Download citation
Download citation
link to html
In the crystal structure of the title compound, C13H11NO3S, the conformation of the N—H bond in the C—SO2—NH—C(O)—C segment is anti to the C=O bond. The molecule is twisted at theN atom with a dihedral angle of 86.5(1)° between the sulfonyl benzene ring and the —SO2—NH—C=O segment. Furthermore, the dihedral angle between the two benzene rings is 80.3(1)°. The crystal structure features inversion-related dimers linked by pairs of N—H...O(S) hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536809037222/tk2540sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536809037222/tk2540Isup2.hkl
Contains datablock I

CCDC reference: 750750

Key indicators

  • Single-crystal X-ray study
  • T = 299 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.055
  • wR factor = 0.171
  • Data-to-parameter ratio = 12.7

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang .. 5
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 7
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Diaryl acylsulfonamides are known as potent anti-tumor agents against a broad spectrum of human tumor xenografts (colon, lung, breast, ovary, and prostate) in nude mice. As part of a study of the effect of ring and the side chain substituents on the solid-state structures of N-aromatic sulfonamides (Gowda et al., 2008a,b; 2009), in the present work the structure of N-(benzoyl)benzenesulfonamide (I) has been determined (Fig. 1). The conformation of the N—H bond in the structure is anti to the CO bond in the side-chain, similar to that observed in the acid anilides. The conformation of the N—C bond in the C—SO2—NH—C(O) segment of the structure has "gauche" torsions with respect to the SO bonds (Fig. 1). The molecule is twisted at the C(O) atom with the C—SO2—NH—C(O) torsion angle being -66.9 (3)°. The packing of molecules via N—H···O(S) hydrogen bonds (Table 1) into supramolecular dimers is shown in Fig. 2.

Related literature top

For related structures, see: Gowda et al. (2008a,b; 2009).

Experimental top

Compound (I) was prepared by refluxing a mixture of benzoic acid, benzene sulfonamide and phosphorous oxy chloride for 5 h on a water bath. The resultant mixture was cooled and poured into ice-cold water. The solid obtained was filtered and washed thoroughly with water and then dissolved in sodium bicarbonate solution. Compound (I) was later reprecipitated by acidifying the filtered solution with dilute HCl. The filtered and dried solid was recrystallized to the constant melting point. The compound was characterized by its characteristic aromatic C—H stretching (3061.1 cm-1), carbonyl CO (1696.7 cm-1), N—H stretching (3280.1 cm-1), symmetric (1176.3 cm-1), and asymmetric SO2 (1335.1 cm-1) infrared absorption frequencies.

Long colorless plates of (I) were obtained from a slow evaporation of its toluene solution at room temperature.

Refinement top

The H atom of the NH group was located in a difference map and and later restained to N—H = 0.86 (4) Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

The Uij components of C5 were restrained to approximate isotropic behavoir.

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labelling scheme and displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonding shown as dashed lines.
N-Benzoylbenzenesulfonamide top
Crystal data top
C13H11NO3SZ = 2
Mr = 261.29F(000) = 272
Triclinic, P1Dx = 1.442 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54180 Å
a = 5.8396 (7) ÅCell parameters from 25 reflections
b = 10.178 (1) Åθ = 4.3–22.9°
c = 10.405 (1) ŵ = 2.40 mm1
α = 90.187 (8)°T = 299 K
β = 99.074 (9)°Long plate, colorless
γ = 99.617 (9)°0.50 × 0.33 × 0.05 mm
V = 601.83 (11) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
1962 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.011
Graphite monochromatorθmax = 66.9°, θmin = 4.3°
ω/2θ scansh = 06
Absorption correction: ψ scan
North et al., 1968
k = 1211
Tmin = 0.380, Tmax = 0.889l = 1212
2354 measured reflections3 standard reflections every 120 min
2125 independent reflections intensity decay: 1.0%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.171 w = 1/[σ2(Fo2) + (0.0862P)2 + 0.5464P]
where P = (Fo2 + 2Fc2)/3
S = 1.18(Δ/σ)max = 0.008
2125 reflectionsΔρmax = 0.65 e Å3
167 parametersΔρmin = 0.36 e Å3
7 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.024 (3)
Crystal data top
C13H11NO3Sγ = 99.617 (9)°
Mr = 261.29V = 601.83 (11) Å3
Triclinic, P1Z = 2
a = 5.8396 (7) ÅCu Kα radiation
b = 10.178 (1) ŵ = 2.40 mm1
c = 10.405 (1) ÅT = 299 K
α = 90.187 (8)°0.50 × 0.33 × 0.05 mm
β = 99.074 (9)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1962 reflections with I > 2σ(I)
Absorption correction: ψ scan
North et al., 1968
Rint = 0.011
Tmin = 0.380, Tmax = 0.8893 standard reflections every 120 min
2354 measured reflections intensity decay: 1.0%
2125 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0557 restraints
wR(F2) = 0.171H atoms treated by a mixture of independent and constrained refinement
S = 1.18Δρmax = 0.65 e Å3
2125 reflectionsΔρmin = 0.36 e Å3
167 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3607 (5)0.8198 (3)0.8908 (3)0.0337 (6)
C20.2344 (5)0.9229 (3)0.8901 (3)0.0407 (7)
H20.10210.91430.93070.049*
C30.3058 (7)1.0380 (3)0.8289 (4)0.0539 (9)
H30.22191.10810.82830.065*
C40.5004 (7)1.0503 (4)0.7686 (4)0.0589 (10)
H40.54821.12880.72740.071*
C50.6248 (6)0.9472 (4)0.7688 (4)0.0583 (10)
H50.75530.95590.72660.070*
C60.5584 (5)0.8304 (4)0.8311 (3)0.0470 (8)
H60.64420.76110.83290.056*
C70.0114 (5)0.5480 (3)0.7670 (3)0.0400 (7)
C80.0390 (5)0.4316 (3)0.6753 (3)0.0368 (7)
C90.2525 (6)0.4135 (4)0.5908 (3)0.0500 (8)
H90.35770.47170.59650.060*
C100.3098 (6)0.3115 (4)0.4997 (4)0.0602 (10)
H100.45330.30090.44410.072*
C110.1570 (7)0.2248 (4)0.4897 (4)0.0564 (9)
H110.19580.15570.42730.068*
C120.0539 (7)0.2408 (4)0.5727 (4)0.0589 (10)
H120.15760.18180.56640.071*
C130.1137 (6)0.3429 (4)0.6649 (3)0.0492 (8)
H130.25710.35260.72050.059*
N10.2045 (5)0.5551 (3)0.8642 (3)0.0436 (7)
H1N0.262 (7)0.491 (3)0.882 (4)0.052*
O10.4799 (5)0.6424 (2)1.0568 (3)0.0629 (8)
O20.0786 (5)0.6940 (3)1.0349 (3)0.0597 (7)
O30.1033 (4)0.6374 (3)0.7564 (3)0.0562 (7)
S10.27661 (14)0.67612 (7)0.97654 (7)0.0416 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0246 (13)0.0344 (14)0.0396 (15)0.0060 (10)0.0030 (11)0.0037 (11)
C20.0305 (15)0.0399 (16)0.0508 (18)0.0101 (12)0.0009 (12)0.0029 (13)
C30.054 (2)0.0397 (17)0.064 (2)0.0116 (15)0.0085 (17)0.0005 (15)
C40.057 (2)0.049 (2)0.058 (2)0.0084 (16)0.0088 (18)0.0092 (16)
C50.0344 (17)0.081 (3)0.054 (2)0.0073 (17)0.0082 (15)0.0003 (18)
C60.0320 (16)0.059 (2)0.0508 (18)0.0136 (14)0.0041 (13)0.0049 (15)
C70.0280 (15)0.0441 (17)0.0469 (17)0.0057 (12)0.0030 (12)0.0036 (13)
C80.0280 (14)0.0415 (16)0.0392 (15)0.0050 (11)0.0013 (11)0.0046 (12)
C90.0314 (16)0.063 (2)0.0534 (19)0.0125 (14)0.0044 (14)0.0042 (16)
C100.0408 (19)0.076 (3)0.056 (2)0.0057 (17)0.0116 (16)0.0082 (18)
C110.061 (2)0.056 (2)0.0469 (19)0.0034 (17)0.0017 (16)0.0092 (16)
C120.061 (2)0.062 (2)0.055 (2)0.0257 (18)0.0035 (17)0.0090 (17)
C130.0401 (17)0.056 (2)0.0486 (18)0.0154 (14)0.0082 (14)0.0067 (15)
N10.0414 (15)0.0331 (13)0.0525 (16)0.0104 (11)0.0086 (12)0.0001 (12)
O10.0787 (18)0.0431 (13)0.0567 (15)0.0186 (12)0.0293 (13)0.0018 (11)
O20.0647 (16)0.0593 (15)0.0575 (15)0.0008 (12)0.0278 (13)0.0007 (12)
O30.0414 (13)0.0604 (15)0.0686 (16)0.0248 (11)0.0031 (11)0.0111 (12)
S10.0460 (5)0.0348 (5)0.0405 (5)0.0062 (3)0.0023 (3)0.0006 (3)
Geometric parameters (Å, º) top
C1—C21.379 (4)C8—C131.385 (5)
C1—C61.384 (4)C8—C91.392 (4)
C1—S11.756 (3)C9—C101.366 (5)
C2—C31.370 (5)C9—H90.9300
C2—H20.9300C10—C111.370 (6)
C3—C41.370 (6)C10—H100.9300
C3—H30.9300C11—C121.373 (5)
C4—C51.373 (6)C11—H110.9300
C4—H40.9300C12—C131.375 (5)
C5—C61.383 (5)C12—H120.9300
C5—H50.9300C13—H130.9300
C6—H60.9300N1—S11.650 (3)
C7—O31.212 (4)N1—H1N0.79 (3)
C7—N11.383 (4)O1—S11.432 (2)
C7—C81.479 (4)O2—S11.425 (3)
C2—C1—C6121.3 (3)C10—C9—C8121.0 (3)
C2—C1—S1119.0 (2)C10—C9—H9119.5
C6—C1—S1119.6 (2)C8—C9—H9119.5
C3—C2—C1119.4 (3)C9—C10—C11120.4 (3)
C3—C2—H2120.3C9—C10—H10119.8
C1—C2—H2120.3C11—C10—H10119.8
C4—C3—C2120.3 (3)C10—C11—C12119.4 (3)
C4—C3—H3119.9C10—C11—H11120.3
C2—C3—H3119.9C12—C11—H11120.3
C3—C4—C5120.2 (3)C11—C12—C13120.8 (3)
C3—C4—H4119.9C11—C12—H12119.6
C5—C4—H4119.9C13—C12—H12119.6
C4—C5—C6120.8 (3)C12—C13—C8120.2 (3)
C4—C5—H5119.6C12—C13—H13119.9
C6—C5—H5119.6C8—C13—H13119.9
C1—C6—C5118.1 (3)C7—N1—S1122.6 (2)
C1—C6—H6121.0C7—N1—H1N120 (3)
C5—C6—H6121.0S1—N1—H1N114 (3)
O3—C7—N1120.1 (3)O2—S1—O1119.09 (18)
O3—C7—C8122.6 (3)O2—S1—N1110.97 (15)
N1—C7—C8117.2 (3)O1—S1—N1103.63 (14)
C13—C8—C9118.2 (3)O2—S1—C1108.38 (15)
C13—C8—C7124.8 (3)O1—S1—C1109.23 (15)
C9—C8—C7117.0 (3)N1—S1—C1104.55 (14)
C6—C1—C2—C30.1 (5)C10—C11—C12—C130.3 (6)
S1—C1—C2—C3176.8 (2)C11—C12—C13—C80.0 (6)
C1—C2—C3—C40.2 (5)C9—C8—C13—C120.3 (5)
C2—C3—C4—C50.1 (5)C7—C8—C13—C12177.3 (3)
C3—C4—C5—C60.9 (5)O3—C7—N1—S15.1 (4)
C2—C1—C6—C50.9 (5)C8—C7—N1—S1177.7 (2)
S1—C1—C6—C5177.5 (2)C7—N1—S1—O249.8 (3)
C4—C5—C6—C11.3 (5)C7—N1—S1—O1178.7 (3)
O3—C7—C8—C13164.9 (3)C7—N1—S1—C166.9 (3)
N1—C7—C8—C1312.2 (5)C2—C1—S1—O20.3 (3)
O3—C7—C8—C912.7 (5)C6—C1—S1—O2176.3 (2)
N1—C7—C8—C9170.2 (3)C2—C1—S1—O1131.5 (2)
C13—C8—C9—C100.3 (5)C6—C1—S1—O145.2 (3)
C7—C8—C9—C10177.5 (3)C2—C1—S1—N1118.1 (2)
C8—C9—C10—C110.1 (6)C6—C1—S1—N165.2 (3)
C9—C10—C11—C120.3 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.79 (3)2.22 (3)2.981 (4)163 (4)
Symmetry code: (i) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC13H11NO3S
Mr261.29
Crystal system, space groupTriclinic, P1
Temperature (K)299
a, b, c (Å)5.8396 (7), 10.178 (1), 10.405 (1)
α, β, γ (°)90.187 (8), 99.074 (9), 99.617 (9)
V3)601.83 (11)
Z2
Radiation typeCu Kα
µ (mm1)2.40
Crystal size (mm)0.50 × 0.33 × 0.05
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
North et al., 1968
Tmin, Tmax0.380, 0.889
No. of measured, independent and
observed [I > 2σ(I)] reflections
2354, 2125, 1962
Rint0.011
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.171, 1.18
No. of reflections2125
No. of parameters167
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.65, 0.36

Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.79 (3)2.22 (3)2.981 (4)163 (4)
Symmetry code: (i) x+1, y+1, z+2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds