Download citation
Download citation
link to html
In the title compound, C20H14N2O2, the hy­droxy­benzene ring is almost perpendicular to the mean plane of the naphthalene ring system, making a dihedral angle of 85.56 (4)°. The 4H-pyran ring fused with the naphthalene ring system has a flattened boat conformation. In the crystal, O—H...N and N—H...O hydrogen bonds link the mol­ecules into a supra­molecular layer in the bc plane; N—H...π inter­actions also contribute to this arrangement. The layers are linked by weak by C—H...π and π–π [inter-centroid separation = 3.8713 (7) Å] inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2056989015012566/tk5372sup1.cif
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2056989015012566/tk5372Isup2.hkl
Contains datablock I

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2056989015012566/tk5372Isup3.cml
Supplementary material

CCDC reference: 1409621

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.034
  • wR factor = 0.092
  • Data-to-parameter ratio = 16.1

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT420_ALERT_2_C D-H Without Acceptor N1 - H2N .. Please Check PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 4 Report PLAT913_ALERT_3_C Missing # of Very Strong Reflections in FCF .... 2 Note
Alert level G PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite 5 Note PLAT230_ALERT_2_G Hirshfeld Test Diff for C2 -- C14 .. 8.3 su PLAT793_ALERT_4_G The Model has Chirality at C3 (Centro SPGR) S Verify PLAT860_ALERT_3_G Number of Least-Squares Restraints ............. 3 Note PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Th(Min) ... 3 Report
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 3 ALERT level C = Check. Ensure it is not caused by an omission or oversight 5 ALERT level G = General information/check it is not something unexpected 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

During the last decade, 4H-pyrans have held a unique role in medicinal chemistry due to their biological and pharmacological activities (Elnagdi et al., 1983; Goldmann & Stoltefus, 1991). Fused pyran derivatives also exhibit a wide spectrum of biological and pharmacological properties, such as antiviral and antileishmanial (Perez-Perez et al., 1995; Fan et al., 2010), anticonvulsant and antimicrobial (Aytemir et al., 2004) and insecticidal (Uher et al., 1994). In this context we report in this study the synthesis and crystal structural determination for the title compound.

In the title compound (Fig. 1), the hydroxy-benzene ring (C15–C20) is approximately perpendicular to the naphthalene ring system [C4–C13, maximum deviation = -0.017 (1) Å at atom C13] as indicated by the dihedral angle of 85.56 (4)°. The 4H-pyran ring (O1/C1–C4/C13) in the title compound is puckered with the puckering parameters of QT = 0.199 (1) Å, θ = 102.9 (3) ° and φ = 354.2 (3) °. The bond lengths and angles in the title compound are within normal ranges and comparable with those reported for the similar structures (Akkurt et al., 2013; 2015).

In the crystal structure, molecules are linked by N—H···O and O—H···N hydrogen bonds (Table 1, Fig. 2), which leads to a layer in the bc plane.

Related literature top

For general biological activities of some heterocyclic derivatives containing the 4H-pyran moiety, see: Elnagdi et al. (1983); Goldmann & Stoltefus (1991); Perez-Perez et al. (1995); Fan et al. (2010); Aytemir et al. (2004); Uher et al. (1994). For similar structures, see: Akkurt et al. (2013, 2015).

Experimental top

The title compound was obtained in 95% yield from the reaction of 2-naphthol (144 mg; 1 mmol) and an equimolar amount of 4-hydroxybenzylidene-malononitrile (180 mg; 1 mmol) in absolute ethanol (10 ml ) in the presence of a catalytic amount of piperidine under reflux for 3 h. Crystallization of the crude product from ethanol gave colourless crystals of the title compound suitable for X-ray crystallography·M.pt: 521 K.

Refinement top

The H atoms of the OH and NH2 group were located in a difference Fourier map and were refined freely [N1—H1N = 0.896 (12) Å, N1—H2N = 0.883 (12) Å and O2—H2O = 0.885 (13) Å]. The H atoms attached to the C atoms were positioned geometrically, with C—H = 0.95 Å and C—H = 1.00 Å for aromatic and methine H, respectively, and with Uiso(H) = 1.2Ueq(C).

Structure description top

During the last decade, 4H-pyrans have held a unique role in medicinal chemistry due to their biological and pharmacological activities (Elnagdi et al., 1983; Goldmann & Stoltefus, 1991). Fused pyran derivatives also exhibit a wide spectrum of biological and pharmacological properties, such as antiviral and antileishmanial (Perez-Perez et al., 1995; Fan et al., 2010), anticonvulsant and antimicrobial (Aytemir et al., 2004) and insecticidal (Uher et al., 1994). In this context we report in this study the synthesis and crystal structural determination for the title compound.

In the title compound (Fig. 1), the hydroxy-benzene ring (C15–C20) is approximately perpendicular to the naphthalene ring system [C4–C13, maximum deviation = -0.017 (1) Å at atom C13] as indicated by the dihedral angle of 85.56 (4)°. The 4H-pyran ring (O1/C1–C4/C13) in the title compound is puckered with the puckering parameters of QT = 0.199 (1) Å, θ = 102.9 (3) ° and φ = 354.2 (3) °. The bond lengths and angles in the title compound are within normal ranges and comparable with those reported for the similar structures (Akkurt et al., 2013; 2015).

In the crystal structure, molecules are linked by N—H···O and O—H···N hydrogen bonds (Table 1, Fig. 2), which leads to a layer in the bc plane.

For general biological activities of some heterocyclic derivatives containing the 4H-pyran moiety, see: Elnagdi et al. (1983); Goldmann & Stoltefus (1991); Perez-Perez et al. (1995); Fan et al. (2010); Aytemir et al. (2004); Uher et al. (1994). For similar structures, see: Akkurt et al. (2013, 2015).

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2012); cell refinement: CrystalClear-SM Expert (Rigaku, 2012); data reduction: CrystalClear-SM Expert (Rigaku, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. View of the packing of the title compound viewing down a axis.
3-Amino-1-(4-hydroxyphenyl)-1H-benzo[f]chromene-2-carbonitrile top
Crystal data top
C20H14N2O2F(000) = 656
Mr = 314.33Dx = 1.302 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
a = 12.1086 (8) ÅCell parameters from 17749 reflections
b = 13.1418 (9) Åθ = 2.3–27.5°
c = 10.1552 (7) ŵ = 0.09 mm1
β = 96.992 (1)°T = 100 K
V = 1603.97 (19) Å3Blade, colourless
Z = 40.21 × 0.08 × 0.07 mm
Data collection top
Rigaku AFC12 (Right)
diffractometer
3679 independent reflections
Radiation source: Rotating Anode3251 reflections with I > 2σ(I)
Detector resolution: 28.5714 pixels mm-1Rint = 0.030
profile data from ω–scansθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2012)
h = 1515
Tmin = 0.738, Tmax = 1.000k = 1714
17411 measured reflectionsl = 1213
Refinement top
Refinement on F23 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0425P)2 + 0.4007P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3679 reflectionsΔρmax = 0.26 e Å3
229 parametersΔρmin = 0.18 e Å3
Crystal data top
C20H14N2O2V = 1603.97 (19) Å3
Mr = 314.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.1086 (8) ŵ = 0.09 mm1
b = 13.1418 (9) ÅT = 100 K
c = 10.1552 (7) Å0.21 × 0.08 × 0.07 mm
β = 96.992 (1)°
Data collection top
Rigaku AFC12 (Right)
diffractometer
3679 independent reflections
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2012)
3251 reflections with I > 2σ(I)
Tmin = 0.738, Tmax = 1.000Rint = 0.030
17411 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0343 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.26 e Å3
3679 reflectionsΔρmin = 0.18 e Å3
229 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.33983 (8)0.47639 (8)1.11802 (10)0.0237 (2)
C20.31777 (8)0.53512 (7)1.00751 (9)0.0225 (2)
C30.22804 (8)0.50920 (7)0.89492 (9)0.02158 (19)
H30.18650.57300.86720.026*
C40.14741 (8)0.43453 (7)0.94430 (10)0.0234 (2)
C50.04093 (8)0.41495 (8)0.87013 (10)0.0261 (2)
C60.00288 (9)0.46750 (8)0.75126 (11)0.0295 (2)
H60.04940.51700.71780.035*
C70.10048 (9)0.44795 (9)0.68361 (12)0.0356 (3)
H70.12500.48470.60490.043*
C80.17001 (9)0.37399 (10)0.73009 (13)0.0380 (3)
H80.24080.36030.68220.046*
C90.13586 (9)0.32188 (9)0.84389 (13)0.0363 (3)
H90.18360.27220.87470.044*
C100.03025 (9)0.34047 (8)0.91728 (11)0.0300 (2)
C110.00527 (9)0.28765 (9)1.03649 (12)0.0348 (3)
H110.04170.23741.06750.042*
C120.10573 (9)0.30770 (8)1.10727 (12)0.0325 (2)
H120.12870.27231.18750.039*
C130.17513 (8)0.38188 (8)1.05958 (10)0.0256 (2)
C140.38247 (9)0.62331 (8)0.99791 (10)0.0264 (2)
C150.27956 (8)0.46801 (7)0.77552 (9)0.02106 (19)
C160.32470 (8)0.37029 (7)0.77790 (10)0.0233 (2)
H160.32010.32800.85290.028*
C170.37626 (8)0.33360 (7)0.67264 (10)0.0237 (2)
H170.40670.26690.67580.028*
C180.38308 (8)0.39533 (8)0.56223 (9)0.0235 (2)
C190.33979 (9)0.49308 (8)0.55907 (10)0.0272 (2)
H190.34530.53570.48460.033*
C200.28830 (8)0.52852 (8)0.66516 (10)0.0255 (2)
H200.25850.59550.66220.031*
N10.42225 (8)0.48875 (8)1.21728 (9)0.0297 (2)
N20.43322 (9)0.69661 (8)0.99112 (10)0.0383 (2)
O10.27537 (6)0.39555 (6)1.14083 (7)0.02776 (17)
O20.43199 (7)0.36270 (6)0.45510 (7)0.02998 (18)
H1N0.4259 (12)0.4453 (10)1.2856 (13)0.042 (4)*
H2N0.4767 (11)0.5317 (10)1.2069 (14)0.041 (4)*
H2O0.4737 (13)0.3086 (11)0.4770 (16)0.057 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0230 (5)0.0260 (5)0.0232 (5)0.0009 (4)0.0073 (4)0.0010 (4)
C20.0224 (5)0.0251 (5)0.0207 (4)0.0014 (4)0.0050 (3)0.0007 (4)
C30.0210 (4)0.0223 (4)0.0217 (4)0.0009 (3)0.0037 (3)0.0003 (3)
C40.0221 (5)0.0226 (5)0.0266 (5)0.0006 (4)0.0074 (4)0.0028 (4)
C50.0226 (5)0.0257 (5)0.0312 (5)0.0012 (4)0.0080 (4)0.0073 (4)
C60.0246 (5)0.0322 (5)0.0318 (5)0.0016 (4)0.0040 (4)0.0067 (4)
C70.0281 (5)0.0410 (6)0.0370 (6)0.0051 (5)0.0009 (4)0.0108 (5)
C80.0223 (5)0.0430 (7)0.0483 (7)0.0012 (5)0.0022 (5)0.0184 (5)
C90.0251 (5)0.0330 (6)0.0529 (7)0.0045 (4)0.0130 (5)0.0159 (5)
C100.0249 (5)0.0266 (5)0.0405 (6)0.0014 (4)0.0116 (4)0.0089 (4)
C110.0317 (5)0.0279 (5)0.0477 (7)0.0057 (4)0.0164 (5)0.0007 (5)
C120.0338 (6)0.0287 (5)0.0370 (6)0.0008 (4)0.0119 (5)0.0051 (4)
C130.0237 (5)0.0250 (5)0.0293 (5)0.0004 (4)0.0075 (4)0.0004 (4)
C140.0277 (5)0.0328 (5)0.0189 (4)0.0026 (4)0.0035 (4)0.0001 (4)
C150.0190 (4)0.0237 (5)0.0204 (4)0.0002 (3)0.0020 (3)0.0005 (3)
C160.0251 (5)0.0232 (5)0.0221 (4)0.0006 (4)0.0046 (4)0.0033 (4)
C170.0251 (5)0.0206 (4)0.0258 (5)0.0017 (4)0.0045 (4)0.0009 (4)
C180.0224 (4)0.0285 (5)0.0196 (4)0.0012 (4)0.0032 (3)0.0011 (4)
C190.0308 (5)0.0294 (5)0.0215 (5)0.0051 (4)0.0045 (4)0.0067 (4)
C200.0279 (5)0.0238 (5)0.0249 (5)0.0058 (4)0.0039 (4)0.0033 (4)
N10.0284 (5)0.0386 (5)0.0218 (4)0.0026 (4)0.0020 (3)0.0042 (4)
N20.0448 (6)0.0404 (6)0.0292 (5)0.0161 (5)0.0028 (4)0.0030 (4)
O10.0269 (4)0.0280 (4)0.0285 (4)0.0009 (3)0.0036 (3)0.0063 (3)
O20.0364 (4)0.0326 (4)0.0223 (4)0.0095 (3)0.0091 (3)0.0022 (3)
Geometric parameters (Å, º) top
C1—N11.3393 (13)C11—C121.3612 (17)
C1—O11.3548 (12)C11—H110.9500
C1—C21.3614 (14)C12—C131.4108 (14)
C2—C141.4089 (14)C12—H120.9500
C2—C31.5171 (13)C13—O11.3937 (12)
C3—C41.5122 (13)C14—N21.1492 (14)
C3—C151.5286 (13)C15—C201.3887 (13)
C3—H31.0000C15—C161.3948 (13)
C4—C131.3661 (14)C16—C171.3883 (13)
C4—C51.4351 (14)C16—H160.9500
C5—C61.4180 (15)C17—C181.3945 (13)
C5—C101.4250 (15)C17—H170.9500
C6—C71.3765 (15)C18—O21.3693 (11)
C6—H60.9500C18—C191.3864 (14)
C7—C81.4047 (18)C19—C201.3892 (14)
C7—H70.9500C19—H190.9500
C8—C91.3636 (19)C20—H200.9500
C8—H80.9500N1—H1N0.896 (12)
C9—C101.4207 (15)N1—H2N0.883 (12)
C9—H90.9500O2—H2O0.885 (13)
C10—C111.4162 (17)
N1—C1—O1111.01 (9)C12—C11—C10121.03 (10)
N1—C1—C2127.23 (10)C12—C11—H11119.5
O1—C1—C2121.75 (9)C10—C11—H11119.5
C1—C2—C14117.94 (9)C11—C12—C13118.93 (10)
C1—C2—C3122.99 (9)C11—C12—H12120.5
C14—C2—C3119.07 (8)C13—C12—H12120.5
C4—C3—C2109.14 (8)C4—C13—O1123.20 (9)
C4—C3—C15112.06 (8)C4—C13—C12123.35 (10)
C2—C3—C15110.69 (8)O1—C13—C12113.46 (9)
C4—C3—H3108.3N2—C14—C2178.35 (12)
C2—C3—H3108.3C20—C15—C16118.23 (9)
C15—C3—H3108.3C20—C15—C3121.06 (8)
C13—C4—C5118.06 (9)C16—C15—C3120.61 (8)
C13—C4—C3120.77 (9)C17—C16—C15121.23 (9)
C5—C4—C3121.16 (9)C17—C16—H16119.4
C6—C5—C10118.25 (10)C15—C16—H16119.4
C6—C5—C4122.52 (10)C16—C17—C18119.55 (9)
C10—C5—C4119.23 (10)C16—C17—H17120.2
C7—C6—C5121.03 (11)C18—C17—H17120.2
C7—C6—H6119.5O2—C18—C19118.08 (9)
C5—C6—H6119.5O2—C18—C17122.03 (9)
C6—C7—C8120.47 (12)C19—C18—C17119.90 (9)
C6—C7—H7119.8C18—C19—C20119.79 (9)
C8—C7—H7119.8C18—C19—H19120.1
C9—C8—C7120.00 (11)C20—C19—H19120.1
C9—C8—H8120.0C15—C20—C19121.29 (9)
C7—C8—H8120.0C15—C20—H20119.4
C8—C9—C10121.26 (11)C19—C20—H20119.4
C8—C9—H9119.4C1—N1—H1N117.9 (9)
C10—C9—H9119.4C1—N1—H2N119.1 (9)
C11—C10—C9121.63 (10)H1N—N1—H2N122.1 (13)
C11—C10—C5119.39 (10)C1—O1—C13118.57 (8)
C9—C10—C5118.98 (11)C18—O2—H2O109.9 (11)
N1—C1—C2—C144.87 (16)C9—C10—C11—C12178.64 (10)
O1—C1—C2—C14173.97 (9)C5—C10—C11—C120.69 (16)
N1—C1—C2—C3174.55 (9)C10—C11—C12—C130.47 (17)
O1—C1—C2—C36.61 (15)C5—C4—C13—O1179.02 (9)
C1—C2—C3—C418.81 (13)C3—C4—C13—O12.51 (15)
C14—C2—C3—C4161.78 (9)C5—C4—C13—C121.68 (15)
C1—C2—C3—C15104.97 (10)C3—C4—C13—C12176.79 (9)
C14—C2—C3—C1574.44 (11)C11—C12—C13—C40.76 (16)
C2—C3—C4—C1316.41 (12)C11—C12—C13—O1179.88 (9)
C15—C3—C4—C13106.56 (10)C4—C3—C15—C20134.98 (10)
C2—C3—C4—C5165.16 (8)C2—C3—C15—C20102.93 (10)
C15—C3—C4—C571.87 (11)C4—C3—C15—C1648.65 (12)
C13—C4—C5—C6178.20 (9)C2—C3—C15—C1673.44 (11)
C3—C4—C5—C63.33 (14)C20—C15—C16—C170.56 (14)
C13—C4—C5—C101.40 (14)C3—C15—C16—C17177.04 (9)
C3—C4—C5—C10177.07 (9)C15—C16—C17—C180.08 (15)
C10—C5—C6—C70.61 (15)C16—C17—C18—O2179.34 (9)
C4—C5—C6—C7178.99 (10)C16—C17—C18—C190.85 (15)
C5—C6—C7—C81.03 (16)O2—C18—C19—C20179.21 (9)
C6—C7—C8—C90.84 (17)C17—C18—C19—C200.97 (16)
C7—C8—C9—C100.24 (17)C16—C15—C20—C190.45 (15)
C8—C9—C10—C11179.16 (10)C3—C15—C20—C19176.91 (9)
C8—C9—C10—C50.17 (16)C18—C19—C20—C150.31 (16)
C6—C5—C10—C11179.35 (9)N1—C1—O1—C13169.17 (8)
C4—C5—C10—C110.26 (14)C2—C1—O1—C139.84 (14)
C6—C5—C10—C90.01 (14)C4—C13—O1—C112.00 (14)
C4—C5—C10—C9179.60 (9)C12—C13—O1—C1168.63 (9)
Hydrogen-bond geometry (Å, º) top
Cg3 and Cg4 are the centroids of the C5–C10 and C15–C20 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.90 (1)2.03 (1)2.9191 (12)173 (1)
O2—H2O···N2ii0.89 (1)1.86 (1)2.7403 (12)175 (2)
N1—H2N···Cg4iii0.88 (1)2.55 (1)3.2340 (11)135 (1)
C11—H11···Cg3iv0.952.973.7610 (13)142
Symmetry codes: (i) x, y, z+1; (ii) x+1, y1/2, z+3/2; (iii) x+1, y+1, z+2; (iv) x, y1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
Cg3 and Cg4 are the centroids of the C5–C10 and C15–C20 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.896 (12)2.029 (12)2.9191 (12)172.7 (13)
O2—H2O···N2ii0.885 (13)1.858 (14)2.7403 (12)174.9 (16)
N1—H2N···Cg4iii0.883 (12)2.547 (14)3.2340 (11)135.2 (11)
C11—H11···Cg3iv0.952.973.7610 (13)142
Symmetry codes: (i) x, y, z+1; (ii) x+1, y1/2, z+3/2; (iii) x+1, y+1, z+2; (iv) x, y1/2, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds