Download citation
Download citation
link to html
The crystal structure of the title compound, (C4H10N)2[SnCl6], has been redetermined at 180 K. All atoms were located with higher precision than the previous structure determined at room temperature [Ishida et al. (2000). J Mol. Struct. 524, 95–103]. In the crystal, the SnIV atom is located on a special position of site symmetry 2/m and is coordinated by six Cl atoms in a pseudo-octa­hedral geometry. Of the six Cl atoms, two equivalent axial atoms lie on the mirror plane [Sn—Cl = 2.4281 (6) Å] and the other four equivalent equatorial atoms lie on general positions [Sn—Cl = 2.4285 (4) Å]. The N atom of the pyrrolidinium cation lies on a mirror plane and the other atoms of the cation are disordered over two sites with respect to the mirror plane. Each component of the disordered five-membered rings adopts a twist conformation. The cations and anions are connected via N—H...Cl hydrogen bonds, forming a tape-like structure propagating along [010].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2414314618013974/su5454sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2414314618013974/su5454Isup2.hkl
Contains datablock I

CCDC reference: 1871008

Key indicators

  • Single-crystal X-ray study
  • T = 180 K
  • Mean [sigma](Sn-Cl) = 0.001 Å
  • Disorder in main residue
  • R factor = 0.024
  • wR factor = 0.057
  • Data-to-parameter ratio = 19.8

checkCIF/PLATON results

No syntax errors found



Alert level G PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite 3 Note PLAT172_ALERT_4_G The CIF-Embedded .res File Contains DFIX Records 2 Report PLAT232_ALERT_2_G Hirshfeld Test Diff (M-X) Sn1 --Cl1 . 5.3 s.u. PLAT300_ALERT_4_G Atom Site Occupancy of C1 Constrained at 0.5 Check PLAT300_ALERT_4_G Atom Site Occupancy of C2 Constrained at 0.5 Check PLAT300_ALERT_4_G Atom Site Occupancy of C3 Constrained at 0.5 Check PLAT300_ALERT_4_G Atom Site Occupancy of C4 Constrained at 0.5 Check PLAT300_ALERT_4_G Atom Site Occupancy of H1NA Constrained at 0.5 Check PLAT300_ALERT_4_G Atom Site Occupancy of H1A Constrained at 0.5 Check PLAT300_ALERT_4_G Atom Site Occupancy of H1B Constrained at 0.5 Check PLAT300_ALERT_4_G Atom Site Occupancy of H1NB Constrained at 0.5 Check PLAT300_ALERT_4_G Atom Site Occupancy of H2A Constrained at 0.5 Check PLAT300_ALERT_4_G Atom Site Occupancy of H2B Constrained at 0.5 Check PLAT300_ALERT_4_G Atom Site Occupancy of H3A Constrained at 0.5 Check PLAT300_ALERT_4_G Atom Site Occupancy of H3B Constrained at 0.5 Check PLAT300_ALERT_4_G Atom Site Occupancy of H4A Constrained at 0.5 Check PLAT300_ALERT_4_G Atom Site Occupancy of H4B Constrained at 0.5 Check PLAT301_ALERT_3_G Main Residue Disorder ..............(Resd 1 ) 80% Note PLAT720_ALERT_4_G Number of Unusual/Non-Standard Labels .......... 2 Note PLAT789_ALERT_4_G Atoms with Negative _atom_site_disorder_group # 14 Check PLAT811_ALERT_5_G No ADDSYM Analysis: Too Many Excluded Atoms .... ! Info PLAT860_ALERT_3_G Number of Least-Squares Restraints ............. 2 Note PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Theta(Min). 2 Note
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 0 ALERT level C = Check. Ensure it is not caused by an omission or oversight 23 ALERT level G = General information/check it is not something unexpected 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 17 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2006); cell refinement: RAPID-AUTO (Rigaku, 2006); data reduction: RAPID-AUTO (Rigaku, 2006); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: CrystalStructure (Rigaku, 2018) and PLATON (Spek, 2009).

Bis(pyrrolidinium) hexachloridostannate top
Crystal data top
(C4H10N)2[SnCl6]F(000) = 468.00
Mr = 475.67Dx = 1.843 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71075 Å
a = 16.3784 (11) ÅCell parameters from 5181 reflections
b = 7.3134 (3) Åθ = 3.1–30.0°
c = 7.1566 (4) ŵ = 2.41 mm1
β = 91.205 (2)°T = 180 K
V = 857.04 (8) Å3Platelet, colorless
Z = 20.20 × 0.20 × 0.10 mm
Data collection top
Rigaku R-AXIS RAPIDII
diffractometer
1308 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.038
ω scansθmax = 30.0°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 2222
Tmin = 0.579, Tmax = 0.786k = 109
5281 measured reflectionsl = 1010
1343 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: mixed
wR(F2) = 0.057H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.035P)2 + 0.3195P]
where P = (Fo2 + 2Fc2)/3
1343 reflections(Δ/σ)max = 0.001
68 parametersΔρmax = 0.54 e Å3
2 restraintsΔρmin = 1.10 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn10.5000000.5000000.0000000.02448 (8)
Cl10.61941 (4)0.5000000.20690 (9)0.03911 (14)
Cl20.56208 (3)0.26144 (5)0.18554 (6)0.03335 (10)
N10.61485 (15)0.0000000.1846 (3)0.0378 (5)
H1NA0.590 (4)0.082 (6)0.113 (7)0.057*0.5
H1NB0.595 (4)0.111 (5)0.163 (7)0.057*0.5
C10.7040 (2)0.015 (5)0.1454 (6)0.054 (3)0.5
H1A0.7186530.1419910.1121020.065*0.5
H1B0.7190810.0672320.0417170.065*0.5
C20.7455 (2)0.0412 (6)0.3229 (7)0.0512 (12)0.5
H2A0.7500380.1759300.3317900.061*0.5
H2B0.8007140.0132620.3346830.061*0.5
C30.6886 (2)0.0348 (6)0.4717 (5)0.0419 (13)0.5
H3A0.6942800.1690650.4842050.050*0.5
H3B0.6991970.0231710.5948430.050*0.5
C40.60557 (18)0.017 (3)0.3925 (4)0.034 (3)0.5
H4A0.5628660.0667580.4376190.041*0.5
H4B0.5911980.1439840.4274170.041*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.02747 (11)0.01710 (11)0.02918 (12)0.0000.00770 (7)0.000
Cl10.0362 (3)0.0386 (3)0.0423 (3)0.0000.0047 (2)0.000
Cl20.0398 (2)0.02416 (18)0.0366 (2)0.00185 (14)0.01405 (15)0.00506 (14)
N10.0375 (11)0.0426 (12)0.0334 (10)0.0000.0050 (8)0.000
C10.0469 (16)0.059 (10)0.0573 (18)0.002 (4)0.0289 (14)0.009 (6)
C20.0279 (14)0.047 (3)0.079 (3)0.0078 (14)0.0107 (15)0.0076 (19)
C30.0323 (14)0.044 (4)0.0490 (16)0.0022 (14)0.0033 (12)0.0092 (16)
C40.0279 (11)0.044 (8)0.0313 (10)0.006 (3)0.0072 (8)0.004 (2)
Geometric parameters (Å, º) top
Sn1—Cl1i2.4281 (6)C1—H1A0.9900
Sn1—Cl12.4281 (6)C1—H1B0.9900
Sn1—Cl22.4285 (4)C2—C31.534 (5)
Sn1—Cl2i2.4285 (4)C2—H2A0.9900
Sn1—Cl2ii2.4285 (4)C2—H2B0.9900
Sn1—Cl2iii2.4285 (4)C3—C41.512 (8)
N1—C11.497 (5)C3—H3A0.9900
N1—C41.504 (4)C3—H3B0.9900
N1—H1NA0.883 (19)C4—H4A0.9900
N1—H1NB0.89 (2)C4—H4B0.9900
C1—C21.486 (12)
Cl1i—Sn1—Cl1180.0N1—C1—H1A110.9
Cl1i—Sn1—Cl290.439 (16)C2—C1—H1B110.9
Cl1—Sn1—Cl289.560 (16)N1—C1—H1B110.9
Cl1i—Sn1—Cl2i89.561 (16)H1A—C1—H1B108.9
Cl1—Sn1—Cl2i90.440 (16)C1—C2—C3102.7 (7)
Cl2—Sn1—Cl2i180.000 (18)C1—C2—H2A111.2
Cl1i—Sn1—Cl2ii89.561 (16)C3—C2—H2A111.2
Cl1—Sn1—Cl2ii90.440 (16)C1—C2—H2B111.2
Cl2—Sn1—Cl2ii88.151 (19)C3—C2—H2B111.2
Cl2i—Sn1—Cl2ii91.849 (19)H2A—C2—H2B109.1
Cl1i—Sn1—Cl2iii90.439 (16)C4—C3—C2101.7 (5)
Cl1—Sn1—Cl2iii89.560 (16)C4—C3—H3A111.4
Cl2—Sn1—Cl2iii91.849 (19)C2—C3—H3A111.4
Cl2i—Sn1—Cl2iii88.151 (19)C4—C3—H3B111.4
Cl2ii—Sn1—Cl2iii180.000 (13)C2—C3—H3B111.4
C1—N1—C4108.1 (3)H3A—C3—H3B109.3
C1—N1—H1NA112 (5)N1—C4—C3104.0 (5)
C4—N1—H1NA118 (4)N1—C4—H4A111.0
C1—N1—H1NB105 (5)C3—C4—H4A111.0
C4—N1—H1NB102 (4)N1—C4—H4B111.0
H1NA—N1—H1NB110 (4)C3—C4—H4B111.0
C2—C1—N1104.5 (7)H4A—C4—H4B109.0
C2—C1—H1A110.9
C4—N1—C1—C214 (2)C1—N1—C4—C313 (2)
N1—C1—C2—C336 (2)C2—C3—C4—N134.7 (13)
C1—C2—C3—C443.9 (15)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z; (iii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1NA···Cl20.88 (5)2.54 (5)3.365 (2)156 (5)
N1—H1NB···Cl2iv0.89 (4)2.81 (6)3.472 (2)133 (5)
N1—H1NB···Cl2v0.89 (4)2.77 (5)3.365 (2)126 (4)
Symmetry codes: (iv) x+1, y, z; (v) x, y, z.
 

Follow IUCrData
Sign up for e-alerts
Follow IUCrData on Twitter
Follow us on facebook
Sign up for RSS feeds