Download citation
Download citation
link to html
The Sn atom of the title compound, [Sn(C2H5)2(C12H12BrNO3)], is in a distorted SnNC2O2 trigonal–bipyramidal geometry and forms five- and six-membered chelate rings with the tridentate ligand. One C atom of one ethyl group is disordered with site occupancies of 0.61 (3):0.39 (3).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536808032388/tk2313sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536808032388/tk2313Isup2.hkl
Contains datablock I

CCDC reference: 709519

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.008 Å
  • Disorder in main residue
  • R factor = 0.035
  • wR factor = 0.085
  • Data-to-parameter ratio = 18.4

checkCIF/PLATON results

No syntax errors found



Alert level C Value of measurement temperature given = 295.000 Value of melting point given = 0.000 PLAT301_ALERT_3_C Main Residue Disorder ......................... 4.00 Perc.
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 26.50 From the CIF: _reflns_number_total 3836 Count of symmetry unique reflns 2202 Completeness (_total/calc) 174.21% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1634 Fraction of Friedel pairs measured 0.742 Are heavy atom types Z>Si present yes PLAT791_ALERT_4_G Confirm the Absolute Configuration of C6 ... S
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The structural chemistry of diorganotin complexes with Schiff bases derived from α-amino acids has received attention due to their biological activities and their nonlinear optical properties (Beltran et al., 2003; Basu Baul et al., 2007; Dakternieks et al., 1998; Rivera et al., 2006; Tian et al., 2005, 2006, 2007). The structures of several diorganotin complexes with the Schiff base ligand [N-(2-oxidohydroxyphenylmethylene)valine, such as [N-(2-oxidophenylmethylene)valinato]dibutyltin(IV), [N-(2-oxidophenylmethylene)valinato]diphenyltin(IV) (Beltran et al., 2003), [N-(4-diethylamino-2-oxidophenylmethylene)valinato]diphenyltin(IV) (Rivera et al., 2006), [N-(5-bromo-2-oxidophenylmethylene)valinato]diphenyltin(IV), (Tian et al., 2005) have been reported. As a continuation of these studies, the structure of the title compound, (I), is now described.

The coordination geometry about the tin atom in (I) is that of a distorted trigonal bipyramid with two ethyl groups and the imino N1 atom occupying the equatorial positions and the axial positions being occupied by a unidentate carboxylate O1 atom and phenoxide O3 atom (Fig. 1). The tin atom is 0.063 (2) Å out of the NC2 trigonal plane in the direction of the O3 atom. The bond length of Sn1—O1 (2.153 (3) Å) is longer than that of Sn1—O3 (2.106 (3) Å) and the O1—Sn1—O3 bond angle is 156.21 (13) °. The monodentate mode of coordination of the carboxylate is reflected in the disparate C5—O1 and C5—O2 bond lengths of 1.287 (6) and 1.221 (6) Å, respectively.

Related literature top

For related structures, see: Beltran et al. (2003); Basu Baul et al. (2007); Dakternieks et al. (1998); Rivera et al. (2006); Tian et al. (2005, 2006, 2007).

Experimental top

The title compound was synthesized by the reaction of diethyltin dichloride (0.50 g, 2 mmol) with potassium N-(5-bromosalicylidene)valinate (0.68 g, 2 mmol) in the presence of Et3N (0.20 g, 2 mmol) in methanol (50 ml). The reaction mixture was refluxed for 3 h and filtered. The yellow solid (I) was obtained by removal of solvent under reduced pressure and was recrystallized from methanol. Crystals for crystallography were obtained from the slow evaporation of a chloroform-hexane (1:1, v/v) solution of (I) held at room temperature (yield 71%, m.p. 479–480 K).

Refinement top

The C2 atom of one ethyl group was disordered over two positions; the site occupancy was refined to 0.61 (3):0.39 (3). The absolute configuration of the compound (I) was assigned on the basis of the known configuration of the starting reagent, L-valine. H atoms were placed at calculated positions and were included in the refinement in the riding-model approximation, with C—H = 0.93 - 0.98 Å, and with Uiso(H) = 1.2-1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level. For C2 atom of ethyl group, the minor disordered component has been omitted for clarity.
[N-(5-Bromo-2-oxidobenzylidene)-L-valinato- κ3O,N,O']diethyltin(IV) top
Crystal data top
[Sn(C2H5)2(C12H12BrNO3)]F(000) = 936
Mr = 474.95Dx = 1.693 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4436 reflections
a = 9.810 (2) Åθ = 2.2–22.1°
b = 10.377 (2) ŵ = 3.53 mm1
c = 18.301 (4) ÅT = 295 K
V = 1863.1 (7) Å3Block, yellow
Z = 40.20 × 0.18 × 0.11 mm
Data collection top
Bruker SMART APEX area-detector
diffractometer
3836 independent reflections
Radiation source: fine-focus sealed tube3292 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ϕ and ω scansθmax = 26.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1212
Tmin = 0.519, Tmax = 0.688k = 1213
15137 measured reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0368P)2 + 0.0992P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3836 reflectionsΔρmax = 0.34 e Å3
209 parametersΔρmin = 0.85 e Å3
0 restraintsAbsolute structure: Flack (1983), 1634 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.017 (14)
Crystal data top
[Sn(C2H5)2(C12H12BrNO3)]V = 1863.1 (7) Å3
Mr = 474.95Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.810 (2) ŵ = 3.53 mm1
b = 10.377 (2) ÅT = 295 K
c = 18.301 (4) Å0.20 × 0.18 × 0.11 mm
Data collection top
Bruker SMART APEX area-detector
diffractometer
3836 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
3292 reflections with I > 2σ(I)
Tmin = 0.519, Tmax = 0.688Rint = 0.038
15137 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.085Δρmax = 0.34 e Å3
S = 1.04Δρmin = 0.85 e Å3
3836 reflectionsAbsolute structure: Flack (1983), 1634 Friedel pairs
209 parametersAbsolute structure parameter: 0.017 (14)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn10.98675 (3)0.99102 (3)0.941187 (17)0.05242 (11)
N10.7827 (4)1.0416 (3)0.9737 (2)0.0458 (9)
O11.0064 (4)1.1614 (3)1.00747 (18)0.0660 (8)
O20.9042 (4)1.3037 (3)1.0809 (2)0.0753 (11)
O30.8849 (3)0.8346 (3)0.89231 (19)0.0590 (8)
Br10.35058 (8)0.84038 (8)0.73311 (4)0.0989 (3)
C11.1209 (6)0.8765 (6)1.0041 (4)0.0768 (17)
H1A1.07330.84791.04760.092*
H1B1.14480.80050.97600.092*
C2'1.2499 (13)0.9437 (18)1.0268 (15)0.100 (8)0.61 (3)
H2D1.30560.88551.05450.149*0.61 (3)
H2E1.22761.01731.05630.149*0.61 (3)
H2F1.29870.97130.98410.149*0.61 (3)
C21.2570 (17)0.877 (3)0.973 (2)0.092 (10)0.39 (3)
H2A1.31580.82331.00150.138*0.39 (3)
H2B1.29170.96340.97220.138*0.39 (3)
H2C1.25320.84440.92360.138*0.39 (3)
C31.0458 (6)1.0852 (6)0.8430 (3)0.0711 (15)
H3A1.12941.13260.85200.085*
H3B1.06551.02030.80630.085*
C40.9436 (7)1.1744 (8)0.8136 (4)0.110 (2)
H4A0.97771.21320.76970.165*
H4B0.92481.24030.84900.165*
H4C0.86131.12800.80290.165*
C50.9034 (6)1.2082 (5)1.0420 (3)0.0578 (13)
C60.7695 (5)1.1334 (5)1.0345 (3)0.0540 (12)
H60.69741.19491.02200.065*
C70.7302 (6)1.0675 (5)1.1066 (3)0.0630 (13)
H70.72711.13471.14410.076*
C80.8363 (6)0.9696 (6)1.1306 (3)0.0813 (17)
H8A0.92441.00991.13220.122*
H8B0.83820.89921.09660.122*
H8C0.81350.93771.17830.122*
C90.5892 (6)1.0081 (7)1.1028 (4)0.0880 (18)
H9A0.56820.96781.14860.132*
H9B0.58690.94491.06460.132*
H9C0.52331.07421.09280.132*
C100.6751 (4)1.0202 (4)0.9345 (3)0.0522 (10)
H100.59781.06840.94540.063*
C110.6638 (5)0.9281 (4)0.8755 (2)0.0491 (11)
C120.7670 (5)0.8381 (5)0.8588 (2)0.0529 (11)
C130.7368 (6)0.7468 (5)0.8052 (3)0.0656 (14)
H130.80090.68400.79370.079*
C140.6135 (7)0.7484 (5)0.7690 (3)0.0684 (15)
H140.59530.68730.73320.082*
C150.5183 (6)0.8391 (5)0.7856 (2)0.0594 (12)
C160.5395 (5)0.9272 (5)0.8387 (3)0.0561 (12)
H160.47200.98650.85050.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.05146 (17)0.04937 (17)0.05644 (19)0.00307 (15)0.00404 (14)0.00692 (14)
N10.050 (2)0.0361 (19)0.051 (2)0.0014 (15)0.0056 (17)0.0018 (16)
O10.063 (2)0.0596 (18)0.075 (2)0.011 (2)0.0039 (19)0.0065 (17)
O20.093 (3)0.052 (2)0.082 (3)0.0179 (19)0.006 (2)0.0097 (19)
O30.0571 (19)0.0482 (18)0.072 (2)0.0089 (15)0.0039 (17)0.0096 (17)
Br10.0958 (5)0.1095 (6)0.0913 (5)0.0262 (4)0.0366 (4)0.0077 (4)
C10.071 (4)0.071 (4)0.088 (4)0.013 (3)0.013 (3)0.021 (3)
C2'0.063 (7)0.096 (10)0.139 (18)0.009 (6)0.044 (8)0.042 (11)
C20.066 (10)0.091 (17)0.12 (2)0.017 (9)0.017 (11)0.034 (15)
C30.072 (3)0.082 (4)0.059 (3)0.002 (3)0.002 (3)0.020 (3)
C40.087 (4)0.127 (6)0.116 (6)0.013 (4)0.000 (4)0.055 (5)
C50.078 (3)0.042 (3)0.053 (3)0.010 (2)0.010 (3)0.007 (2)
C60.061 (3)0.047 (3)0.053 (3)0.003 (2)0.010 (2)0.011 (2)
C70.073 (3)0.056 (3)0.060 (3)0.006 (3)0.000 (3)0.009 (3)
C80.112 (5)0.073 (4)0.059 (3)0.009 (3)0.001 (3)0.015 (3)
C90.083 (4)0.093 (4)0.089 (4)0.019 (4)0.026 (3)0.010 (4)
C100.055 (2)0.044 (2)0.057 (3)0.001 (2)0.002 (2)0.005 (2)
C110.059 (3)0.047 (3)0.041 (3)0.005 (2)0.001 (2)0.002 (2)
C120.064 (3)0.048 (3)0.047 (3)0.006 (2)0.011 (2)0.001 (2)
C130.080 (4)0.059 (3)0.059 (3)0.005 (3)0.010 (3)0.013 (3)
C140.092 (4)0.061 (3)0.052 (3)0.017 (3)0.008 (3)0.015 (3)
C150.065 (3)0.066 (3)0.047 (3)0.018 (3)0.007 (2)0.001 (2)
C160.061 (3)0.052 (3)0.055 (3)0.003 (2)0.007 (2)0.001 (2)
Geometric parameters (Å, º) top
Sn1—O32.106 (3)C4—H4B0.9600
Sn1—C12.114 (5)C4—H4C0.9600
Sn1—C32.126 (5)C5—C61.532 (7)
Sn1—O12.153 (3)C6—C71.536 (8)
Sn1—N12.153 (4)C6—H60.9800
N1—C101.296 (6)C7—C91.515 (7)
N1—C61.470 (6)C7—C81.520 (8)
O1—C51.287 (6)C7—H70.9800
O2—C51.221 (6)C8—H8A0.9600
O3—C121.310 (5)C8—H8B0.9600
Br1—C151.905 (5)C8—H8C0.9600
C1—C21.454 (19)C9—H9A0.9600
C1—C2'1.504 (14)C9—H9B0.9600
C1—H1A0.9700C9—H9C0.9600
C1—H1B0.9700C10—C111.446 (6)
C2'—H2D0.9600C10—H100.9300
C2'—H2E0.9600C11—C161.393 (6)
C2'—H2F0.9600C11—C121.411 (6)
C2—H2A0.9600C12—C131.396 (7)
C2—H2B0.9600C13—C141.379 (8)
C2—H2C0.9600C13—H130.9300
C3—C41.467 (8)C14—C151.360 (7)
C3—H3A0.9700C14—H140.9300
C3—H3B0.9700C15—C161.350 (7)
C4—H4A0.9600C16—H160.9300
O3—Sn1—C195.3 (2)O2—C5—O1126.0 (5)
O3—Sn1—C397.16 (19)O2—C5—C6118.0 (5)
C1—Sn1—C3123.3 (2)O1—C5—C6116.0 (4)
O3—Sn1—O1156.21 (13)N1—C6—C5108.7 (4)
C1—Sn1—O195.7 (2)N1—C6—C7112.5 (4)
C3—Sn1—O194.3 (2)C5—C6—C7111.4 (4)
O3—Sn1—N182.21 (13)N1—C6—H6108.0
C1—Sn1—N1124.4 (2)C5—C6—H6108.0
C3—Sn1—N1112.03 (18)C7—C6—H6108.0
O1—Sn1—N174.16 (14)C9—C7—C8111.5 (5)
C10—N1—C6117.3 (4)C9—C7—C6111.8 (5)
C10—N1—Sn1124.2 (3)C8—C7—C6112.0 (5)
C6—N1—Sn1116.7 (3)C9—C7—H7107.1
C5—O1—Sn1121.1 (3)C8—C7—H7107.1
C12—O3—Sn1126.6 (3)C6—C7—H7107.1
C2—C1—C2'48.3 (10)C7—C8—H8A109.5
C2—C1—Sn1110.8 (8)C7—C8—H8B109.5
C2'—C1—Sn1114.4 (6)H8A—C8—H8B109.5
C2—C1—H1A140.2C7—C8—H8C109.5
C2'—C1—H1A108.7H8A—C8—H8C109.5
Sn1—C1—H1A108.7H8B—C8—H8C109.5
C2—C1—H1B64.6C7—C9—H9A109.5
C2'—C1—H1B108.7C7—C9—H9B109.5
Sn1—C1—H1B108.7H9A—C9—H9B109.5
H1A—C1—H1B107.6C7—C9—H9C109.5
C1—C2'—H2D109.5H9A—C9—H9C109.5
C1—C2'—H2E109.5H9B—C9—H9C109.5
H2D—C2'—H2E109.5N1—C10—C11126.1 (4)
C1—C2'—H2F109.5N1—C10—H10116.9
H2D—C2'—H2F109.5C11—C10—H10116.9
H2E—C2'—H2F109.5C16—C11—C12121.2 (4)
C1—C2—H2A109.5C16—C11—C10115.6 (4)
C1—C2—H2B109.5C12—C11—C10123.0 (4)
H2A—C2—H2B109.5O3—C12—C13119.8 (5)
C1—C2—H2C109.5O3—C12—C11123.4 (4)
H2A—C2—H2C109.5C13—C12—C11116.7 (5)
H2B—C2—H2C109.5C14—C13—C12121.0 (5)
C4—C3—Sn1114.4 (4)C14—C13—H13119.5
C4—C3—H3A108.7C12—C13—H13119.5
Sn1—C3—H3A108.7C15—C14—C13120.2 (5)
C4—C3—H3B108.7C15—C14—H14119.9
Sn1—C3—H3B108.7C13—C14—H14119.9
H3A—C3—H3B107.6C16—C15—C14121.6 (5)
C3—C4—H4A109.5C16—C15—Br1119.4 (4)
C3—C4—H4B109.5C14—C15—Br1119.0 (4)
H4A—C4—H4B109.5C15—C16—C11119.2 (5)
C3—C4—H4C109.5C15—C16—H16120.4
H4A—C4—H4C109.5C11—C16—H16120.4
H4B—C4—H4C109.5
O3—Sn1—N1—C1034.1 (4)Sn1—N1—C6—C520.5 (5)
C1—Sn1—N1—C10125.3 (4)C10—N1—C6—C791.3 (5)
C3—Sn1—N1—C1060.5 (4)Sn1—N1—C6—C7103.3 (4)
O1—Sn1—N1—C10148.7 (4)O2—C5—C6—N1167.5 (4)
O3—Sn1—N1—C6161.6 (3)O1—C5—C6—N114.2 (6)
C1—Sn1—N1—C670.5 (4)O2—C5—C6—C767.9 (6)
C3—Sn1—N1—C6103.8 (3)O1—C5—C6—C7110.3 (5)
O1—Sn1—N1—C615.6 (3)N1—C6—C7—C965.2 (6)
O3—Sn1—O1—C50.6 (6)C5—C6—C7—C9172.5 (5)
C1—Sn1—O1—C5116.7 (4)N1—C6—C7—C860.8 (6)
C3—Sn1—O1—C5119.2 (4)C5—C6—C7—C861.6 (6)
N1—Sn1—O1—C57.5 (3)C6—N1—C10—C11176.0 (4)
C1—Sn1—O3—C12163.1 (4)Sn1—N1—C10—C1119.9 (6)
C3—Sn1—O3—C1272.3 (4)N1—C10—C11—C16176.7 (5)
O1—Sn1—O3—C1245.8 (6)N1—C10—C11—C127.8 (7)
N1—Sn1—O3—C1239.0 (4)Sn1—O3—C12—C13154.0 (4)
O3—Sn1—C1—C2104.8 (18)Sn1—O3—C12—C1128.1 (6)
C3—Sn1—C1—C22.6 (19)C16—C11—C12—O3179.4 (4)
O1—Sn1—C1—C296.3 (18)C10—C11—C12—O34.1 (7)
N1—Sn1—C1—C2171.0 (18)C16—C11—C12—C131.5 (7)
O3—Sn1—C1—C2'157.3 (13)C10—C11—C12—C13173.8 (4)
C3—Sn1—C1—C2'55.1 (14)O3—C12—C13—C14179.9 (5)
O1—Sn1—C1—C2'43.9 (14)C11—C12—C13—C142.1 (7)
N1—Sn1—C1—C2'118.5 (13)C12—C13—C14—C150.5 (8)
O3—Sn1—C3—C487.1 (5)C13—C14—C15—C161.9 (8)
C1—Sn1—C3—C4171.7 (5)C13—C14—C15—Br1178.8 (4)
O1—Sn1—C3—C472.0 (5)C14—C15—C16—C112.4 (8)
N1—Sn1—C3—C42.7 (6)Br1—C15—C16—C11178.2 (4)
Sn1—O1—C5—O2179.8 (4)C12—C11—C16—C150.7 (7)
Sn1—O1—C5—C61.7 (5)C10—C11—C16—C15176.3 (4)
C10—N1—C6—C5144.9 (4)

Experimental details

Crystal data
Chemical formula[Sn(C2H5)2(C12H12BrNO3)]
Mr474.95
Crystal system, space groupOrthorhombic, P212121
Temperature (K)295
a, b, c (Å)9.810 (2), 10.377 (2), 18.301 (4)
V3)1863.1 (7)
Z4
Radiation typeMo Kα
µ (mm1)3.53
Crystal size (mm)0.20 × 0.18 × 0.11
Data collection
DiffractometerBruker SMART APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.519, 0.688
No. of measured, independent and
observed [I > 2σ(I)] reflections
15137, 3836, 3292
Rint0.038
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.085, 1.04
No. of reflections3836
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.85
Absolute structureFlack (1983), 1634 Friedel pairs
Absolute structure parameter0.017 (14)

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds