Download citation
Download citation
link to html
The furan ring in the title compound, C26H18N2O2, is twisted about the C(H)—C(H) bond. The mol­ecular structure is stabilized by an intra­molecular C—H⋯O inter­action, which generates an S(6) ring motif. The presence of N—H⋯N hydrogen bonds leads to inversion dimers, which are stabilized in the crystal packing by C—H⋯O and C—H⋯π inter­actions, forming layers that stack along the a axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536812018430/tk5086sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536812018430/tk5086Isup2.hkl
Contains datablock I

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S1600536812018430/tk5086Isup3.cml
Supplementary material

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.042
  • wR factor = 0.117
  • Data-to-parameter ratio = 16.2

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ..... 1 PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 7
Alert level G PLAT005_ALERT_5_G No _iucr_refine_instructions_details in CIF .... ? PLAT007_ALERT_5_G Note: Number of Unrefined D-H Atoms ............ 1 PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature 293 K PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 1 N2 -C1 -C2 -C3 91.00 13.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 2 N2 -C1 -C2 -C5 -90.00 13.00 1.555 1.555 1.555 1.555 PLAT793_ALERT_4_G The Model has Chirality at C4 (Verify) .... S PLAT793_ALERT_4_G The Model has Chirality at C5 (Verify) .... S
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 2 ALERT level C = Check. Ensure it is not caused by an omission or oversight 8 ALERT level G = General information/check it is not something unexpected 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 5 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check

Comment top

Benzofurans have physiological, pharmacological and toxic properties, and there is continuing interest in their synthesis (Kappe et al., 1997). Various benzofuran derivatives have been investigated as estrogen receptor ligands, because selective estrogen receptor modulators such as ralixofene have emerged as potential therapeutics for the prevention and treatment of osteoporosis (Sato et al., 1999; Smith et al., 2002). In view of their high medicinal value, and in conjunction with our research interests, we were prompted to synthesize and report the X-ray structure determination of the title compound, (I).

In the title compound (Fig. 1), the five-membered furanyl ring adopts a twisted conformation as evident from the puckering parameters (Cremer & Pople, 1975): Q = 0.1429 (2) Å and φ = 126.0 (6)°. The five-(N2,/C38/C31/C32/C37) and six-membered (C32—C37) rings in the indole group are planar, with a dihedral angle of 0.95 (1)° between them. The dihedral angle between the phenyl rings (C42—C47 and C51—C56) is 31.56 (1)°. The molecular structure is stabilized by an intramolecular C—H···O interaction which generates an S(6) ring motif (Bernstein et al., 1995).

The presence of N—H···N hydrogen bonds leads to inversion dimers which are stabilised in the crystal packing by C—H···O and C—H···π interactions, Table 1, to form layers that stack along the a axis, Fig. 2.

Related literature top

For graph-set notation, see: Bernstein et al. (1995). For the importance of furan derivatives, see: Kappe et al. (1997); Sato et al. (1999); Smith et al. (2002). For additional conformation analysis, see: Cremer & Pople (1975).

Experimental top

To a stirred mixture of 2-(1H-indole-3-carbonyl)-3-phenylacrylonitrile (1.0 eq.) and phenacylpyridinium bromide (1.0 eq.) in water (10 ml) was added drop-wise triethylamine (0.25 eq.) at room temperature. The resulting clear solution, that slowly became turbid, was stirred at room temperature for 0.5 h. Then the separated free-flowing solid was filtered and washed with methanol (3 ml) to afford the title compound as pale-yellow solids. The product was recrystallized from EtOH/EtOAc mixture (1:1 ratio v/v ml) to give pure compound, as pale-yellow crystals. M. pt: 521 K; Yield: 88%.

Refinement top

H atoms were placed at calculated positions and allowed to ride on their carrier atoms with N—H = 0.86 Å and C—H = 0.93–0.98 Å, and with Uiso = 1.2Ueq(N,C) for CH and Uiso = 1.5Ueq(C) for CH3.

Structure description top

Benzofurans have physiological, pharmacological and toxic properties, and there is continuing interest in their synthesis (Kappe et al., 1997). Various benzofuran derivatives have been investigated as estrogen receptor ligands, because selective estrogen receptor modulators such as ralixofene have emerged as potential therapeutics for the prevention and treatment of osteoporosis (Sato et al., 1999; Smith et al., 2002). In view of their high medicinal value, and in conjunction with our research interests, we were prompted to synthesize and report the X-ray structure determination of the title compound, (I).

In the title compound (Fig. 1), the five-membered furanyl ring adopts a twisted conformation as evident from the puckering parameters (Cremer & Pople, 1975): Q = 0.1429 (2) Å and φ = 126.0 (6)°. The five-(N2,/C38/C31/C32/C37) and six-membered (C32—C37) rings in the indole group are planar, with a dihedral angle of 0.95 (1)° between them. The dihedral angle between the phenyl rings (C42—C47 and C51—C56) is 31.56 (1)°. The molecular structure is stabilized by an intramolecular C—H···O interaction which generates an S(6) ring motif (Bernstein et al., 1995).

The presence of N—H···N hydrogen bonds leads to inversion dimers which are stabilised in the crystal packing by C—H···O and C—H···π interactions, Table 1, to form layers that stack along the a axis, Fig. 2.

For graph-set notation, see: Bernstein et al. (1995). For the importance of furan derivatives, see: Kappe et al. (1997); Sato et al. (1999); Smith et al. (2002). For additional conformation analysis, see: Cremer & Pople (1975).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick,2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The packing diagram of the molecule (I). The C—H···O interactions are shown as dashed lines.
(±)-trans-5-Benzoyl-2-(1H-indol-3-yl)-4-phenyl-4,5- dihydrofuran-3-carbonitrile top
Crystal data top
C26H18N2O2F(000) = 816
Mr = 390.42Dx = 1.327 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2000 reflections
a = 12.4027 (5) Åθ = 2–31°
b = 8.3722 (4) ŵ = 0.09 mm1
c = 19.7472 (8) ÅT = 293 K
β = 107.570 (2)°Block, pale-yellow
V = 1954.85 (15) Å30.17 × 0.14 × 0.13 mm
Z = 4
Data collection top
Bruker Kappa APEXII
diffractometer
4403 independent reflections
Radiation source: fine-focus sealed tube3021 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 0 pixels mm-1θmax = 27.3°, θmin = 2.2°
ω and φ scansh = 1216
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1010
Tmin = 0.967, Tmax = 0.974l = 2525
20260 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0537P)2 + 0.2502P]
where P = (Fo2 + 2Fc2)/3
4403 reflections(Δ/σ)max = 0.001
271 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C26H18N2O2V = 1954.85 (15) Å3
Mr = 390.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.4027 (5) ŵ = 0.09 mm1
b = 8.3722 (4) ÅT = 293 K
c = 19.7472 (8) Å0.17 × 0.14 × 0.13 mm
β = 107.570 (2)°
Data collection top
Bruker Kappa APEXII
diffractometer
4403 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3021 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.974Rint = 0.030
20260 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.02Δρmax = 0.16 e Å3
4403 reflectionsΔρmin = 0.15 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.67286 (12)0.45451 (19)0.17299 (7)0.0470 (3)
C20.63051 (11)0.34109 (17)0.21081 (7)0.0444 (3)
C30.52658 (12)0.27563 (17)0.18813 (7)0.0450 (3)
C40.59768 (11)0.18757 (18)0.30149 (7)0.0460 (3)
H40.62150.07960.31870.055*
C50.69611 (11)0.27397 (18)0.28285 (7)0.0446 (3)
H50.72510.36140.31640.054*
C310.43701 (12)0.28633 (17)0.12162 (7)0.0463 (3)
C320.32001 (12)0.24303 (17)0.10900 (8)0.0484 (4)
C330.25537 (13)0.1932 (2)0.15212 (9)0.0598 (4)
H330.28780.18230.20090.072*
C340.14258 (15)0.1608 (2)0.12050 (11)0.0744 (5)
H340.09850.12800.14860.089*
C350.09299 (16)0.1758 (3)0.04764 (12)0.0834 (6)
H350.01690.15080.02790.100*
C360.15389 (16)0.2265 (2)0.00444 (10)0.0766 (6)
H360.12050.23730.04430.092*
C370.26741 (13)0.26136 (19)0.03599 (8)0.0569 (4)
C380.44868 (14)0.32868 (19)0.05720 (8)0.0549 (4)
H380.51550.36290.04960.066*
C410.56106 (12)0.27837 (19)0.35731 (8)0.0491 (4)
C420.64154 (12)0.28240 (18)0.43077 (7)0.0464 (3)
C430.62343 (14)0.3942 (2)0.47757 (8)0.0593 (4)
H430.56250.46410.46270.071*
C440.69484 (17)0.4028 (2)0.54600 (9)0.0731 (5)
H440.68220.47860.57720.088*
C450.78458 (17)0.3001 (2)0.56826 (9)0.0728 (5)
H450.83270.30620.61460.087*
C460.80372 (15)0.1881 (2)0.52240 (9)0.0679 (5)
H460.86450.11820.53770.081*
C470.73263 (13)0.1793 (2)0.45343 (8)0.0567 (4)
H470.74600.10400.42230.068*
C510.79172 (11)0.16457 (18)0.28071 (7)0.0448 (3)
C520.90157 (12)0.1926 (2)0.32275 (8)0.0612 (4)
H520.91720.28010.35320.073*
C530.98818 (14)0.0916 (3)0.31985 (10)0.0726 (5)
H531.06160.11170.34840.087*
C540.96707 (15)0.0370 (2)0.27562 (9)0.0685 (5)
H541.02590.10340.27320.082*
C550.85815 (15)0.0680 (2)0.23456 (9)0.0661 (5)
H550.84300.15670.20490.079*
C560.77161 (13)0.0315 (2)0.23725 (8)0.0556 (4)
H560.69820.00900.20940.067*
N10.34776 (12)0.31303 (17)0.00616 (6)0.0629 (4)
H10.33590.33260.03820.076*
N20.70692 (12)0.54844 (18)0.14254 (7)0.0630 (4)
O10.50438 (8)0.17832 (12)0.23712 (5)0.0523 (3)
O20.47216 (10)0.34802 (17)0.34197 (6)0.0765 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0484 (8)0.0492 (9)0.0412 (7)0.0003 (6)0.0104 (6)0.0016 (7)
C20.0464 (7)0.0463 (8)0.0394 (7)0.0010 (6)0.0112 (6)0.0031 (6)
C30.0495 (8)0.0443 (8)0.0401 (7)0.0024 (6)0.0120 (6)0.0019 (6)
C40.0439 (7)0.0510 (9)0.0386 (7)0.0013 (6)0.0056 (6)0.0071 (6)
C50.0459 (7)0.0485 (8)0.0365 (7)0.0046 (6)0.0081 (6)0.0004 (6)
C310.0492 (8)0.0453 (8)0.0407 (7)0.0048 (6)0.0077 (6)0.0002 (6)
C320.0478 (8)0.0429 (8)0.0480 (8)0.0054 (6)0.0048 (6)0.0030 (6)
C330.0540 (9)0.0594 (11)0.0638 (10)0.0033 (7)0.0146 (8)0.0020 (8)
C340.0556 (10)0.0716 (12)0.0970 (14)0.0004 (9)0.0246 (10)0.0079 (11)
C350.0495 (10)0.0815 (14)0.1046 (16)0.0016 (9)0.0012 (11)0.0131 (12)
C360.0620 (11)0.0755 (13)0.0698 (12)0.0075 (9)0.0140 (9)0.0043 (10)
C370.0569 (9)0.0504 (9)0.0531 (9)0.0066 (7)0.0009 (7)0.0010 (7)
C380.0605 (9)0.0560 (10)0.0432 (8)0.0007 (7)0.0081 (7)0.0017 (7)
C410.0444 (8)0.0544 (9)0.0477 (8)0.0006 (7)0.0128 (6)0.0101 (7)
C420.0485 (8)0.0507 (9)0.0414 (7)0.0031 (6)0.0157 (6)0.0091 (6)
C430.0688 (10)0.0625 (10)0.0503 (9)0.0030 (8)0.0235 (8)0.0045 (8)
C440.0986 (14)0.0742 (13)0.0470 (9)0.0058 (11)0.0226 (9)0.0028 (9)
C450.0854 (13)0.0796 (13)0.0441 (9)0.0160 (10)0.0055 (8)0.0071 (9)
C460.0655 (10)0.0733 (12)0.0560 (10)0.0025 (9)0.0050 (8)0.0166 (9)
C470.0604 (9)0.0595 (10)0.0472 (8)0.0034 (7)0.0118 (7)0.0077 (7)
C510.0427 (7)0.0535 (9)0.0351 (7)0.0030 (6)0.0071 (5)0.0062 (6)
C520.0477 (8)0.0690 (11)0.0578 (9)0.0054 (8)0.0020 (7)0.0060 (8)
C530.0426 (8)0.0892 (14)0.0756 (11)0.0024 (9)0.0022 (8)0.0033 (11)
C540.0583 (10)0.0767 (13)0.0704 (11)0.0155 (9)0.0194 (8)0.0117 (10)
C550.0697 (11)0.0649 (11)0.0615 (10)0.0089 (9)0.0167 (8)0.0048 (8)
C560.0491 (8)0.0642 (10)0.0470 (8)0.0022 (7)0.0049 (6)0.0029 (8)
N10.0715 (9)0.0669 (9)0.0396 (7)0.0017 (7)0.0006 (6)0.0059 (6)
N20.0694 (9)0.0656 (9)0.0540 (8)0.0076 (7)0.0185 (7)0.0088 (7)
O10.0495 (6)0.0612 (7)0.0406 (5)0.0114 (5)0.0055 (4)0.0070 (5)
O20.0551 (7)0.1000 (10)0.0680 (7)0.0243 (7)0.0089 (6)0.0007 (7)
Geometric parameters (Å, º) top
C1—N21.1454 (18)C38—H380.9300
C1—C21.404 (2)C41—O21.2024 (17)
C2—C31.3469 (19)C41—C421.4925 (19)
C2—C51.5174 (18)C42—C431.380 (2)
C3—O11.3552 (17)C42—C471.385 (2)
C3—C311.4443 (19)C43—C441.376 (2)
C4—O11.4398 (15)C43—H430.9300
C4—C411.517 (2)C44—C451.370 (3)
C4—C51.5558 (19)C44—H440.9300
C4—H40.9800C45—C461.373 (3)
C5—C511.509 (2)C45—H450.9300
C5—H50.9800C46—C471.383 (2)
C31—C381.370 (2)C46—H460.9300
C31—C321.442 (2)C47—H470.9300
C32—C331.398 (2)C51—C561.382 (2)
C32—C371.400 (2)C51—C521.3847 (19)
C33—C341.376 (2)C52—C531.381 (2)
C33—H330.9300C52—H520.9300
C34—C351.389 (3)C53—C541.361 (3)
C34—H340.9300C53—H530.9300
C35—C361.367 (3)C54—C551.374 (2)
C35—H350.9300C54—H540.9300
C36—C371.388 (2)C55—C561.372 (2)
C36—H360.9300C55—H550.9300
C37—N11.372 (2)C56—H560.9300
C38—N11.3557 (19)N1—H10.8600
N2—C1—C2179.19 (17)O2—C41—C42121.82 (14)
C3—C2—C1124.91 (13)O2—C41—C4120.85 (13)
C3—C2—C5110.46 (12)C42—C41—C4117.29 (12)
C1—C2—C5124.63 (12)C43—C42—C47119.23 (14)
C2—C3—O1112.80 (12)C43—C42—C41118.02 (13)
C2—C3—C31132.33 (14)C47—C42—C41122.75 (14)
O1—C3—C31114.84 (12)C44—C43—C42120.44 (16)
O1—C4—C41109.35 (11)C44—C43—H43119.8
O1—C4—C5107.16 (10)C42—C43—H43119.8
C41—C4—C5111.55 (12)C45—C44—C43120.12 (17)
O1—C4—H4109.6C45—C44—H44119.9
C41—C4—H4109.6C43—C44—H44119.9
C5—C4—H4109.6C44—C45—C46120.17 (16)
C51—C5—C2113.71 (11)C44—C45—H45119.9
C51—C5—C4113.81 (12)C46—C45—H45119.9
C2—C5—C499.04 (10)C45—C46—C47120.03 (17)
C51—C5—H5109.9C45—C46—H46120.0
C2—C5—H5109.9C47—C46—H46120.0
C4—C5—H5109.9C46—C47—C42120.01 (16)
C38—C31—C32106.70 (12)C46—C47—H47120.0
C38—C31—C3126.34 (14)C42—C47—H47120.0
C32—C31—C3126.81 (13)C56—C51—C52117.97 (14)
C33—C32—C37119.04 (14)C56—C51—C5120.70 (12)
C33—C32—C31134.57 (13)C52—C51—C5121.32 (14)
C37—C32—C31106.39 (14)C53—C52—C51120.55 (16)
C34—C33—C32118.29 (16)C53—C52—H52119.7
C34—C33—H33120.9C51—C52—H52119.7
C32—C33—H33120.9C54—C53—C52120.60 (15)
C33—C34—C35121.58 (19)C54—C53—H53119.7
C33—C34—H34119.2C52—C53—H53119.7
C35—C34—H34119.2C53—C54—C55119.50 (16)
C36—C35—C34121.28 (17)C53—C54—H54120.3
C36—C35—H35119.4C55—C54—H54120.3
C34—C35—H35119.4C56—C55—C54120.24 (17)
C35—C36—C37117.53 (17)C56—C55—H55119.9
C35—C36—H36121.2C54—C55—H55119.9
C37—C36—H36121.2C55—C56—C51121.11 (14)
N1—C37—C36130.07 (16)C55—C56—H56119.4
N1—C37—C32107.68 (13)C51—C56—H56119.4
C36—C37—C32122.24 (17)C38—N1—C37109.80 (13)
N1—C38—C31109.43 (15)C38—N1—H1125.1
N1—C38—H38125.3C37—N1—H1125.1
C31—C38—H38125.3C3—O1—C4108.40 (10)
N2—C1—C2—C391 (13)O1—C4—C41—O210.0 (2)
N2—C1—C2—C590 (13)C5—C4—C41—O2108.38 (16)
C1—C2—C3—O1175.50 (13)O1—C4—C41—C42172.28 (11)
C5—C2—C3—O15.01 (17)C5—C4—C41—C4269.37 (16)
C1—C2—C3—C316.4 (3)O2—C41—C42—C4313.3 (2)
C5—C2—C3—C31173.05 (15)C4—C41—C42—C43164.41 (13)
C3—C2—C5—C51109.37 (14)O2—C41—C42—C47166.66 (16)
C1—C2—C5—C5170.13 (18)C4—C41—C42—C4715.6 (2)
C3—C2—C5—C411.72 (15)C47—C42—C43—C440.2 (2)
C1—C2—C5—C4168.78 (14)C41—C42—C43—C44179.82 (15)
O1—C4—C5—C51106.79 (12)C42—C43—C44—C450.1 (3)
C41—C4—C5—C51133.55 (12)C43—C44—C45—C460.1 (3)
O1—C4—C5—C214.22 (14)C44—C45—C46—C470.3 (3)
C41—C4—C5—C2105.43 (12)C45—C46—C47—C420.6 (3)
C2—C3—C31—C3821.4 (3)C43—C42—C47—C460.5 (2)
O1—C3—C31—C38156.61 (14)C41—C42—C47—C46179.48 (14)
C2—C3—C31—C32163.71 (16)C2—C5—C51—C5656.54 (18)
O1—C3—C31—C3218.3 (2)C4—C5—C51—C5655.88 (17)
C38—C31—C32—C33178.57 (17)C2—C5—C51—C52124.44 (15)
C3—C31—C32—C335.7 (3)C4—C5—C51—C52123.14 (15)
C38—C31—C32—C370.40 (16)C56—C51—C52—C531.3 (2)
C3—C31—C32—C37175.29 (14)C5—C51—C52—C53179.67 (15)
C37—C32—C33—C341.4 (2)C51—C52—C53—C540.0 (3)
C31—C32—C33—C34179.72 (16)C52—C53—C54—C551.2 (3)
C32—C33—C34—C350.3 (3)C53—C54—C55—C561.1 (3)
C33—C34—C35—C361.3 (3)C54—C55—C56—C510.3 (3)
C34—C35—C36—C370.5 (3)C52—C51—C56—C551.4 (2)
C35—C36—C37—N1179.66 (18)C5—C51—C56—C55179.51 (14)
C35—C36—C37—C321.3 (3)C31—C38—N1—C370.49 (18)
C33—C32—C37—N1179.05 (14)C36—C37—N1—C38178.77 (17)
C31—C32—C37—N10.11 (17)C32—C37—N1—C380.22 (18)
C33—C32—C37—C362.3 (2)C2—C3—O1—C45.08 (16)
C31—C32—C37—C36178.58 (15)C31—C3—O1—C4176.50 (12)
C32—C31—C38—N10.55 (17)C41—C4—O1—C3108.41 (13)
C3—C31—C38—N1175.17 (14)C5—C4—O1—C312.65 (15)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1,C31,C32,C37,C38 ring.
D—H···AD—HH···AD···AD—H···A
C33—H33···O10.932.563.040 (2)112
C56—H56···O2i0.932.453.330 (2)158
N1—H1···N2ii0.862.203.037 (2)163
C43—H43···Cg1iii0.932.963.410 (2)112
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1, z; (iii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC26H18N2O2
Mr390.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.4027 (5), 8.3722 (4), 19.7472 (8)
β (°) 107.570 (2)
V3)1954.85 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.17 × 0.14 × 0.13
Data collection
DiffractometerBruker Kappa APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.967, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
20260, 4403, 3021
Rint0.030
(sin θ/λ)max1)0.646
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.117, 1.02
No. of reflections4403
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.15

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXL97 (Sheldrick,2008).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1,C31,C32,C37,C38 ring.
D—H···AD—HH···AD···AD—H···A
C33—H33···O10.932.563.040 (2)112
C56—H56···O2i0.932.453.330 (2)158
N1—H1···N2ii0.862.203.037 (2)163
C43—H43···Cg1iii0.932.963.410 (2)112
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1, z; (iii) x+1, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds