





Supporting information
![]() | Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536810002990/tk2616sup1.cif |
![]() | Structure factor file (CIF format) https://doi.org/10.1107/S1600536810002990/tk2616Isup2.hkl |
CCDC reference: 765212
Key indicators
- Single-crystal X-ray study
- T = 100 K
- Mean
(C-C) = 0.002 Å
- R factor = 0.038
- wR factor = 0.082
- Data-to-parameter ratio = 20.8
checkCIF/PLATON results
No syntax errors found
Alert level C PLAT230_ALERT_2_C Hirshfeld Test Diff for O1 -- C6 .. 5.07 su PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 15
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 33.24 From the CIF: _reflns_number_total 3934 Count of symmetry unique reflns 2342 Completeness (_total/calc) 167.98% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1592 Fraction of Friedel pairs measured 0.680 Are heavy atom types Z>Si present yes PLAT720_ALERT_4_G Number of Unusual/Non-Standard Labels .......... 4
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check
A hot methanolic solution (10 ml) of 2-amino-5-chloropyridine (32 mg, Aldrich) and a hot aqueous solution (10 ml) of succinic acid (29 mg, Merck) were mixed and warmed over a water bath for 10 minutes. The resulting solution was allowed to cool slowly at room temperature. Single crystals of (I) appeared from the mother liquor after a few days.
All the H atoms were located in a difference Fourier map and allowed to refine freely [N–H = 0.83 (2) - 0.86 (2) Å, C–H = 0.944 (18) - 1.047 (19) Å, O–H = 0.822 (19) Å ].
Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bonding interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). The dicarboxylic acid, succinic acid, is a precursor for many chemicals of industrial importance (Zeikus et al., 1999; Song & Lee, 2006). Succinic acid derivatives are mostly used in chemicals, food and pharmaceuticals (Sauer et al., 2008). The crystal structure of succinic acid has been reported (Gopalan et al., 2000; Leviel et al., 1981). The crystal structures of 2-amino-5-chloropyridine (Pourayoubi et al., 2007), 2-amino-5-chloropyridinium nitrate (Zaouali Zgolli et al., 2009) and bis (2-amino-5-chloropyridinium) dihydrogen diphosphate (Akriche & Rzaigui, 2005) have been reported in literature. In this paper, we present the X-ray single-crystal structure of 2-amino-5-chloropyridinium hydrogen succinate, (I).
The asymmetric unit of (I), Fig. 1, contains a 2-amino-5-chloropyridinium cation and a hydrogen succinate anion, indicating that proton transfer has occurred during the co-crystallisation experiment. In the 2-amino-5-chloropyridinium cation, a wider than normal angle (123.22 (12)°) is subtended at the protonated N1 atom.
In the crystal packing (Fig. 2), the protonated N1 atom and the 2-amino group is hydrogen-bonded to the carboxylate oxygen atoms (O1 and O2) via a pair of N–H···O hydrogen bonds forming a R22(8) ring motif (Bernstein et al. 1995). The hydrogen succinate anions self-assemble via O—H···O hydrogen bonds. The second amino-H atom forms a hydrogen bond with the carboxylate-O1 atom. Furthermore, the crystal structure is stabilized by C—H···O contacts, Table 1, forming a 3D-network.
For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996). For related structures, see: Pourayoubi et al. (2007); Akriche & Rzaigui (2005); Zaouali Zgolli et al. (2009). For the structure of succinic acid, see: Gopalan et al. (2000); Leviel et al. (1981). For applications of succinic acid, see: Sauer et al. (2008); Song & Lee (2006); Zeikus et al. (1999).For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).
Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
C5H6ClN2+·C4H5O4− | F(000) = 512 |
Mr = 246.65 | Dx = 1.547 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 3633 reflections |
a = 5.2263 (1) Å | θ = 2.7–33.2° |
b = 13.5997 (3) Å | µ = 0.36 mm−1 |
c = 14.9019 (3) Å | T = 100 K |
V = 1059.17 (4) Å3 | Blcok, yellow |
Z = 4 | 0.41 × 0.15 × 0.10 mm |
Bruker SMART APEXII CCD area-detector diffractometer | 3934 independent reflections |
Radiation source: fine-focus sealed tube | 3581 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
φ and ω scans | θmax = 33.2°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −8→6 |
Tmin = 0.866, Tmax = 0.965 | k = −17→20 |
11594 measured reflections | l = −21→22 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.038 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.082 | w = 1/[σ2(Fo2) + (0.0404P)2 + 0.0588P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.001 |
3934 reflections | Δρmax = 0.33 e Å−3 |
189 parameters | Δρmin = −0.27 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 1604 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.05 (5) |
C5H6ClN2+·C4H5O4− | V = 1059.17 (4) Å3 |
Mr = 246.65 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 5.2263 (1) Å | µ = 0.36 mm−1 |
b = 13.5997 (3) Å | T = 100 K |
c = 14.9019 (3) Å | 0.41 × 0.15 × 0.10 mm |
Bruker SMART APEXII CCD area-detector diffractometer | 3934 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 3581 reflections with I > 2σ(I) |
Tmin = 0.866, Tmax = 0.965 | Rint = 0.033 |
11594 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.082 | Δρmax = 0.33 e Å−3 |
S = 1.02 | Δρmin = −0.27 e Å−3 |
3934 reflections | Absolute structure: Flack (1983), 1604 Friedel pairs |
189 parameters | Absolute structure parameter: 0.05 (5) |
0 restraints |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) k. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | −0.16471 (6) | 0.66417 (3) | 0.01385 (3) | 0.02344 (8) | |
N1 | 0.3976 (2) | 0.47974 (9) | −0.04334 (8) | 0.0152 (2) | |
N2 | 0.5510 (2) | 0.33552 (9) | 0.01762 (9) | 0.0194 (2) | |
C1 | 0.3838 (2) | 0.40861 (10) | 0.02044 (9) | 0.0152 (2) | |
C2 | 0.1897 (3) | 0.41668 (10) | 0.08661 (9) | 0.0170 (2) | |
C3 | 0.0245 (3) | 0.49419 (11) | 0.08409 (10) | 0.0183 (3) | |
C4 | 0.0469 (2) | 0.56603 (10) | 0.01630 (10) | 0.0180 (2) | |
C5 | 0.2340 (3) | 0.55775 (10) | −0.04688 (10) | 0.0168 (2) | |
O1 | 0.42571 (19) | 0.16607 (8) | 0.11491 (6) | 0.0208 (2) | |
O2 | 0.24386 (19) | 0.03548 (7) | 0.17729 (7) | 0.0184 (2) | |
O3 | 0.8289 (2) | 0.36179 (8) | 0.25630 (8) | 0.0232 (2) | |
O4 | 0.4478 (2) | 0.29887 (8) | 0.29328 (8) | 0.0277 (3) | |
C6 | 0.4118 (2) | 0.10302 (9) | 0.17571 (9) | 0.0142 (2) | |
C7 | 0.6061 (3) | 0.10441 (10) | 0.25145 (10) | 0.0179 (3) | |
C8 | 0.7907 (2) | 0.19017 (10) | 0.24860 (10) | 0.0181 (3) | |
C9 | 0.6663 (3) | 0.28792 (10) | 0.26836 (8) | 0.0158 (2) | |
H2 | 0.180 (3) | 0.3686 (13) | 0.1322 (11) | 0.020 (4)* | |
H3 | −0.110 (3) | 0.4991 (12) | 0.1279 (11) | 0.020 (4)* | |
H5 | 0.262 (3) | 0.6021 (12) | −0.0964 (12) | 0.016 (4)* | |
H7A | 0.713 (4) | 0.0395 (14) | 0.2466 (13) | 0.029 (5)* | |
H7B | 0.504 (4) | 0.1041 (13) | 0.3078 (13) | 0.033 (5)* | |
H8A | 0.925 (4) | 0.1818 (13) | 0.2917 (12) | 0.026 (5)* | |
H8B | 0.883 (4) | 0.1978 (13) | 0.1893 (12) | 0.023 (5)* | |
H1O3 | 0.764 (4) | 0.4144 (14) | 0.2709 (13) | 0.026 (5)* | |
H1N1 | 0.517 (4) | 0.4729 (13) | −0.0823 (13) | 0.026 (5)* | |
H1N2 | 0.667 (4) | 0.3364 (14) | −0.0209 (13) | 0.029 (5)* | |
H2N2 | 0.538 (4) | 0.2904 (14) | 0.0544 (13) | 0.027 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.01978 (14) | 0.01782 (15) | 0.03271 (18) | 0.00423 (12) | 0.00071 (13) | −0.00177 (14) |
N1 | 0.0162 (5) | 0.0134 (5) | 0.0162 (5) | −0.0010 (4) | 0.0012 (4) | 0.0015 (4) |
N2 | 0.0200 (5) | 0.0154 (5) | 0.0227 (6) | 0.0009 (5) | 0.0046 (5) | 0.0071 (5) |
C1 | 0.0156 (5) | 0.0133 (5) | 0.0168 (6) | −0.0035 (4) | −0.0024 (4) | 0.0009 (5) |
C2 | 0.0188 (6) | 0.0168 (6) | 0.0154 (6) | −0.0038 (5) | 0.0007 (5) | 0.0013 (5) |
C3 | 0.0177 (6) | 0.0193 (6) | 0.0180 (6) | −0.0033 (5) | 0.0013 (5) | −0.0030 (5) |
C4 | 0.0176 (5) | 0.0154 (6) | 0.0209 (6) | 0.0001 (5) | −0.0026 (5) | −0.0021 (5) |
C5 | 0.0175 (5) | 0.0124 (6) | 0.0205 (7) | −0.0014 (5) | −0.0030 (5) | 0.0008 (5) |
O1 | 0.0257 (5) | 0.0174 (5) | 0.0194 (5) | −0.0048 (4) | −0.0037 (4) | 0.0068 (4) |
O2 | 0.0197 (4) | 0.0132 (4) | 0.0222 (5) | −0.0027 (4) | −0.0035 (4) | 0.0039 (4) |
O3 | 0.0242 (5) | 0.0129 (5) | 0.0326 (6) | −0.0011 (4) | 0.0082 (5) | −0.0048 (4) |
O4 | 0.0192 (5) | 0.0251 (6) | 0.0387 (6) | −0.0001 (4) | 0.0062 (4) | −0.0112 (5) |
C6 | 0.0153 (5) | 0.0118 (5) | 0.0154 (6) | 0.0024 (4) | 0.0000 (4) | −0.0013 (5) |
C7 | 0.0226 (6) | 0.0140 (6) | 0.0169 (6) | −0.0011 (5) | −0.0027 (5) | 0.0027 (5) |
C8 | 0.0169 (6) | 0.0156 (6) | 0.0218 (7) | 0.0014 (5) | −0.0023 (5) | −0.0016 (5) |
C9 | 0.0184 (5) | 0.0153 (6) | 0.0138 (6) | 0.0011 (5) | −0.0014 (5) | −0.0017 (5) |
Cl1—C4 | 1.7336 (13) | C5—H5 | 0.965 (17) |
N1—C1 | 1.3580 (17) | O1—C6 | 1.2496 (16) |
N1—C5 | 1.3636 (18) | O2—C6 | 1.2708 (16) |
N1—H1N1 | 0.86 (2) | O3—C9 | 1.3281 (17) |
N2—C1 | 1.3242 (17) | O3—H1O3 | 0.822 (19) |
N2—H1N2 | 0.83 (2) | O4—C9 | 1.2100 (17) |
N2—H2N2 | 0.83 (2) | C6—C7 | 1.5183 (19) |
C1—C2 | 1.4189 (18) | C7—C8 | 1.5141 (19) |
C2—C3 | 1.363 (2) | C7—H7A | 1.047 (19) |
C2—H2 | 0.944 (18) | C7—H7B | 0.99 (2) |
C3—C4 | 1.410 (2) | C8—C9 | 1.5090 (19) |
C3—H3 | 0.961 (17) | C8—H8A | 0.959 (19) |
C4—C5 | 1.362 (2) | C8—H8B | 1.010 (18) |
C1—N1—C5 | 123.22 (12) | N1—C5—H5 | 115.0 (10) |
C1—N1—H1N1 | 115.7 (12) | C9—O3—H1O3 | 110.9 (14) |
C5—N1—H1N1 | 121.0 (12) | O1—C6—O2 | 123.33 (12) |
C1—N2—H1N2 | 119.3 (14) | O1—C6—C7 | 119.44 (11) |
C1—N2—H2N2 | 118.7 (13) | O2—C6—C7 | 117.21 (11) |
H1N2—N2—H2N2 | 122.0 (19) | C8—C7—C6 | 114.51 (11) |
N2—C1—N1 | 118.52 (12) | C8—C7—H7A | 107.9 (10) |
N2—C1—C2 | 123.49 (12) | C6—C7—H7A | 107.2 (10) |
N1—C1—C2 | 117.99 (12) | C8—C7—H7B | 111.6 (11) |
C3—C2—C1 | 119.57 (13) | C6—C7—H7B | 105.6 (12) |
C3—C2—H2 | 121.4 (11) | H7A—C7—H7B | 109.9 (15) |
C1—C2—H2 | 119.0 (11) | C9—C8—C7 | 113.48 (11) |
C2—C3—C4 | 120.21 (13) | C9—C8—H8A | 106.9 (11) |
C2—C3—H3 | 119.8 (10) | C7—C8—H8A | 110.9 (11) |
C4—C3—H3 | 119.9 (10) | C9—C8—H8B | 106.5 (10) |
C5—C4—C3 | 119.81 (12) | C7—C8—H8B | 114.0 (10) |
C5—C4—Cl1 | 120.47 (11) | H8A—C8—H8B | 104.4 (14) |
C3—C4—Cl1 | 119.71 (11) | O4—C9—O3 | 123.52 (13) |
C4—C5—N1 | 119.20 (13) | O4—C9—C8 | 125.11 (13) |
C4—C5—H5 | 125.8 (10) | O3—C9—C8 | 111.36 (12) |
C5—N1—C1—N2 | 179.59 (12) | Cl1—C4—C5—N1 | −179.96 (10) |
C5—N1—C1—C2 | −0.30 (18) | C1—N1—C5—C4 | 0.21 (19) |
N2—C1—C2—C3 | −179.60 (13) | O1—C6—C7—C8 | 4.56 (19) |
N1—C1—C2—C3 | 0.29 (18) | O2—C6—C7—C8 | −176.50 (12) |
C1—C2—C3—C4 | −0.2 (2) | C6—C7—C8—C9 | 69.12 (16) |
C2—C3—C4—C5 | 0.1 (2) | C7—C8—C9—O4 | 7.3 (2) |
C2—C3—C4—Cl1 | 179.95 (11) | C7—C8—C9—O3 | −173.70 (12) |
C3—C4—C5—N1 | −0.10 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H1O3···O2i | 0.821 (19) | 1.819 (19) | 2.5891 (15) | 156 (2) |
N1—H1N1···O2ii | 0.86 (2) | 1.85 (2) | 2.7023 (15) | 172.4 (19) |
N2—H1N2···O1ii | 0.84 (2) | 1.95 (2) | 2.7814 (15) | 177 (2) |
N2—H2N2···O1 | 0.826 (19) | 2.004 (19) | 2.8002 (16) | 162 (2) |
C5—H5···O4iii | 0.964 (17) | 2.391 (17) | 3.2216 (18) | 144.0 (13) |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) x+1/2, −y+1/2, −z; (iii) −x+1/2, −y+1, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C5H6ClN2+·C4H5O4− |
Mr | 246.65 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 100 |
a, b, c (Å) | 5.2263 (1), 13.5997 (3), 14.9019 (3) |
V (Å3) | 1059.17 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.36 |
Crystal size (mm) | 0.41 × 0.15 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.866, 0.965 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11594, 3934, 3581 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.771 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.082, 1.02 |
No. of reflections | 3934 |
No. of parameters | 189 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.33, −0.27 |
Absolute structure | Flack (1983), 1604 Friedel pairs |
Absolute structure parameter | 0.05 (5) |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H1O3···O2i | 0.821 (19) | 1.819 (19) | 2.5891 (15) | 156 (2) |
N1—H1N1···O2ii | 0.86 (2) | 1.85 (2) | 2.7023 (15) | 172.4 (19) |
N2—H1N2···O1ii | 0.84 (2) | 1.95 (2) | 2.7814 (15) | 177 (2) |
N2—H2N2···O1 | 0.826 (19) | 2.004 (19) | 2.8002 (16) | 162 (2) |
C5—H5···O4iii | 0.964 (17) | 2.391 (17) | 3.2216 (18) | 144.0 (13) |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) x+1/2, −y+1/2, −z; (iii) −x+1/2, −y+1, z−1/2. |
Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bonding interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). The dicarboxylic acid, succinic acid, is a precursor for many chemicals of industrial importance (Zeikus et al., 1999; Song & Lee, 2006). Succinic acid derivatives are mostly used in chemicals, food and pharmaceuticals (Sauer et al., 2008). The crystal structure of succinic acid has been reported (Gopalan et al., 2000; Leviel et al., 1981). The crystal structures of 2-amino-5-chloropyridine (Pourayoubi et al., 2007), 2-amino-5-chloropyridinium nitrate (Zaouali Zgolli et al., 2009) and bis (2-amino-5-chloropyridinium) dihydrogen diphosphate (Akriche & Rzaigui, 2005) have been reported in literature. In this paper, we present the X-ray single-crystal structure of 2-amino-5-chloropyridinium hydrogen succinate, (I).
The asymmetric unit of (I), Fig. 1, contains a 2-amino-5-chloropyridinium cation and a hydrogen succinate anion, indicating that proton transfer has occurred during the co-crystallisation experiment. In the 2-amino-5-chloropyridinium cation, a wider than normal angle (123.22 (12)°) is subtended at the protonated N1 atom.
In the crystal packing (Fig. 2), the protonated N1 atom and the 2-amino group is hydrogen-bonded to the carboxylate oxygen atoms (O1 and O2) via a pair of N–H···O hydrogen bonds forming a R22(8) ring motif (Bernstein et al. 1995). The hydrogen succinate anions self-assemble via O—H···O hydrogen bonds. The second amino-H atom forms a hydrogen bond with the carboxylate-O1 atom. Furthermore, the crystal structure is stabilized by C—H···O contacts, Table 1, forming a 3D-network.