—C25—C24121.64 (17)C4—C5—H5119.4 (12)
C26—C25—H25119.3 (10)C6—C5—H5119.9 (12)
C24—C25—H25119.0 (10)C12—C11—C10120.79 (16)
C23—C24—C29118.96 (16)C12—C11—H11119.6 (10)
C23—C24—C25122.55 (16)C10—C11—H11119.6 (10)
C29—C24—C25118.50 (15)
C28—C27—C14—C150.7 (2)C26—C25—C24—C290.1 (2)
C26—C27—C14—C15179.71 (15)C5—C6—C1—C21.4 (3)
C28—C27—C14—C13177.73 (15)C5—C6—C1—N1178.65 (17)
C26—C27—C14—C131.9 (3)C7—N1—C1—C224.6 (3)
C24—C29—C20—C210.7 (2)C7—N1—C1—C6158.27 (18)
C28—C29—C20—C21179.03 (15)C14—C15—C16—C170.7 (3)
C24—C29—C20—C19179.20 (15)C28—C17—C16—C150.3 (3)
C28—C29—C20—C191.1 (2)C18—C17—C16—C15179.62 (17)
C27—C14—C15—C161.2 (3)C29—C20—C21—C220.8 (3)
C13—C14—C15—C16177.34 (16)C19—C20—C21—C22179.15 (16)
C13—N2—C10—C9154.37 (16)C17—C18—C19—C201.0 (3)
C13—N2—C10—C1127.7 (3)C21—C20—C19—C18179.97 (17)
C10—N2—C13—C14178.13 (15)C29—C20—C19—C180.1 (3)
C15—C14—C13—N22.0 (2)C6—C1—C2—C31.3 (3)
C27—C14—C13—N2179.52 (16)N1—C1—C2—C3178.42 (17)
C16—C17—C18—C19178.95 (17)C24—C25—C26—C270.2 (3)
C28—C17—C18—C191.2 (3)C14—C27—C26—C25179.47 (16)
C16—C17—C28—C270.7 (2)C28—C27—C26—C250.1 (2)
C18—C17—C28—C27179.21 (15)C1—C2—C3—C40.1 (3)
C16—C17—C28—C29179.90 (15)C20—C21—C22—C230.1 (3)
C18—C17—C28—C290.2 (2)C24—C23—C22—C210.6 (3)
C14—C27—C28—C170.2 (2)C7—C8—C9—C101.4 (3)
C26—C27—C28—C17179.41 (15)C11—C10—C9—C82.9 (3)
C14—C27—C28—C29179.59 (15)N2—C10—C9—C8178.95 (15)
C26—C27—C28—C290.0 (2)C2—C3—C4—C51.1 (3)
C24—C29—C28—C17179.38 (15)C9—C8—C7—N1177.74 (17)
C20—C29—C28—C170.9 (2)C9—C8—C7—C120.5 (3)
C24—C29—C28—C270.0 (2)C1—N1—C7—C825.3 (3)
C20—C29—C28—C27179.71 (15)C1—N1—C7—C12157.42 (18)
C22—C23—C24—C290.6 (2)C8—C7—C12—C110.9 (3)
C22—C23—C24—C25179.12 (16)N1—C7—C12—C11178.29 (17)
C20—C29—C24—C230.1 (2)C3—C4—C5—C61.0 (3)
C28—C29—C24—C23179.69 (15)C1—C6—C5—C40.3 (3)
C20—C29—C24—C25179.77 (15)C7—C12—C11—C100.6 (3)
C28—C29—C24—C250.0 (2)C9—C10—C11—C122.5 (3)
C26—C25—C24—C23179.57 (16)N2—C10—C11—C12179.53 (17)
Hydrogen-bond geometry (Å, º) top
Cg5 and Cg6 are the centroids of the C20–C24/C29 and C24–C29 rings, respectively, in the pyrenyl ring system.
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cg5i0.89 (2)2.80 (2)3.6524 (19)163 (2)
C6—H6···Cg6i0.99 (2)2.76 (2)3.631 (2)147 (1)
Symmetry code: (i) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg5 and Cg6 are the centroids of the C20–C24/C29 and C24–C29 rings, respectively, in the pyrenyl ring system.
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cg5i0.89 (2)2.80 (2)3.6524 (19)163 (2)
C6—H6···Cg6i0.99 (2)2.76 (2)3.631 (2)147 (1)
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC29H20N2
Mr396.47
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)13.0433 (6), 12.2700 (5), 13.4981 (7)
β (°) 114.269 (2)
V3)1969.34 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.18 × 0.14 × 0.12
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.986, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
19561, 4882, 3015
Rint0.058
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.136, 1.02
No. of reflections4882
No. of parameters360
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.27, 0.31

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SIR97 (Altomare et al., 1999), DIAMOND (Brandenberg & Putz, 2006) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2015) and PLATON (Spek, 2009).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds