Download citation
Download citation
link to html
Cd2(PO4)OH and Cd5(PO4)2(OH)4 crystallize in the mineral structures of triplite and arsenoclasite, respectively.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2056989024000793/tx2081sup1.cif
Contains datablocks CdPO4OH, Cd5PO42OH2, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2056989024000793/tx2081CdPO4OHsup2.hkl
Contains datablock CdPO4OH

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2056989024000793/tx2081Cd5PO42OH2sup3.hkl
Contains datablock Cd5PO42OH2

CCDC references: 2327315; 2327314

Computing details top

Dicadmium orthophosphate hydroxide (CdPO4OH) top
Crystal data top
Cd2(PO4)OHF(000) = 1216
Mr = 336.78Dx = 5.267 Mg m3
Monoclinic, I2/aMo Kα radiation, λ = 0.71073 Å
a = 12.4307 (13) ÅCell parameters from 1272 reflections
b = 6.6910 (6) Åθ = 3.4–25.8°
c = 10.7087 (10) ŵ = 10.30 mm1
β = 107.506 (3)°T = 296 K
V = 849.43 (14) Å3Block, colourless
Z = 80.10 × 0.08 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
1026 reflections with I > 2σ(I)
ω– and φ–scanRint = 0.065
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 32.1°, θmin = 3.4°
Tmin = 0.600, Tmax = 0.746h = 1818
7833 measured reflectionsk = 99
1477 independent reflectionsl = 1515
Refinement top
Refinement on F280 parameters
Least-squares matrix: full0 restraints
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + (0.0267P)2 + 36.2119P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.100(Δ/σ)max < 0.001
S = 1.03Δρmax = 2.91 e Å3
1477 reflectionsΔρmin = 3.55 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.20094 (5)0.00573 (10)0.19098 (6)0.01905 (15)
Cd20.10811 (8)0.15931 (10)0.44546 (7)0.0293 (2)
P10.07732 (19)0.6694 (3)0.3759 (2)0.0151 (4)
O1A0.123 (2)0.856 (3)0.469 (2)0.028 (3)0.349 (18)
O1B0.0590 (13)0.8402 (17)0.4621 (11)0.028 (3)0.651 (18)
O2A0.970 (8)0.592 (15)0.297 (10)0.040 (7)0.349 (18)
O2B0.958 (4)0.640 (7)0.287 (5)0.040 (7)0.651 (18)
O30.1538 (6)0.7093 (10)0.2916 (7)0.0299 (16)
O40.1231 (6)0.4933 (10)0.4698 (6)0.0261 (14)
OH0.2574 (6)0.1685 (10)0.3799 (6)0.0265 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0173 (3)0.0217 (3)0.0184 (3)0.0027 (3)0.0058 (2)0.0029 (3)
Cd20.0639 (6)0.0122 (3)0.0167 (3)0.0014 (3)0.0197 (3)0.0001 (3)
P10.0196 (11)0.0113 (8)0.0157 (9)0.0003 (8)0.0072 (8)0.0014 (8)
O1A0.043 (8)0.017 (4)0.025 (4)0.009 (6)0.012 (6)0.004 (3)
O1B0.043 (8)0.017 (4)0.025 (4)0.009 (6)0.012 (6)0.004 (3)
O2A0.011 (10)0.08 (2)0.029 (9)0.002 (11)0.000 (8)0.033 (12)
O2B0.011 (10)0.08 (2)0.029 (9)0.002 (11)0.000 (8)0.033 (12)
O30.019 (4)0.030 (4)0.046 (4)0.002 (3)0.019 (3)0.014 (3)
O40.041 (4)0.018 (3)0.020 (3)0.007 (3)0.011 (3)0.005 (3)
OH0.040 (4)0.023 (3)0.014 (3)0.009 (3)0.003 (3)0.003 (3)
Geometric parameters (Å, º) top
Cd1—O3i2.224 (7)Cd2—O42.251 (7)
Cd1—OH2.256 (6)Cd2—O2Bii2.38 (5)
Cd1—O2Aii2.26 (10)Cd2—O2Aii2.52 (9)
Cd1—O4iii2.275 (6)Cd2—O1Bvi2.556 (14)
Cd1—O2Bii2.28 (5)Cd2—Cd2v3.3659 (18)
Cd1—O3iv2.350 (6)P1—O2Avii1.44 (11)
Cd1—OHi2.484 (7)P1—O2Bvii1.51 (5)
Cd1—Cd2iii3.4339 (9)P1—O31.519 (7)
Cd1—Cd23.4453 (10)P1—O1B1.528 (11)
Cd2—O1Aiv2.05 (2)P1—O41.542 (7)
Cd2—OHv2.101 (6)P1—O1A1.59 (2)
Cd2—OH2.174 (7)O1A—O1B0.78 (2)
Cd2—O1Biv2.242 (12)
O3i—Cd1—OH102.4 (3)O1Biv—Cd2—Cd2v104.7 (4)
O3i—Cd1—O2Aii158 (3)O4—Cd2—Cd2v85.30 (18)
OH—Cd1—O2Aii81.1 (17)O2Bii—Cd2—Cd2v111.2 (12)
O3i—Cd1—O4iii100.9 (3)O2Aii—Cd2—Cd2v113 (2)
OH—Cd1—O4iii146.6 (2)O1Bvi—Cd2—Cd2v139.0 (3)
O2Aii—Cd1—O4iii86 (3)O1Aiv—Cd2—Cd1viii125.3 (6)
O3i—Cd1—O2Bii163.9 (15)OHv—Cd2—Cd1viii45.93 (19)
OH—Cd1—O2Bii74.4 (8)OH—Cd2—Cd1viii96.04 (17)
O2Aii—Cd1—O2Bii9 (2)O1Biv—Cd2—Cd1viii128.2 (3)
O4iii—Cd1—O2Bii89.0 (13)O4—Cd2—Cd1viii40.91 (16)
O3i—Cd1—O3iv76.9 (2)O2Bii—Cd2—Cd1viii140.2 (11)
OH—Cd1—O3iv93.5 (3)O2Aii—Cd2—Cd1viii148 (2)
O2Aii—Cd1—O3iv81 (3)O1Bvi—Cd2—Cd1viii80.1 (3)
O4iii—Cd1—O3iv114.9 (3)Cd2v—Cd2—Cd1viii70.04 (2)
O2Bii—Cd1—O3iv87.5 (14)O1Aiv—Cd2—Cd175.0 (7)
O3i—Cd1—OHi110.1 (2)OHv—Cd2—Cd1110.3 (2)
OH—Cd1—OHi76.5 (2)OH—Cd2—Cd139.81 (17)
O2Aii—Cd1—OHi92 (3)O1Biv—Cd2—Cd185.5 (3)
O4iii—Cd1—OHi73.2 (2)O4—Cd2—Cd1111.95 (16)
O2Bii—Cd1—OHi84.8 (13)O2Bii—Cd2—Cd141.3 (12)
O3iv—Cd1—OHi168.8 (2)O2Aii—Cd2—Cd141 (2)
O3i—Cd1—Cd2iii123.70 (17)O1Bvi—Cd2—Cd1144.2 (3)
OH—Cd1—Cd2iii106.25 (17)Cd2v—Cd2—Cd173.08 (3)
O2Aii—Cd1—Cd2iii75 (3)Cd1viii—Cd2—Cd1134.96 (3)
O4iii—Cd1—Cd2iii40.40 (16)O2Avii—P1—O2Bvii14 (4)
O2Bii—Cd1—Cd2iii71.9 (16)O2Avii—P1—O3110 (4)
O3iv—Cd1—Cd2iii145.72 (17)O2Bvii—P1—O3108 (2)
OHi—Cd1—Cd2iii37.43 (15)O2Avii—P1—O1B110 (5)
O3i—Cd1—Cd2125.92 (19)O2Bvii—P1—O1B101 (2)
OH—Cd1—Cd238.11 (19)O3—P1—O1B117.5 (6)
O2Aii—Cd1—Cd247 (2)O2Avii—P1—O4102 (3)
O4iii—Cd1—Cd2132.32 (18)O2Bvii—P1—O4114.4 (14)
O2Bii—Cd1—Cd243.4 (12)O3—P1—O4110.3 (4)
O3iv—Cd1—Cd273.04 (18)O1B—P1—O4105.7 (5)
OHi—Cd1—Cd295.77 (14)O2Avii—P1—O1A138 (4)
Cd2iii—Cd1—Cd2105.90 (2)O2Bvii—P1—O1A126 (2)
O1Aiv—Cd2—OHv84.3 (7)O3—P1—O1A93.8 (10)
O1Aiv—Cd2—OH90.8 (8)O1B—P1—O1A29.0 (8)
OHv—Cd2—OH76.1 (3)O4—P1—O1A101.5 (9)
O1Aiv—Cd2—O1Biv20.4 (7)O1B—O1A—P171 (2)
OHv—Cd2—O1Biv96.9 (4)O1B—O1A—Cd2ix94 (2)
OH—Cd2—O1Biv109.4 (4)P1—O1A—Cd2ix134.3 (14)
O1Aiv—Cd2—O4165.7 (7)O1A—O1B—P180 (2)
OHv—Cd2—O481.5 (2)O1A—O1B—Cd2ix66 (2)
OH—Cd2—O487.7 (2)P1—O1B—Cd2ix124.8 (7)
O1Biv—Cd2—O4162.0 (4)O1A—O1B—Cd2vi152 (2)
O1Aiv—Cd2—O2Bii93.8 (13)P1—O1B—Cd2vi121.4 (8)
OHv—Cd2—O2Bii150.0 (12)Cd2ix—O1B—Cd2vi107.6 (4)
OH—Cd2—O2Bii74.0 (12)P1x—O2A—Cd1xi142 (7)
O1Biv—Cd2—O2Bii90.9 (11)P1x—O2A—Cd2xi123 (5)
O4—Cd2—O2Bii99.5 (12)Cd1xi—O2A—Cd2xi92 (3)
O1Aiv—Cd2—O2Aii87 (3)P1x—O2B—Cd1xi135 (2)
OHv—Cd2—O2Aii151 (2)P1x—O2B—Cd2xi128 (3)
OH—Cd2—O2Aii77 (2)Cd1xi—O2B—Cd2xi95.3 (19)
O1Biv—Cd2—O2Aii83 (2)P1—O3—Cd1i118.7 (4)
O4—Cd2—O2Aii107 (2)P1—O3—Cd1ix134.6 (4)
O2Bii—Cd2—O2Aii8 (3)Cd1i—O3—Cd1ix103.1 (2)
O1Aiv—Cd2—O1Bvi90.4 (8)P1—O4—Cd2133.0 (4)
OHv—Cd2—O1Bvi100.2 (3)P1—O4—Cd1viii127.5 (4)
OH—Cd2—O1Bvi175.9 (3)Cd2—O4—Cd1viii98.7 (2)
O1Biv—Cd2—O1Bvi72.4 (4)Cd2v—OH—Cd2103.8 (3)
O4—Cd2—O1Bvi90.2 (3)Cd2v—OH—Cd1137.1 (3)
O2Bii—Cd2—O1Bvi109.8 (12)Cd2—OH—Cd1102.1 (3)
O2Aii—Cd2—O1Bvi107 (2)Cd2v—OH—Cd1i96.6 (3)
O1Aiv—Cd2—Cd2v84.9 (8)Cd2—OH—Cd1i113.6 (3)
OHv—Cd2—Cd2v38.84 (19)Cd1—OH—Cd1i103.5 (2)
OH—Cd2—Cd2v37.31 (16)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x, y1, z; (v) x+1/2, y, z+1; (vi) x, y+1, z+1; (vii) x1, y, z; (viii) x, y+1/2, z+1/2; (ix) x, y+1, z; (x) x+1, y, z; (xi) x+1, y+1/2, z+1/2.
Pentacadmium bis(orthophosphate) tetrakis(hydroxide) (Cd5PO42OH2) top
Crystal data top
Cd5(PO4)2(OH)4Dx = 5.279 Mg m3
Mr = 819.97Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 2236 reflections
a = 5.8901 (4) Åθ = 3.9–33.6°
b = 9.3455 (6) ŵ = 10.51 mm1
c = 18.7423 (13) ÅT = 296 K
V = 1031.69 (12) Å3Block, colourless
Z = 40.11 × 0.07 × 0.04 mm
F(000) = 1480
Data collection top
Bruker APEXII CCD
diffractometer
3588 reflections with I > 2σ(I)
ω– and φ–scanRint = 0.051
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 35.0°, θmin = 2.2°
Tmin = 0.517, Tmax = 0.747h = 99
10057 measured reflectionsk = 1411
4493 independent reflectionsl = 2830
Refinement top
Refinement on F2H-atom parameters not defined
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0115P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.039(Δ/σ)max < 0.001
wR(F2) = 0.059Δρmax = 1.53 e Å3
S = 0.97Δρmin = 1.76 e Å3
4493 reflectionsAbsolute structure: Flack x determined using 1284 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
172 parametersAbsolute structure parameter: 0.03 (4)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.05007 (11)0.10420 (7)0.52815 (3)0.01113 (12)
Cd20.05248 (11)0.37573 (7)0.37637 (4)0.01083 (12)
Cd30.08667 (9)0.49327 (7)0.17892 (4)0.01161 (13)
Cd40.56114 (11)0.34489 (7)0.27458 (3)0.01154 (12)
Cd50.76352 (10)0.25492 (7)0.06812 (4)0.01085 (12)
P10.3047 (3)0.1745 (2)0.12271 (13)0.0081 (4)
P20.3795 (3)0.0690 (2)0.37363 (13)0.0084 (4)
O10.0817 (9)0.2510 (7)0.1450 (3)0.0120 (12)
O20.1169 (10)0.7316 (6)0.2081 (3)0.0111 (12)
O30.2013 (10)0.0034 (7)0.4260 (3)0.0130 (12)
O40.2237 (11)0.5202 (7)0.4556 (3)0.0126 (13)
O50.2489 (11)0.4695 (6)0.2841 (3)0.0117 (12)
O60.2772 (10)0.0109 (7)0.1297 (4)0.0126 (12)
O70.2995 (10)0.0217 (7)0.2992 (3)0.0146 (13)
O80.3482 (10)0.2500 (7)0.5450 (3)0.0130 (12)
O90.3680 (11)0.2095 (7)0.0458 (3)0.0128 (13)
O100.3790 (9)0.2340 (7)0.3772 (3)0.0113 (12)
O110.3843 (10)0.5159 (7)0.1066 (3)0.0134 (13)
O120.5088 (9)0.2213 (7)0.1688 (3)0.0115 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0100 (2)0.0129 (3)0.0104 (3)0.0005 (2)0.0002 (2)0.0010 (2)
Cd20.0097 (2)0.0114 (3)0.0114 (3)0.0002 (2)0.0002 (2)0.0006 (2)
Cd30.0107 (2)0.0103 (3)0.0139 (3)0.0001 (2)0.0008 (2)0.0001 (3)
Cd40.0108 (2)0.0135 (3)0.0103 (3)0.0018 (2)0.0004 (2)0.0008 (2)
Cd50.0124 (2)0.0096 (3)0.0105 (3)0.0012 (2)0.0008 (2)0.0005 (3)
P10.0085 (8)0.0067 (10)0.0090 (10)0.0001 (7)0.0006 (7)0.0002 (9)
P20.0078 (8)0.0085 (10)0.0089 (10)0.0015 (7)0.0008 (7)0.0013 (9)
O10.008 (2)0.012 (3)0.016 (3)0.002 (3)0.000 (2)0.004 (3)
O20.011 (2)0.007 (3)0.015 (3)0.003 (2)0.002 (2)0.003 (3)
O30.015 (3)0.007 (3)0.016 (3)0.003 (2)0.006 (2)0.001 (3)
O40.013 (3)0.012 (3)0.013 (3)0.000 (2)0.003 (2)0.002 (3)
O50.016 (3)0.006 (3)0.013 (3)0.001 (2)0.001 (2)0.006 (2)
O60.016 (3)0.007 (3)0.016 (3)0.003 (3)0.004 (2)0.000 (3)
O70.017 (3)0.020 (4)0.007 (3)0.004 (3)0.001 (2)0.005 (3)
O80.016 (3)0.012 (3)0.011 (3)0.001 (3)0.002 (2)0.001 (3)
O90.013 (3)0.017 (4)0.008 (3)0.001 (2)0.000 (2)0.000 (3)
O100.007 (2)0.010 (3)0.016 (3)0.004 (2)0.001 (2)0.004 (3)
O110.011 (2)0.015 (3)0.015 (3)0.003 (2)0.001 (2)0.001 (3)
O120.010 (3)0.011 (3)0.014 (3)0.000 (2)0.003 (2)0.004 (3)
Geometric parameters (Å, º) top
Cd1—O82.245 (7)Cd4—O2v2.196 (6)
Cd1—O4i2.267 (6)Cd4—O7vi2.305 (6)
Cd1—O8i2.269 (6)Cd4—O122.315 (6)
Cd1—O32.312 (6)Cd4—O102.434 (6)
Cd1—O6ii2.412 (7)Cd4—O6vi2.555 (6)
Cd1—O10i2.540 (6)Cd5—O4v2.240 (7)
Cd2—O8i2.236 (6)Cd5—O9vii2.247 (6)
Cd2—O42.246 (6)Cd5—O3vi2.334 (6)
Cd2—O52.258 (6)Cd5—O1viii2.364 (6)
Cd2—O2iii2.306 (6)Cd5—O92.405 (6)
Cd2—O6iv2.319 (6)Cd5—O122.432 (6)
Cd2—O102.335 (6)P1—O91.524 (6)
Cd3—O52.202 (6)P1—O61.543 (7)
Cd3—O112.226 (6)P1—O121.544 (6)
Cd3—O22.300 (6)P1—O11.553 (6)
Cd3—O7iv2.327 (6)P2—O11v1.523 (6)
Cd3—O12.351 (6)P2—O71.538 (7)
Cd3—O3iv2.599 (6)P2—O101.543 (7)
Cd4—O52.184 (6)P2—O31.562 (6)
O8—Cd1—O4i162.9 (2)O3vi—Cd5—O1viii85.2 (2)
O8—Cd1—O8i97.50 (11)O4v—Cd5—O979.9 (2)
O4i—Cd1—O8i86.8 (2)O9vii—Cd5—O997.25 (17)
O8—Cd1—O393.6 (2)O3vi—Cd5—O9105.6 (2)
O4i—Cd1—O3103.2 (2)O1viii—Cd5—O9150.6 (2)
O8i—Cd1—O386.9 (2)O4v—Cd5—O1292.8 (2)
O8—Cd1—O6ii80.2 (2)O9vii—Cd5—O12157.8 (2)
O4i—Cd1—O6ii91.3 (2)O3vi—Cd5—O1298.4 (2)
O8i—Cd1—O6ii165.0 (2)O1viii—Cd5—O1290.79 (19)
O3—Cd1—O6ii108.0 (2)O9—Cd5—O1260.93 (19)
O8—Cd1—O10i81.4 (2)O9—P1—O6108.6 (4)
O4i—Cd1—O10i82.8 (2)O9—P1—O12106.2 (3)
O8i—Cd1—O10i81.8 (2)O6—P1—O12108.3 (3)
O3—Cd1—O10i166.9 (2)O9—P1—O1111.3 (4)
O6ii—Cd1—O10i83.2 (2)O6—P1—O1110.2 (3)
O8i—Cd2—O497.0 (2)O12—P1—O1112.2 (3)
O8i—Cd2—O5169.9 (2)O11v—P2—O7114.0 (4)
O4—Cd2—O592.5 (2)O11v—P2—O10108.5 (3)
O8i—Cd2—O2iii85.0 (2)O7—P2—O10109.0 (4)
O4—Cd2—O2iii178.0 (2)O11v—P2—O3109.5 (4)
O5—Cd2—O2iii85.6 (2)O7—P2—O3104.6 (4)
O8i—Cd2—O6iv82.4 (2)O10—P2—O3111.3 (4)
O4—Cd2—O6iv94.7 (2)P1—O1—Cd3120.4 (3)
O5—Cd2—O6iv100.3 (2)P1—O1—Cd5ix120.9 (3)
O2iii—Cd2—O6iv85.5 (2)Cd3—O1—Cd5ix99.2 (2)
O8i—Cd2—O1098.1 (2)Cd4vi—O2—Cd3124.7 (3)
O4—Cd2—O1088.1 (2)Cd4vi—O2—Cd2iv101.1 (2)
O5—Cd2—O1078.7 (2)Cd3—O2—Cd2iv111.7 (2)
O2iii—Cd2—O1091.7 (2)P2—O3—Cd1128.3 (4)
O6iv—Cd2—O10177.1 (2)P2—O3—Cd5v111.1 (3)
O5—Cd3—O11102.3 (2)Cd1—O3—Cd5v113.6 (3)
O5—Cd3—O281.4 (2)P2—O3—Cd3iii88.7 (3)
O11—Cd3—O289.5 (2)Cd1—O3—Cd3iii113.0 (2)
O5—Cd3—O7iv106.1 (2)Cd5v—O3—Cd3iii93.3 (2)
O11—Cd3—O7iv150.1 (2)Cd5vi—O4—Cd2118.2 (3)
O2—Cd3—O7iv85.6 (2)Cd5vi—O4—Cd1x120.0 (3)
O5—Cd3—O198.6 (2)Cd2—O4—Cd1x99.3 (3)
O11—Cd3—O186.4 (2)Cd4—O5—Cd3110.2 (3)
O2—Cd3—O1175.8 (2)Cd4—O5—Cd2106.7 (2)
O7iv—Cd3—O198.4 (2)Cd3—O5—Cd2120.2 (3)
O5—Cd3—O3iv164.7 (2)P1—O6—Cd2iii128.6 (3)
O11—Cd3—O3iv92.9 (2)P1—O6—Cd1xi109.3 (3)
O2—Cd3—O3iv101.2 (2)Cd2iii—O6—Cd1xi94.1 (2)
O7iv—Cd3—O3iv59.42 (19)P1—O6—Cd4v128.5 (3)
O1—Cd3—O3iv79.8 (2)Cd2iii—O6—Cd4v90.9 (2)
O5—Cd4—O2v166.4 (2)Cd1xi—O6—Cd4v97.2 (2)
O5—Cd4—O7vi88.1 (2)P2—O7—Cd4v129.9 (4)
O2v—Cd4—O7vi97.3 (2)P2—O7—Cd3iii99.9 (3)
O5—Cd4—O12102.9 (2)Cd4v—O7—Cd3iii111.8 (3)
O2v—Cd4—O1290.1 (2)Cd2x—O8—Cd1101.2 (3)
O7vi—Cd4—O1283.8 (2)Cd2x—O8—Cd1x115.6 (3)
O5—Cd4—O1078.0 (2)Cd1—O8—Cd1x133.6 (3)
O2v—Cd4—O1093.3 (2)P1—O9—Cd5xii149.7 (4)
O7vi—Cd4—O10159.4 (2)P1—O9—Cd596.3 (3)
O12—Cd4—O10113.9 (2)Cd5xii—O9—Cd5113.8 (3)
O5—Cd4—O6vi86.1 (2)P2—O10—Cd2124.6 (3)
O2v—Cd4—O6vi82.4 (2)P2—O10—Cd4113.0 (3)
O7vi—Cd4—O6vi81.5 (2)Cd2—O10—Cd496.7 (2)
O12—Cd4—O6vi162.5 (2)P2—O10—Cd1x128.6 (3)
O10—Cd4—O6vi82.4 (2)Cd2—O10—Cd1x89.6 (2)
O4v—Cd5—O9vii87.0 (2)Cd4—O10—Cd1x97.1 (2)
O4v—Cd5—O3vi168.8 (2)P2vi—O11—Cd3127.1 (4)
O9vii—Cd5—O3vi82.7 (2)P1—O12—Cd4136.4 (3)
O4v—Cd5—O1viii94.6 (2)P1—O12—Cd594.7 (3)
O9vii—Cd5—O1viii111.4 (2)Cd4—O12—Cd5121.2 (2)
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1/2, y, z+1/2; (iii) x, y1/2, z+1/2; (iv) x, y+1/2, z+1/2; (v) x+1, y1/2, z+1/2; (vi) x+1, y+1/2, z+1/2; (vii) x+1/2, y+1/2, z; (viii) x+1, y, z; (ix) x1, y, z; (x) x+1/2, y+1/2, z+1; (xi) x+1/2, y, z1/2; (xii) x1/2, y+1/2, z.
Comparison of bond lengths (Å) in the isotypic M5(XO4)2(OH)4 structures (M = Cd, Mn, Co; X = P, As, V) after standardization, and parameters of structural comparison with Cd5(PO4)2(OH)4 as the reference structure. top
Cd5(PO4)2(OH)4Mn5(AsO4)2(OH)4aMn5(PO4)2(OH)4bCo5(PO4)2(OH)4cCd5(VO4)2(OH)4d
M1—O82.245 (7)2.192.1562.0632.295 (4)
M1—O4i2.267 (6)2.252.1932.1322.317 (4)
M1—O8i2.269 (6)2.172.1572.0502.271 (4)
M1—O32.312 (6)2.202.2142.2072.287 (3)
M1—O6ii2.412 (7)2.312.2992.1622.378 (4)
M1—O10i2.540 (6)2.352.4072.2502.408 (3)
M2—O8i2.236 (6)2.192.1532.1062.244 (4)
M2—O42.246 (6)2.132.1312.0472.2469 (4)
M2—O52.258 (6)2.192.1662.1072.265 (4)
M2—O2iii2.306 (6)2.182.1812.0612.293 (4)
M2—O6iv2.319 (6)2.192.2292.1712.321 (3)
M2—O102.335 (6)2.252.2442.1522.329 (3)
M3—O52.202 (6)2.072.0761.9982.193 (3)
M3—O112.226 (6)2.062.0761.9832.212 (3)
M3—O22.300 (6)2.262.2252.2322.302 (4)
M3—O7iv2.327 (6)2.132.1792.0852.268 (4)
M3—O12.351 (6)2.312.2932.1942.325 (3)
M3—O3iv2.599 (6)2.692.5832.4102.849 (4)
M4—O52.184 (6)2.152.1072.0292.241 (4)
M4—O2v2.196 (6)2.142.1162.0312.252 (3)
M4—O7vi2.305 (6)2.182.1732.0782.282 (3)
M4—O122.315 (6)2.222.2102.1702.302 (3)
M4—O102.434 (6)2.292.3282.1942.365 (4)
M4—O6vi2.555 (6)2.362.4532.3402.413 (4)
M5—O4v2.240 (7)2.172.1652.1102.245 (4)
M5—O9vii2.247 (6)2.092.0982.0292.256 (4)
M5—O3vi2.334 (6)2.322.2972.2602.299 (4)
M5—O1viii2.364 (6)2.192.2332.0922.287 (3)
M5—O92.405 (6)2.192.2592.1142.381 (4)
M5—O122.432 (6)2.432.3842.2812.642 (4)
X1—O91.524 (6)1.721.5471.5371.698 (3)
X1—O61.543 (7)1.721.5541.5471.741 (4)
X1—O121.544 (6)1.651.5281.5451.695 (4)
X1—O11.553 (6)1.681.5391.5521.749 (3)
X2—O11v1.523 (6)1.651.5271.5191.688 (3)
X2—O71.538 (7)1.671.5401.5461.721 (3)
X2—O101.543 (7)1.671.5441.5451.731 (4)
X2—O31.562 (6)1.681.5421.5551.733 (4)
S0.01180.01990.03940.0106
dmax0.30330.12320.26130.2351
dav0.13780.05980.11230.1264
Δ0.0440.0130.0260.100
quotient X:M of ionic radii0.1780.4040.2050.2280.374
Notes: (a) Lattice parameter after standardization: a = 5.75 (1), b = 9.31 (2), c = 18.29 (2) Å, V = 979.1 Å3. (b) Lattice parameters after standardization: a = 5.6923 (6), b = 9.110 (1), c = 18.032 (4) Å, V = 935.1 Å3. (c) Lattice parameters after standardization: a = 5.5154 (4), b = 8.903 (2), c = 17.397 (2) Å, V = 854.3 Å3. (d) Lattice parameters after standardization: a = 6.0133 (12), b = 9.5411 (19) Å, c = 19.011 (4) Å, V = 1090.7 (4) Å3. Symmetry codes: (i) x - 1/2, -y + 1/2, -z + 1; (ii) -x + 1/2, -y, z + 1/2; (iii) -x, y - 1/2, -z + 1/2; (iv) -x, y + 1/2, -z + 1/2; (v) -x + 1, y - 1/2, -z + 1/2; (vi) -x + 1, y + 1/2, -z + 1/2; (vii) x + 1/2, -y + 1/2, -z; (viii) x + 1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds