Download citation
Download citation
link to html
In the crystal structure of the title compound, C14H13NO2, the mol­ecules are approximately planar, the r.m.s. deviation for all non-H atoms being 0.0435 Å; the dihedral angle between the two rings is 3.45 (12)°. The planarity is accounted for in terms of the presence of intra­molecular N—H...O and C—H...O hydrogen bonding, each of which completes an S(6) ring motif. The mol­ecules are stabilized in the form of supra­molecular chains extending along the crystallographic c axis due to inter­molecular O—H...O and C—H...O hydrogen bonding; each type leads to an R21(6) ring motif.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536811030716/tk2771sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536811030716/tk2771Isup2.hkl
Contains datablock I

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S1600536811030716/tk2771Isup3.cml
Supplementary material

CCDC reference: 845320

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.059
  • wR factor = 0.159
  • Data-to-parameter ratio = 17.8

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT026_ALERT_3_C Ratio Observed / Unique Reflections too Low .... 45 Perc. PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ..... 2 PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 29
Alert level G PLAT005_ALERT_5_G No _iucr_refine_instructions_details in CIF .... ?
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 3 ALERT level C = Check. Ensure it is not caused by an omission or oversight 1 ALERT level G = General information/check it is not something unexpected 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

We have reported the crystal structures of (II) i.e. 2-hydroxy-N-(3-nitrophenyl)benzamide (Raza et al., 2010a), (III) i.e. N-(4-chlorophenyl)-2-hydroxybenzamide (Raza et al., 2010b) and (IV) i.e. N-(3-chlorophenyl)-2 -hydroxybenzamide (Raza et al., 2010c). In this connection, the title compound (I, Fig. 1) has been prepared as a precursor for the synthesis of symmetric as well as asymmetric benzoxazepines.

In (I), the 2-hydroxyphenyl group A (C1–C6/O1) and 4-methylanilinic group B (C8—C14/N1) are planar with r.m.s. deviations of 0.0048 and 0.0086 Å, respectively. The dihedral angle between A/B is 3.45 (12) °. There is intramolecular H-bonding of the type N—H···O and C—H···O types (Table 1, Fig. 1), each of which completes a S(6) ring motif (Bernstein et al., 1995). There is also intermolecular H-bonding of the type C—H···O and O—H···O (Table 1). These lead to the formation of two R21(6) ring motifs and to supramolecular chains extending along the crystallographic c-axis (Fig. 2).

Related literature top

For related benzamide structures, see: Raza et al. (2010a,b,c). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

To a well stirred solution of 2-hydroxy benzoic acid (2.76 g, 0.02 mol, 1 equiv.) and SOCl2 (1.74 mL, 2.84 g, 0.024 mol, 1.2 equiv.) in dry CHCl3, 4-metylaniline (2.14 g, 0.02 mol, 1 equiv.) and Et3N (4.16 mL, 3 g, 0.03 mol, 1.5 equiv.) were added slowly at room temperature followed by 3 h reflux. After completion of reaction, the reaction mixture was cooled to room temperature, neutralized with aqueous NaHCO3 (10 %) and extracted with CHCl3 (3×25 mL). The organic layers were combined, dried over anhydrous Na2SO4, filtered and concentrated under reduced pressure to afford a brown solid. The column chromatographic purification with 1%, 2% and 3% CHCl3 in petrol (300 mL each) over a silica gel packed column (of 25.5 cm length) afforded white needles of (I) in the 96th-280th fractions (50 mL each).

Refinement top

Although H atoms appeared in difference Fourier maps they were positioned geometrically with (O–H = 0.82, N–H = 0.86 and C–H = 0.93-0.96 Å) and refined as riding with Uiso(H) = xUeq(C), where x = 1.5 for hydroxy- & methyl-H atoms and x = 1.2 for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii. The dotted line indicate the intramolecular H-bonding.
[Figure 2] Fig. 2. The partial packing diagram which shows that molecules form supramolecular chains extending along the c-axis. The dotted line indicate the intramolecular H-bonding.
2-Hydroxy-N-(4-methylphenyl)benzamide top
Crystal data top
C14H13NO2F(000) = 480
Mr = 227.25Dx = 1.287 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1243 reflections
a = 19.4067 (17) Åθ = 1.1–27.9°
b = 4.9122 (5) ŵ = 0.09 mm1
c = 12.7261 (11) ÅT = 296 K
β = 104.793 (4)°Needle, colorless
V = 1172.96 (19) Å30.34 × 0.14 × 0.12 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2771 independent reflections
Radiation source: fine-focus sealed tube1243 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
Detector resolution: 7.6 pixels mm-1θmax = 27.9°, θmin = 1.1°
ω scansh = 2525
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 46
Tmin = 0.979, Tmax = 0.988l = 1616
10416 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0648P)2]
where P = (Fo2 + 2Fc2)/3
2771 reflections(Δ/σ)max < 0.001
156 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C14H13NO2V = 1172.96 (19) Å3
Mr = 227.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 19.4067 (17) ŵ = 0.09 mm1
b = 4.9122 (5) ÅT = 296 K
c = 12.7261 (11) Å0.34 × 0.14 × 0.12 mm
β = 104.793 (4)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2771 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1243 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.988Rint = 0.060
10416 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 0.96Δρmax = 0.19 e Å3
2771 reflectionsΔρmin = 0.16 e Å3
156 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.29367 (9)0.2157 (4)0.22720 (13)0.0599 (7)
O20.29429 (9)0.0348 (3)0.09273 (12)0.0598 (7)
N10.24804 (9)0.0722 (4)0.04697 (14)0.0438 (7)
C10.33925 (11)0.2782 (5)0.07185 (18)0.0407 (8)
C20.33876 (12)0.3489 (5)0.17802 (18)0.0438 (8)
C30.38382 (13)0.5515 (5)0.2327 (2)0.0516 (9)
C40.42941 (13)0.6849 (5)0.1833 (2)0.0596 (11)
C50.43143 (13)0.6168 (6)0.0796 (2)0.0615 (11)
C60.38654 (13)0.4161 (5)0.0249 (2)0.0539 (10)
C70.29213 (12)0.0712 (5)0.00262 (18)0.0416 (8)
C80.19724 (12)0.2725 (5)0.00178 (18)0.0428 (8)
C90.18909 (14)0.3743 (5)0.1055 (2)0.0564 (10)
C100.13704 (14)0.5697 (6)0.1449 (2)0.0605 (11)
C110.09251 (13)0.6670 (5)0.0859 (2)0.0544 (10)
C120.10233 (14)0.5654 (5)0.0186 (2)0.0592 (10)
C130.15368 (13)0.3727 (5)0.06023 (19)0.0524 (9)
C140.03636 (15)0.8783 (5)0.1313 (2)0.0751 (11)
H10.293140.293640.283960.0899*
H1A0.250910.038120.114240.0525*
H30.383150.597360.303290.0619*
H40.458960.821740.220360.0714*
H50.462730.704940.046480.0739*
H60.387940.371650.045560.0647*
H90.218100.312750.148480.0677*
H100.132290.637280.214610.0726*
H120.073550.628830.061580.0711*
H130.159150.309190.130740.0628*
H14A0.030080.892810.208390.1127*
H14B0.051141.051040.097820.1127*
H14C0.007870.825370.116550.1127*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0753 (12)0.0677 (13)0.0429 (11)0.0164 (10)0.0262 (9)0.0130 (9)
O20.0889 (13)0.0586 (13)0.0371 (10)0.0035 (10)0.0256 (9)0.0009 (8)
N10.0496 (12)0.0504 (14)0.0318 (10)0.0029 (10)0.0111 (9)0.0039 (9)
C10.0437 (13)0.0379 (15)0.0409 (14)0.0064 (11)0.0117 (11)0.0060 (11)
C20.0449 (14)0.0444 (16)0.0438 (14)0.0034 (12)0.0147 (12)0.0036 (12)
C30.0500 (14)0.0479 (18)0.0534 (16)0.0010 (13)0.0070 (12)0.0053 (13)
C40.0506 (16)0.0481 (19)0.077 (2)0.0041 (13)0.0109 (15)0.0031 (14)
C50.0525 (16)0.061 (2)0.076 (2)0.0033 (15)0.0257 (15)0.0090 (16)
C60.0557 (16)0.0571 (19)0.0522 (16)0.0014 (14)0.0197 (13)0.0048 (14)
C70.0494 (14)0.0400 (16)0.0365 (14)0.0101 (12)0.0132 (11)0.0050 (11)
C80.0474 (14)0.0383 (15)0.0400 (14)0.0038 (12)0.0062 (11)0.0006 (11)
C90.0608 (16)0.0616 (19)0.0465 (16)0.0014 (15)0.0130 (13)0.0051 (14)
C100.0673 (18)0.056 (2)0.0515 (17)0.0024 (15)0.0028 (14)0.0110 (14)
C110.0544 (16)0.0360 (16)0.0628 (19)0.0060 (13)0.0031 (14)0.0021 (13)
C120.0613 (17)0.0524 (19)0.0615 (18)0.0060 (14)0.0112 (14)0.0038 (14)
C130.0599 (16)0.0563 (18)0.0397 (14)0.0043 (14)0.0105 (12)0.0046 (12)
C140.0718 (19)0.0511 (19)0.086 (2)0.0023 (16)0.0097 (16)0.0010 (16)
Geometric parameters (Å, º) top
O1—C21.366 (3)C10—C111.368 (4)
O2—C71.238 (3)C11—C121.387 (3)
O1—H10.8200C11—C141.509 (4)
N1—C71.339 (3)C12—C131.379 (4)
N1—C81.419 (3)C3—H30.9300
N1—H1A0.8600C4—H40.9300
C1—C71.495 (3)C5—H50.9300
C1—C61.392 (3)C6—H60.9300
C1—C21.397 (3)C9—H90.9300
C2—C31.389 (3)C10—H100.9300
C3—C41.375 (4)C12—H120.9300
C4—C51.372 (4)C13—H130.9300
C5—C61.381 (4)C14—H14A0.9600
C8—C131.386 (3)C14—H14B0.9600
C8—C91.382 (3)C14—H14C0.9600
C9—C101.391 (4)
C2—O1—H1109.00C11—C12—C13121.6 (2)
C7—N1—C8128.90 (19)C8—C13—C12120.8 (2)
C8—N1—H1A116.00C2—C3—H3120.00
C7—N1—H1A116.00C4—C3—H3120.00
C2—C1—C6117.5 (2)C3—C4—H4120.00
C2—C1—C7125.8 (2)C5—C4—H4120.00
C6—C1—C7116.7 (2)C4—C5—H5120.00
O1—C2—C3120.6 (2)C6—C5—H5120.00
O1—C2—C1119.2 (2)C1—C6—H6119.00
C1—C2—C3120.3 (2)C5—C6—H6119.00
C2—C3—C4120.6 (2)C8—C9—H9120.00
C3—C4—C5120.2 (2)C10—C9—H9120.00
C4—C5—C6119.3 (2)C9—C10—H10118.00
C1—C6—C5122.1 (2)C11—C10—H10118.00
N1—C7—C1118.03 (19)C11—C12—H12119.00
O2—C7—C1120.5 (2)C13—C12—H12119.00
O2—C7—N1121.5 (2)C8—C13—H13120.00
N1—C8—C9124.5 (2)C12—C13—H13120.00
N1—C8—C13117.0 (2)C11—C14—H14A109.00
C9—C8—C13118.5 (2)C11—C14—H14B109.00
C8—C9—C10119.3 (2)C11—C14—H14C109.00
C9—C10—C11123.1 (2)H14A—C14—H14B109.00
C10—C11—C14121.7 (2)H14A—C14—H14C109.00
C10—C11—C12116.7 (2)H14B—C14—H14C109.00
C12—C11—C14121.6 (2)
C8—N1—C7—O22.0 (4)C1—C2—C3—C40.0 (4)
C8—N1—C7—C1178.1 (2)C2—C3—C4—C50.8 (4)
C7—N1—C8—C96.3 (4)C3—C4—C5—C61.0 (4)
C7—N1—C8—C13174.3 (2)C4—C5—C6—C10.4 (4)
C6—C1—C2—O1179.2 (2)N1—C8—C9—C10179.6 (2)
C6—C1—C2—C30.5 (4)C13—C8—C9—C101.0 (4)
C7—C1—C2—O12.3 (4)N1—C8—C13—C12179.2 (2)
C7—C1—C2—C3177.9 (2)C9—C8—C13—C121.4 (4)
C2—C1—C6—C50.3 (4)C8—C9—C10—C110.4 (4)
C7—C1—C6—C5178.3 (2)C9—C10—C11—C121.4 (4)
C2—C1—C7—O2176.0 (2)C9—C10—C11—C14179.7 (2)
C2—C1—C7—N14.1 (4)C10—C11—C12—C131.0 (4)
C6—C1—C7—O22.5 (3)C14—C11—C12—C13179.9 (2)
C6—C1—C7—N1177.5 (2)C11—C12—C13—C80.4 (4)
O1—C2—C3—C4179.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.782.596 (2)179
N1—H1A···O10.861.922.647 (2)141
C3—H3···O2i0.932.513.179 (3)129
C9—H9···O20.932.252.840 (3)121
Symmetry code: (i) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H13NO2
Mr227.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)19.4067 (17), 4.9122 (5), 12.7261 (11)
β (°) 104.793 (4)
V3)1172.96 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.34 × 0.14 × 0.12
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.979, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
10416, 2771, 1243
Rint0.060
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.159, 0.96
No. of reflections2771
No. of parameters156
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.16

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.782.596 (2)179
N1—H1A···O10.861.922.647 (2)141
C3—H3···O2i0.932.513.179 (3)129
C9—H9···O20.932.252.840 (3)121
Symmetry code: (i) x, y1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds