Download citation
Download citation
link to html
A mononuclear square-planar CuII complex was synthesized by reacting 5-methyl-3-pyrazolamine and copper(II) acetate in water under ambient conditions. Di­ethano­lamine was added to facilitate carbon dioxide adsorption, creating an alkaline environment. Structural analysis revealed that the complex crystallizes in the P21/c space group of the monoclinic crystal system, with the central copper(II) atom in a square-planar coordination environment N2O2. Co-crystallized water mol­ecules are present, forming O—H...O hydrogen bonds with the CuII mononuclear complex. Hirshfeld surface analysis highlighted the importance of various inter­actions, including H...O/O...H, H...C/C...H, and H...N/N...H, in providing crystal structure packing.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2056989023008575/tx2076sup1.cif
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2056989023008575/tx2076Isup2.hkl
Contains datablock I

CCDC reference: 2298123

Computing details top

Data collection: CrysAlis PRO 1.171.42.93a (Rigaku OD, 2023); cell refinement: CrysAlis PRO 1.171.42.93a (Rigaku OD, 2023); data reduction: CrysAlis PRO 1.171.42.93a (Rigaku OD, 2023); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015b); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015a); molecular graphics: Olex2 1.5 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 1.5 (Dolomanov et al., 2009).

Bis[N-(5-methyl-1H-pyrazol-3-yl-κN2)carbamato-κO]copper(II) tetrahydrate top
Crystal data top
[Cu(C5H6N3O2)2]·4H2OF(000) = 430
Mr = 415.86Dx = 1.675 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 8.4623 (2) ÅCell parameters from 2285 reflections
b = 5.64870 (16) Åθ = 5.1–72.3°
c = 17.4536 (4) ŵ = 2.39 mm1
β = 98.786 (2)°T = 200 K
V = 824.51 (4) Å3Block, clear light violet
Z = 20.15 × 0.15 × 0.15 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
1401 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.042
ω scansθmax = 76.8°, θmin = 5.1°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2023)
h = 1010
Tmin = 0.638, Tmax = 1.000k = 64
5223 measured reflectionsl = 1622
1634 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0636P)2 + 0.4306P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1634 reflectionsΔρmax = 0.45 e Å3
116 parametersΔρmin = 0.57 e Å3
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.0000000.0000000.0000000.0327 (2)
O40.6601 (3)0.2829 (4)0.29517 (11)0.0518 (6)
H4D0.6631970.1604980.2651760.078*
H4E0.7337470.3770680.2829860.078*
N20.2338 (3)0.3798 (4)0.05018 (12)0.0354 (5)
H20.2531490.3260010.0980180.042*
N10.1348 (2)0.2716 (4)0.00870 (11)0.0331 (5)
N30.0507 (3)0.3550 (4)0.14235 (11)0.0362 (5)
H30.0591040.4550340.1801690.043*
O30.3513 (3)0.4313 (5)0.30719 (12)0.0567 (6)
H3A0.2804570.3349400.2829980.085*
H3B0.4427270.3658200.3031280.085*
C10.1376 (3)0.4090 (5)0.07052 (14)0.0327 (5)
C20.2365 (3)0.6047 (5)0.05156 (15)0.0368 (6)
H2A0.2573940.7298960.0849610.044*
C40.4112 (3)0.7265 (6)0.07931 (17)0.0455 (7)
H4A0.3889860.7077210.1324630.068*
H4B0.3980690.8930050.0639090.068*
H4C0.5210480.6762410.0766750.068*
C30.2977 (3)0.5781 (5)0.02590 (15)0.0360 (6)
C50.0462 (3)0.1642 (5)0.16088 (13)0.0339 (6)
O10.0677 (2)0.0130 (3)0.10968 (10)0.0391 (5)
O20.1152 (2)0.1456 (4)0.22973 (9)0.0400 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0378 (3)0.0405 (4)0.0182 (3)0.0035 (2)0.0012 (2)0.0008 (2)
O40.0577 (12)0.0586 (14)0.0355 (10)0.0059 (11)0.0042 (9)0.0031 (9)
N20.0403 (11)0.0409 (13)0.0228 (10)0.0015 (10)0.0020 (8)0.0030 (9)
N10.0363 (11)0.0417 (12)0.0200 (9)0.0032 (9)0.0003 (8)0.0016 (9)
N30.0442 (12)0.0438 (13)0.0196 (9)0.0015 (10)0.0016 (8)0.0031 (9)
O30.0618 (14)0.0628 (14)0.0418 (12)0.0098 (12)0.0036 (10)0.0008 (11)
C10.0341 (12)0.0392 (14)0.0245 (11)0.0040 (11)0.0036 (9)0.0001 (11)
C20.0393 (13)0.0412 (15)0.0296 (12)0.0004 (12)0.0046 (10)0.0009 (11)
C40.0419 (14)0.0491 (18)0.0435 (15)0.0032 (13)0.0004 (12)0.0085 (13)
C30.0352 (12)0.0391 (14)0.0336 (13)0.0027 (11)0.0048 (10)0.0041 (12)
C50.0409 (13)0.0417 (14)0.0187 (11)0.0064 (12)0.0031 (9)0.0000 (10)
O10.0478 (11)0.0465 (12)0.0205 (9)0.0065 (8)0.0028 (8)0.0009 (7)
O20.0491 (10)0.0501 (11)0.0183 (8)0.0039 (9)0.0026 (7)0.0022 (8)
Geometric parameters (Å, º) top
Cu1—N11.931 (2)N3—C51.363 (4)
Cu1—N1i1.931 (2)O3—H3A0.8697
Cu1—O11.9140 (17)O3—H3B0.8700
Cu1—O1i1.9140 (17)C1—C21.396 (4)
O4—H4D0.8701C2—H2A0.9500
O4—H4E0.8698C2—C31.380 (4)
N2—H20.8800C4—H4A0.9800
N2—N11.367 (3)C4—H4B0.9800
N2—C31.341 (4)C4—H4C0.9800
N1—C11.333 (3)C4—C31.490 (4)
N3—H30.8800C5—O11.269 (3)
N3—C11.387 (3)C5—O21.258 (3)
N1i—Cu1—N1180.0N1—C1—C2110.7 (2)
O1i—Cu1—N1i88.92 (8)N3—C1—C2127.2 (2)
O1i—Cu1—N191.08 (8)C1—C2—H2A127.2
O1—Cu1—N188.92 (8)C3—C2—C1105.5 (2)
O1—Cu1—N1i91.08 (8)C3—C2—H2A127.2
O1—Cu1—O1i180.0H4A—C4—H4B109.5
H4D—O4—H4E104.5H4A—C4—H4C109.5
N1—N2—H2124.3H4B—C4—H4C109.5
C3—N2—H2124.3C3—C4—H4A109.5
C3—N2—N1111.5 (2)C3—C4—H4B109.5
N2—N1—Cu1126.70 (16)C3—C4—H4C109.5
C1—N1—Cu1127.60 (17)N2—C3—C2107.0 (2)
C1—N1—N2105.3 (2)N2—C3—C4121.7 (2)
C1—N3—H3116.4C2—C3—C4131.4 (3)
C5—N3—H3116.4O1—C5—N3120.7 (2)
C5—N3—C1127.2 (2)O2—C5—N3117.9 (2)
H3A—O3—H3B104.5O2—C5—O1121.4 (3)
N1—C1—N3122.1 (2)C5—O1—Cu1132.59 (17)
Cu1—N1—C1—N37.3 (4)C1—N3—C5—O11.3 (4)
Cu1—N1—C1—C2172.53 (18)C1—N3—C5—O2179.9 (2)
N2—N1—C1—N3179.7 (2)C1—C2—C3—N21.3 (3)
N2—N1—C1—C20.4 (3)C1—C2—C3—C4179.3 (3)
N1—N2—C3—C21.1 (3)C3—N2—N1—Cu1173.46 (18)
N1—N2—C3—C4179.4 (2)C3—N2—N1—C10.5 (3)
N1—C1—C2—C31.1 (3)C5—N3—C1—N10.0 (4)
N3—C1—C2—C3179.1 (3)C5—N3—C1—C2179.9 (3)
N3—C5—O1—Cu15.3 (4)O2—C5—O1—Cu1173.44 (18)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4D···O3ii0.871.802.664 (3)171
O4—H4E···O1iii0.872.442.930 (3)116
O4—H4E···O2iii0.872.022.873 (3)167
N2—H2···O4iv0.881.992.863 (3)169
N3—H3···O2v0.882.022.889 (3)169
O3—H3A···O20.871.892.756 (3)176
O3—H3B···O40.871.922.783 (3)169
C2—H2A···O3v0.952.433.340 (4)159
Symmetry codes: (ii) x+1, y1/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x1, y+1/2, z1/2; (v) x, y+1/2, z+1/2.
Selected bond lengths and bond angles (Å, °) top
Cu1—O11.9140 (17)Cu1—N11.931 (2)
N1i—Cu1—N1180.0O1—Cu1—N1i91.08 (8)
O1—Cu1—N188.92 (8)N2—N1—Cu1126.70 (16)
Symmetry codes: (i) -x, -y, -z
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds