Download citation
Download citation
link to html
Each Cu atom in the dinuclear centrosymmetric title complex, [Cu2Br2(C14H17N3)2](ClO4)2, is ligated in a distorted square-pyramidal geometry (τ = 0.31) by a tridentate bis­[2-(2-pyrid­yl)eth­yl]amine ligand, and by two bridging Br atoms. In addition, the dinuclear species is stabilized by two hydrogen-bonded perchlorate anions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807068663/tk2238sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807068663/tk2238Isup2.hkl
Contains datablock I

CCDC reference: 677438

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.008 Å
  • Disorder in solvent or counterion
  • R factor = 0.043
  • wR factor = 0.095
  • Data-to-parameter ratio = 15.4

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) Br - Cu_a .. 33.23 su
Alert level C PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.54 PLAT231_ALERT_4_C Hirshfeld Test (Solvent) O13A - O12B .. 5.48 su PLAT231_ALERT_4_C Hirshfeld Test (Solvent) O14A - O12B .. 8.07 su PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for Cl PLAT302_ALERT_4_C Anion/Solvent Disorder ......................... 44.00 Perc. PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 8 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 3 N -CU -BR -CU -50.00 3.00 1.555 1.555 1.555 2.676 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 7 BR -CU -N -C7B -106.00 3.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 11 BR -CU -N -C7A 122.00 3.00 1.555 1.555 1.555 1.555 PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 17 PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 2 Cl O4
Alert level G ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.544 Tmax scaled 0.516 Tmin scaled 0.310 PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 50
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 11 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 10 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Complex (I), Fig. 1, contains two Cu(II) atoms, each within a distorted square-pyramidal geometry (τ = 0.31, Addison et al., 1984) where one amine-N atom, two pyridine-N atoms and one Br atom constitute the basal plane with Cu—Npyridine = 2.012 (3) and 2.000 (3) Å, Cu—Namine = 2.044 (3) Å and Cu—Br = 2.4542 (7) Å. The axial position is occupied by the second Br atom with Cu—Br = 2.8908 (8) Å, the longer distance being consistent with a Jahn-Teller elongation. Pairs of these square-pyramidal Cu complexes form dimers about a center of inversion, being mutually bridged by the Br atoms. In addition, the dinuclear complex is stabilized by two N—H···O hydrogen bonded ClO4- anions (Table 1) and the crystal packing is consolidated by a variety of hydrogen bonding interactions (Fig. 2 and Table 1).

Related literature top

For related literature, see: Chakrabarty et al. (2004); Helis et al. (1977); Marsh et al. (1983); Udugala-Ganehenege, et al. (2001); Xu et al. (2000). For calculation of coordination geometry, see: Addison et al. (1984).

Experimental top

The title complex was synthesized by reacting Cu(ClO4)2.6H2O (0.37 g, 1 mmol), bis[2-(2-pyridyl)ethyl]amine (0.227 g, 1 mmol) and potassium bromide (0.0297 g, 0.25 mmol) in acetonitrile (15 ml) for 4 h at room temperature. X-ray quality crystals were grown by slow diffusion of diethyl ether into an acetonitrile solution of the complex.

Refinement top

The perchlorate anion is disordered over two conformations with occupancy factors, from refinement, of 0.543 (17) and 0.457 (17). It was constrained to adopt a tetrahedral geometry. The H atoms were idealized with N—H = 0.91 Å and C—H = 0.93 (aromatic C—H), 0.96 (CH3), and 0.97 (CH2) Å, and with Uiso(H) = 1.2Ueq(C) (1.5Ueq(C) for the CH3).

Computing details top

Data collection: XSCANS (Bruker, 1997); cell refinement: XSCANS (Bruker, 1997); data reduction: XSCANS (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. Complex (I) showing numbering scheme and displacement ellipsoids at the 20% probabilty level.
[Figure 2] Fig. 2. The packing arrangement viewed down the a axis showing the intramolecular N—H···O and intermolecular C—H···O interactions (dashed bonds).
Di-µ-bromido-bis({bis[2-(2-pyridyl)ethyl]amine}copper(II)) bis(perchlorate) top
Crystal data top
[Cu2Br2(C14H17N3)2](ClO4)2Z = 1
Mr = 940.41F(000) = 470
Triclinic, P1Dx = 1.769 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.8002 (13) ÅCell parameters from 49 reflections
b = 11.413 (2) Åθ = 2.1–12.5°
c = 12.668 (2) ŵ = 3.68 mm1
α = 67.212 (8)°T = 293 K
β = 77.019 (13)°Thick needle, blue
γ = 87.033 (15)°0.42 × 0.21 × 0.18 mm
V = 882.6 (3) Å3
Data collection top
Bruker P4
diffractometer
2960 reflections with I > 2σ˘I)
Radiation source: fine-focus sealed tubeRint = 0.018
Graphite monochromatorθmax = 27.5°, θmin = 2.1°
ω scansh = 80
Absorption correction: ψ scan
(North et al., 1968)
k = 1313
Tmin = 0.569, Tmax = 0.948l = 1616
3951 measured reflections3 standard reflections every 97 reflections
3936 independent reflections intensity decay: <2
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0336P)2 + 0.6582P]
where P = (Fo2 + 2Fc2)/3
3936 reflections(Δ/σ)max < 0.001
255 parametersΔρmax = 0.50 e Å3
50 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Cu2Br2(C14H17N3)2](ClO4)2γ = 87.033 (15)°
Mr = 940.41V = 882.6 (3) Å3
Triclinic, P1Z = 1
a = 6.8002 (13) ÅMo Kα radiation
b = 11.413 (2) ŵ = 3.68 mm1
c = 12.668 (2) ÅT = 293 K
α = 67.212 (8)°0.42 × 0.21 × 0.18 mm
β = 77.019 (13)°
Data collection top
Bruker P4
diffractometer
2960 reflections with I > 2σ˘I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.018
Tmin = 0.569, Tmax = 0.9483 standard reflections every 97 reflections
3951 measured reflections intensity decay: <2
3936 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04250 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.04Δρmax = 0.50 e Å3
3936 reflectionsΔρmin = 0.36 e Å3
255 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu0.60810 (7)0.98360 (4)0.63720 (4)0.03731 (14)
Br0.76316 (6)0.97756 (4)0.44483 (3)0.03934 (12)
Cl0.19832 (18)1.27274 (11)0.86706 (12)0.0588 (3)
O11A0.062 (3)1.3663 (19)0.856 (2)0.149 (8)0.543 (17)
O12A0.117 (3)1.1516 (12)0.9388 (14)0.094 (5)0.543 (17)
O13A0.372 (2)1.2975 (11)0.8979 (15)0.110 (4)0.543 (17)
O14A0.2714 (18)1.2648 (13)0.7496 (8)0.101 (4)0.543 (17)
O11B0.010 (2)1.332 (2)0.8582 (19)0.100 (5)0.457 (17)
O12B0.346 (3)1.3175 (18)0.7719 (15)0.155 (7)0.457 (17)
O13B0.155 (3)1.1399 (11)0.9066 (16)0.072 (4)0.457 (17)
O14B0.256 (3)1.2875 (13)0.9664 (14)0.110 (5)0.457 (17)
N0.4740 (5)0.9948 (3)0.7943 (3)0.0424 (8)
H0A0.39201.06190.77550.051*
N1A0.6270 (5)0.7958 (3)0.7201 (3)0.0391 (7)
N1B0.6733 (5)1.1709 (3)0.5811 (3)0.0380 (7)
C1A0.8000 (7)0.7390 (4)0.6945 (4)0.0495 (10)
H1AA0.90930.78910.63980.059*
C2A0.8210 (9)0.6113 (5)0.7456 (5)0.0666 (14)
H2AA0.94330.57510.72790.080*
C3A0.6575 (9)0.5370 (5)0.8238 (5)0.0730 (16)
H3AA0.66620.44920.85720.088*
C4A0.4811 (8)0.5932 (4)0.8524 (4)0.0581 (12)
H4AA0.37020.54360.90580.070*
C5A0.4694 (6)0.7240 (4)0.8012 (3)0.0412 (9)
C6A0.2871 (6)0.7913 (4)0.8353 (4)0.0487 (10)
H6AA0.18590.72930.89420.058*
H6AB0.23040.83590.76720.058*
C7A0.3377 (8)0.8864 (4)0.8842 (4)0.0609 (13)
H7AA0.21340.91980.91440.073*
H7AB0.40220.84240.94920.073*
C1B0.6256 (7)1.2605 (4)0.4855 (4)0.0488 (10)
H1BA0.56191.23500.43970.059*
C2B0.6661 (8)1.3874 (4)0.4520 (5)0.0609 (13)
H2BA0.63391.44700.38420.073*
C3B0.7563 (8)1.4244 (5)0.5220 (6)0.0681 (15)
H3BA0.78191.51030.50310.082*
C4B0.8084 (7)1.3342 (5)0.6198 (5)0.0623 (14)
H4BA0.87251.35840.66620.075*
C5B0.7646 (6)1.2071 (4)0.6483 (4)0.0435 (10)
C6B0.8117 (7)1.1013 (5)0.7541 (4)0.0544 (12)
H6BB0.89241.13590.79020.065*
H6BC0.89171.04010.72900.065*
C7B0.6244 (7)1.0334 (5)0.8450 (4)0.0546 (12)
H7BB0.66420.95820.90430.065*
H7BC0.56131.08890.88350.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0479 (3)0.0350 (3)0.0253 (2)0.0001 (2)0.0020 (2)0.01082 (19)
Br0.0328 (2)0.0541 (3)0.0300 (2)0.00276 (17)0.00239 (15)0.01773 (18)
Cl0.0517 (7)0.0459 (6)0.0707 (8)0.0054 (5)0.0143 (6)0.0138 (6)
O11A0.161 (13)0.099 (11)0.191 (11)0.081 (10)0.070 (10)0.051 (9)
O12A0.097 (8)0.071 (7)0.085 (8)0.005 (6)0.011 (6)0.013 (5)
O13A0.106 (8)0.093 (6)0.145 (10)0.012 (6)0.050 (7)0.047 (7)
O14A0.080 (7)0.125 (9)0.080 (6)0.007 (6)0.004 (5)0.035 (5)
O11B0.098 (8)0.102 (11)0.128 (9)0.067 (8)0.054 (7)0.065 (8)
O12B0.120 (10)0.146 (11)0.119 (10)0.020 (8)0.044 (9)0.000 (9)
O13B0.066 (7)0.050 (5)0.109 (11)0.007 (5)0.025 (7)0.037 (6)
O14B0.146 (13)0.105 (8)0.104 (10)0.010 (9)0.058 (9)0.048 (8)
N0.049 (2)0.0437 (19)0.0311 (17)0.0068 (16)0.0029 (15)0.0148 (15)
N1A0.047 (2)0.0372 (17)0.0296 (16)0.0006 (15)0.0069 (14)0.0102 (14)
N1B0.0389 (18)0.0410 (18)0.0323 (17)0.0025 (14)0.0032 (14)0.0143 (14)
C1A0.049 (3)0.051 (3)0.044 (2)0.007 (2)0.008 (2)0.016 (2)
C2A0.074 (4)0.052 (3)0.062 (3)0.018 (3)0.007 (3)0.015 (3)
C3A0.097 (4)0.037 (3)0.069 (3)0.009 (3)0.009 (3)0.010 (2)
C4A0.071 (3)0.043 (3)0.045 (3)0.006 (2)0.001 (2)0.007 (2)
C5A0.050 (2)0.042 (2)0.0287 (19)0.0002 (18)0.0094 (17)0.0101 (17)
C6A0.044 (2)0.046 (2)0.041 (2)0.0035 (19)0.0038 (19)0.0031 (19)
C7A0.074 (3)0.052 (3)0.042 (2)0.002 (2)0.012 (2)0.016 (2)
C1B0.055 (3)0.046 (2)0.045 (2)0.002 (2)0.012 (2)0.016 (2)
C2B0.059 (3)0.044 (3)0.063 (3)0.003 (2)0.004 (2)0.007 (2)
C3B0.058 (3)0.043 (3)0.097 (4)0.011 (2)0.006 (3)0.032 (3)
C4B0.049 (3)0.073 (3)0.079 (4)0.015 (2)0.004 (3)0.047 (3)
C5B0.037 (2)0.057 (3)0.042 (2)0.0043 (19)0.0035 (18)0.026 (2)
C6B0.045 (2)0.083 (3)0.045 (3)0.012 (2)0.015 (2)0.033 (2)
C7B0.060 (3)0.074 (3)0.032 (2)0.011 (2)0.014 (2)0.021 (2)
Geometric parameters (Å, º) top
Cu—N1A2.000 (3)C3A—C4A1.373 (7)
Cu—N1B2.012 (3)C3A—H3AA0.9300
Cu—N2.044 (3)C4A—C5A1.385 (6)
Cu—Br2.4542 (7)C4A—H4AA0.9300
Cu—Bri2.8908 (8)C5A—C6A1.494 (6)
Br—Cui2.8908 (8)C6A—C7A1.528 (7)
Cl—O12B1.326 (11)C6A—H6AA0.9700
Cl—O11A1.361 (11)C6A—H6AB0.9700
Cl—O12A1.388 (11)C7A—H7AA0.9700
Cl—O13A1.397 (9)C7A—H7AB0.9700
Cl—O13B1.424 (11)C1B—C2B1.366 (6)
Cl—O11B1.424 (11)C1B—H1BA0.9300
Cl—O14B1.469 (10)C2B—C3B1.379 (8)
Cl—O14A1.495 (9)C2B—H2BA0.9300
N—C7B1.488 (6)C3B—C4B1.375 (8)
N—C7A1.496 (5)C3B—H3BA0.9300
N—H0A0.9100C4B—C5B1.384 (6)
N1A—C5A1.349 (5)C4B—H4BA0.9300
N1A—C1A1.350 (5)C5B—C6B1.502 (6)
N1B—C1B1.342 (5)C6B—C7B1.517 (6)
N1B—C5B1.349 (5)C6B—H6BB0.9700
C1A—C2A1.361 (6)C6B—H6BC0.9700
C1A—H1AA0.9300C7B—H7BB0.9700
C2A—C3A1.374 (7)C7B—H7BC0.9700
C2A—H2AA0.9300
N1A—Cu—N1B159.15 (14)C5A—C4A—H4AA120.2
N1A—Cu—N89.40 (13)N1A—C5A—C4A120.4 (4)
N1B—Cu—N85.66 (13)N1A—C5A—C6A117.6 (4)
N1A—Cu—Br92.56 (9)C4A—C5A—C6A122.0 (4)
N1B—Cu—Br92.79 (9)C5A—C6A—C7A111.7 (4)
N—Cu—Br177.86 (10)C5A—C6A—H6AA109.3
N1A—Cu—Bri106.74 (10)C7A—C6A—H6AA109.3
N1B—Cu—Bri93.79 (10)C5A—C6A—H6AB109.3
N—Cu—Bri93.61 (10)C7A—C6A—H6AB109.3
Br—Cu—Bri85.00 (2)H6AA—C6A—H6AB107.9
Cu—Br—Cui95.00 (2)N—C7A—C6A112.9 (3)
O11A—Cl—O13A113.7 (9)N—C7A—H7AA109.0
O12A—Cl—O13A111.2 (9)C6A—C7A—H7AA109.0
O12B—Cl—O11B115.9 (11)N—C7A—H7AB109.0
O13B—Cl—O11B105.7 (9)C6A—C7A—H7AB109.0
O12B—Cl—O14B110.1 (9)H7AA—C7A—H7AB107.8
O13B—Cl—O14B104.4 (8)N1B—C1B—C2B123.3 (4)
O11B—Cl—O14B106.0 (9)N1B—C1B—H1BA118.4
O11A—Cl—O14A108.1 (10)C2B—C1B—H1BA118.4
O12A—Cl—O14A103.5 (7)C1B—C2B—C3B117.9 (5)
O13A—Cl—O14A105.2 (6)C1B—C2B—H2BA121.1
C7B—N—C7A112.0 (3)C3B—C2B—H2BA121.1
C7B—N—Cu110.9 (3)C4B—C3B—C2B119.9 (5)
C7A—N—Cu118.5 (3)C4B—C3B—H3BA120.0
C7B—N—H0A104.7C2B—C3B—H3BA120.0
C7A—N—H0A104.7C3B—C4B—C5B119.3 (5)
Cu—N—H0A104.7C3B—C4B—H4BA120.4
C5A—N1A—C1A119.0 (4)C5B—C4B—H4BA120.4
C5A—N1A—Cu121.3 (3)N1B—C5B—C4B120.9 (4)
C1A—N1A—Cu119.8 (3)N1B—C5B—C6B115.5 (4)
C1B—N1B—C5B118.7 (4)C4B—C5B—C6B123.6 (4)
C1B—N1B—Cu124.8 (3)C5B—C6B—C7B113.2 (4)
C5B—N1B—Cu116.4 (3)C5B—C6B—H6BB108.9
N1A—C1A—C2A122.7 (4)C7B—C6B—H6BB108.9
N1A—C1A—H1AA118.7C5B—C6B—H6BC108.9
C2A—C1A—H1AA118.7C7B—C6B—H6BC108.9
C1A—C2A—C3A118.5 (5)H6BB—C6B—H6BC107.8
C1A—C2A—H2AA120.7N—C7B—C6B113.2 (3)
C3A—C2A—H2AA120.7N—C7B—H7BB108.9
C4A—C3A—C2A119.7 (5)C6B—C7B—H7BB108.9
C4A—C3A—H3AA120.1N—C7B—H7BC108.9
C2A—C3A—H3AA120.1C6B—C7B—H7BC108.9
C3A—C4A—C5A119.6 (4)H7BB—C7B—H7BC107.7
C3A—C4A—H4AA120.2
N1A—Cu—Br—Cui106.59 (10)N1A—C1A—C2A—C3A1.8 (8)
N1B—Cu—Br—Cui93.56 (10)C1A—C2A—C3A—C4A2.8 (9)
N—Cu—Br—Cui50 (3)C2A—C3A—C4A—C5A0.6 (8)
Bri—Cu—Br—Cui0.0C1A—N1A—C5A—C4A3.7 (6)
N1A—Cu—N—C7B97.3 (3)Cu—N1A—C5A—C4A176.0 (3)
N1B—Cu—N—C7B62.4 (3)C1A—N1A—C5A—C6A174.5 (4)
Br—Cu—N—C7B106 (3)Cu—N1A—C5A—C6A5.8 (5)
Bri—Cu—N—C7B155.9 (3)C3A—C4A—C5A—N1A2.7 (7)
N1A—Cu—N—C7A34.3 (3)C3A—C4A—C5A—C6A175.4 (5)
N1B—Cu—N—C7A166.0 (3)N1A—C5A—C6A—C7A58.6 (5)
Br—Cu—N—C7A122 (3)C4A—C5A—C6A—C7A119.6 (5)
Bri—Cu—N—C7A72.5 (3)C7B—N—C7A—C6A142.0 (4)
N1B—Cu—N1A—C5A121.2 (4)Cu—N—C7A—C6A10.9 (5)
N—Cu—N1A—C5A45.1 (3)C5A—C6A—C7A—N65.9 (5)
Br—Cu—N1A—C5A134.1 (3)C5B—N1B—C1B—C2B0.4 (7)
Bri—Cu—N1A—C5A48.5 (3)Cu—N1B—C1B—C2B177.7 (4)
N1B—Cu—N1A—C1A59.1 (5)N1B—C1B—C2B—C3B1.5 (7)
N—Cu—N1A—C1A135.2 (3)C1B—C2B—C3B—C4B2.1 (8)
Br—Cu—N1A—C1A45.6 (3)C2B—C3B—C4B—C5B1.7 (8)
Bri—Cu—N1A—C1A131.2 (3)C1B—N1B—C5B—C4B0.1 (6)
N1A—Cu—N1B—C1B157.2 (4)Cu—N1B—C5B—C4B177.4 (3)
N—Cu—N1B—C1B126.0 (3)C1B—N1B—C5B—C6B179.6 (4)
Br—Cu—N1B—C1B52.5 (3)Cu—N1B—C5B—C6B2.1 (4)
Bri—Cu—N1B—C1B32.6 (3)C3B—C4B—C5B—N1B0.6 (7)
N1A—Cu—N1B—C5B25.4 (5)C3B—C4B—C5B—C6B178.9 (4)
N—Cu—N1B—C5B51.3 (3)N1B—C5B—C6B—C7B66.2 (5)
Br—Cu—N1B—C5B130.2 (3)C4B—C5B—C6B—C7B113.3 (5)
Bri—Cu—N1B—C5B144.7 (3)C7A—N—C7B—C6B156.6 (4)
C5A—N1A—C1A—C2A1.4 (7)Cu—N—C7B—C6B21.7 (5)
Cu—N1A—C1A—C2A178.3 (4)C5B—C6B—C7B—N49.4 (5)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···O14A0.912.343.205 (12)159
N—H0A···O13B0.912.443.089 (18)129
C6A—H6AB···Bri0.972.703.588 (4)153
C6B—H6BC···Brii0.972.893.706 (4)142
C6B—H6BB···O13Biii0.972.573.487 (18)158
C2A—H2AA···O11Aiv0.932.523.162 (14)126
C7A—H7AA···O12Av0.972.513.322 (16)141
C7A—H7AA···O13B0.972.493.179 (15)128
C3A—H3AA···O13Avi0.932.543.142 (12)122
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+2, y+2, z+1; (iii) x+1, y, z; (iv) x+1, y1, z; (v) x, y+2, z+2; (vi) x, y1, z.

Experimental details

Crystal data
Chemical formula[Cu2Br2(C14H17N3)2](ClO4)2
Mr940.41
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.8002 (13), 11.413 (2), 12.668 (2)
α, β, γ (°)67.212 (8), 77.019 (13), 87.033 (15)
V3)882.6 (3)
Z1
Radiation typeMo Kα
µ (mm1)3.68
Crystal size (mm)0.42 × 0.21 × 0.18
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.569, 0.948
No. of measured, independent and
observed [I > 2σ˘I)] reflections
3951, 3936, 2960
Rint0.018
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.095, 1.04
No. of reflections3936
No. of parameters255
No. of restraints50
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.36

Computer programs: XSCANS (Bruker, 1997), XSCANS (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Bruker, 2000).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···O14A0.912.343.205 (12)159
N—H0A···O13B0.912.443.089 (18)129
C6A—H6AB···Bri0.972.703.588 (4)153
C6B—H6BC···Brii0.972.893.706 (4)142
C6B—H6BB···O13Biii0.972.573.487 (18)158
C2A—H2AA···O11Aiv0.932.523.162 (14)126
C7A—H7AA···O12Av0.972.513.322 (16)141
C7A—H7AA···O13B0.972.493.179 (15)128
C3A—H3AA···O13Avi0.932.543.142 (12)122
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+2, y+2, z+1; (iii) x+1, y, z; (iv) x+1, y1, z; (v) x, y+2, z+2; (vi) x, y1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds