Download citation
Download citation
link to html
Nylon 5T is one of the bio-based nylons, its raw material 1,5-pentanedi­amine is derived from biomass resources and produced by biological methods. 1,5-pentanedi­amine-terephthalate (PDA-TPA) is the monomeric salt for nylon 5T polymerization, and its own product quality has a significant impact on the performance of nylon 5T. PDA-TPA was prepared by anti-solvent crystallization in this study. It exists in two solid forms, a monohydrate [form (I)] and an anhydrous phase [form (II)]. The transition temperature of the two phases was around 65°C in the given ethanol–water binary (7:1) mixture. The characterization of monohydrate and anhydrate phases regarding structures and stabilities was carefully carried out using powder X-ray diffraction, single crystal X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, hot-stage microscopy and Fourier transform infrared spectroscopy. The relationship between the molecular interactions of monohydrate and anhydrate phases under different packing architectures and their thermal behaviours was analysed and established. In addition, the relationships between the structures and thermal behaviours for the two solid forms were analysed and established. In addition, the effect of solvent on phase conversion, the relationships between the temperature and water activity, as well as the relative stability of monohydrate and anhydrate phases under different thermodynamic conditions, were investigated by solid–solid transformation and solvent-mediated transformation experiments. It was obvious that the transition temperature of monohydrate and anhydrate phases of PDA-TPA was significantly influenced by water activity, and the larger the value of water activity is, the higher is the transition temperature. These studies give insight into the transformation of nylon 5T monomer salt and contribute to the control of target crystal preparation.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052520620006265/um5041sup1.cif
Contains datablocks global, monohydrate, anhydrate

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520620006265/um5041monohydratesup2.hkl
Contains datablock monohydrate

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520620006265/um5041anhydratesup3.hkl
Contains datablock anhydrate

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2052520620006265/um5041sup4.pdf
Figs. S1-S3 and Table S1

CCDC references: 1899182; 1899184

Computing details top

For both structures, program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2018).

(monohydrate) top
Crystal data top
C13H22N2O5F(000) = 616
Mr = 286.32Dx = 1.325 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.8441 (8) ÅCell parameters from 2154 reflections
b = 10.8561 (9) Åθ = 2.4–28.1°
c = 13.5205 (12) ŵ = 0.10 mm1
β = 96.728 (2)°T = 298 K
V = 1435.0 (2) Å3Rod-like, colorless
Z = 40.48 × 0.36 × 0.17 mm
Data collection top
CCD area detector
diffractometer
1801 reflections with I > 2σ(I)
phi and ω scansRint = 0.065
Absorption correction: multi-scan
sadabs
θmax = 25.0°, θmin = 2.4°
Tmin = 0.953, Tmax = 0.983h = 1111
6997 measured reflectionsk = 1212
2515 independent reflectionsl = 1611
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.046 w = 1/[σ2(Fo2) + (0.0646P)2 + 0.0978P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.136(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.21 e Å3
2515 reflectionsΔρmin = 0.19 e Å3
184 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.014 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.79690 (16)0.54433 (14)0.30729 (11)0.0365 (4)
H1A0.8645540.5984190.3203810.055*
H1B0.7437990.5673000.2525780.055*
H1C0.8317390.4701710.2978860.055*
N20.81872 (17)0.57151 (15)0.85960 (11)0.0399 (4)
H2A0.8751890.5072940.8672050.060*
H2B0.7686930.5744220.9102750.060*
H2C0.8671660.6405670.8581410.060*
O10.39717 (15)0.35598 (14)0.17397 (9)0.0518 (4)
O20.28756 (14)0.37527 (13)0.03982 (10)0.0458 (4)
O30.89483 (14)0.29767 (13)0.26860 (10)0.0458 (4)
O40.99995 (13)0.23208 (12)0.14114 (10)0.0430 (4)
O50.97146 (14)0.89919 (13)0.63201 (11)0.0526 (4)
H5C0.8907750.8837430.6052820.063*
H5D1.0045250.8343030.6606620.063*
C10.3927 (2)0.35649 (17)0.08193 (14)0.0349 (5)
C20.8971 (2)0.27269 (17)0.17855 (15)0.0343 (5)
C30.52488 (19)0.33143 (16)0.01584 (13)0.0302 (5)
C40.6468 (2)0.31181 (16)0.05503 (14)0.0345 (5)
H40.6479260.3115360.1237100.041*
C50.7668 (2)0.29263 (17)0.00693 (14)0.0351 (5)
H50.8480150.2796760.0204750.042*
C60.76748 (19)0.29249 (15)0.10928 (13)0.0298 (4)
C70.6460 (2)0.30956 (19)0.14847 (14)0.0376 (5)
H70.6445680.3085020.2171170.045*
C80.5260 (2)0.32830 (19)0.08613 (14)0.0389 (5)
H80.4444620.3389830.1135900.047*
C90.7148 (2)0.53949 (19)0.39211 (13)0.0396 (5)
H9A0.6588650.4657010.3865240.048*
H9B0.6538860.6099770.3886740.048*
C100.8010 (2)0.53936 (18)0.49115 (13)0.0386 (5)
H10A0.8588550.6119780.4959990.046*
H10B0.8601350.4675970.4953530.046*
C110.7166 (2)0.53799 (18)0.57810 (14)0.0381 (5)
H11A0.6516590.6055300.5710520.046*
H11B0.6652780.4616420.5772500.046*
C120.8061 (2)0.54981 (19)0.67682 (14)0.0407 (5)
H12A0.8664340.4789880.6854360.049*
H12B0.8627770.6226960.6749830.049*
C130.7269 (2)0.5585 (2)0.76455 (14)0.0423 (5)
H13A0.6660250.6289420.7562250.051*
H13B0.6713470.4851410.7675560.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0375 (9)0.0389 (9)0.0316 (9)0.0017 (8)0.0015 (7)0.0006 (7)
N20.0418 (10)0.0420 (10)0.0362 (10)0.0026 (8)0.0049 (8)0.0004 (8)
O10.0554 (10)0.0666 (10)0.0298 (8)0.0121 (8)0.0095 (7)0.0010 (7)
O20.0334 (8)0.0625 (10)0.0389 (8)0.0047 (7)0.0073 (6)0.0074 (7)
O30.0443 (9)0.0529 (9)0.0365 (8)0.0097 (7)0.0105 (6)0.0068 (7)
O40.0329 (8)0.0435 (8)0.0516 (9)0.0082 (7)0.0005 (7)0.0001 (7)
O50.0385 (9)0.0540 (9)0.0610 (10)0.0073 (7)0.0119 (7)0.0129 (8)
C10.0423 (12)0.0290 (10)0.0308 (11)0.0007 (9)0.0071 (9)0.0022 (9)
C20.0351 (12)0.0281 (10)0.0381 (12)0.0001 (9)0.0019 (9)0.0022 (9)
C30.0368 (11)0.0255 (10)0.0267 (10)0.0002 (8)0.0030 (8)0.0008 (8)
C40.0443 (12)0.0346 (11)0.0244 (10)0.0010 (9)0.0032 (8)0.0013 (9)
C50.0341 (11)0.0355 (11)0.0366 (11)0.0014 (9)0.0074 (9)0.0009 (9)
C60.0330 (11)0.0245 (9)0.0308 (11)0.0008 (8)0.0012 (8)0.0007 (8)
C70.0384 (12)0.0493 (12)0.0242 (10)0.0037 (10)0.0006 (8)0.0009 (9)
C80.0308 (11)0.0543 (13)0.0311 (11)0.0051 (10)0.0014 (8)0.0023 (10)
C90.0371 (11)0.0449 (12)0.0364 (11)0.0042 (10)0.0020 (9)0.0039 (10)
C100.0405 (12)0.0401 (12)0.0346 (11)0.0010 (9)0.0022 (9)0.0010 (9)
C110.0413 (12)0.0344 (11)0.0384 (11)0.0033 (9)0.0034 (9)0.0036 (9)
C120.0417 (12)0.0432 (12)0.0368 (12)0.0026 (10)0.0028 (9)0.0011 (10)
C130.0403 (12)0.0515 (13)0.0344 (11)0.0022 (10)0.0010 (9)0.0051 (10)
Geometric parameters (Å, º) top
N1—C91.479 (2)C5—C61.383 (2)
N1—H1A0.8900C5—H50.9300
N1—H1B0.8900C6—C71.376 (3)
N1—H1C0.8900C7—C81.384 (3)
N2—C131.488 (2)C7—H70.9300
N2—H2A0.8900C8—H80.9300
N2—H2B0.8900C9—C101.499 (3)
N2—H2C0.8900C9—H9A0.9700
O1—C11.250 (2)C9—H9B0.9700
O2—C11.255 (2)C10—C111.517 (3)
O3—C21.250 (2)C10—H10A0.9700
O4—C21.263 (2)C10—H10B0.9700
O5—H5C0.8500C11—C121.516 (3)
O5—H5D0.8501C11—H11A0.9700
C1—C31.514 (3)C11—H11B0.9700
C2—C61.507 (3)C12—C131.497 (3)
C3—C81.378 (3)C12—H12A0.9700
C3—C41.384 (2)C12—H12B0.9700
C4—C51.382 (3)C13—H13A0.9700
C4—H40.9300C13—H13B0.9700
C9—N1—H1A109.5C3—C8—C7121.27 (18)
C9—N1—H1B109.5C3—C8—H8119.4
H1A—N1—H1B109.5C7—C8—H8119.4
C9—N1—H1C109.5N1—C9—C10112.89 (16)
H1A—N1—H1C109.5N1—C9—H9A109.0
H1B—N1—H1C109.5C10—C9—H9A109.0
C13—N2—H2A109.5N1—C9—H9B109.0
C13—N2—H2B109.5C10—C9—H9B109.0
H2A—N2—H2B109.5H9A—C9—H9B107.8
C13—N2—H2C109.5C9—C10—C11112.82 (17)
H2A—N2—H2C109.5C9—C10—H10A109.0
H2B—N2—H2C109.5C11—C10—H10A109.0
H5C—O5—H5D108.6C9—C10—H10B109.0
O1—C1—O2125.40 (18)C11—C10—H10B109.0
O1—C1—C3117.29 (18)H10A—C10—H10B107.8
O2—C1—C3117.31 (17)C12—C11—C10111.49 (17)
O3—C2—O4124.92 (18)C12—C11—H11A109.3
O3—C2—C6117.62 (17)C10—C11—H11A109.3
O4—C2—C6117.45 (17)C12—C11—H11B109.3
C8—C3—C4118.28 (17)C10—C11—H11B109.3
C8—C3—C1120.02 (17)H11A—C11—H11B108.0
C4—C3—C1121.69 (17)C13—C12—C11113.57 (17)
C5—C4—C3120.63 (17)C13—C12—H12A108.9
C5—C4—H4119.7C11—C12—H12A108.9
C3—C4—H4119.7C13—C12—H12B108.9
C4—C5—C6120.66 (17)C11—C12—H12B108.9
C4—C5—H5119.7H12A—C12—H12B107.7
C6—C5—H5119.7N2—C13—C12111.74 (17)
C7—C6—C5118.87 (18)N2—C13—H13A109.3
C7—C6—C2119.38 (17)C12—C13—H13A109.3
C5—C6—C2121.74 (17)N2—C13—H13B109.3
C6—C7—C8120.26 (18)C12—C13—H13B109.3
C6—C7—H7119.9H13A—C13—H13B107.9
C8—C7—H7119.9
O1—C1—C3—C8178.70 (18)O3—C2—C6—C5166.22 (17)
O2—C1—C3—C80.9 (3)O4—C2—C6—C513.8 (3)
O1—C1—C3—C41.6 (3)C5—C6—C7—C80.9 (3)
O2—C1—C3—C4178.82 (17)C2—C6—C7—C8179.78 (18)
C8—C3—C4—C51.6 (3)C4—C3—C8—C71.8 (3)
C1—C3—C4—C5178.13 (17)C1—C3—C8—C7177.89 (18)
C3—C4—C5—C60.1 (3)C6—C7—C8—C30.6 (3)
C4—C5—C6—C71.2 (3)N1—C9—C10—C11178.40 (16)
C4—C5—C6—C2179.56 (17)C9—C10—C11—C12174.74 (17)
O3—C2—C6—C714.5 (3)C10—C11—C12—C13175.64 (17)
O4—C2—C6—C7165.48 (17)C11—C12—C13—N2179.31 (16)
(anhydrate) top
Crystal data top
C13H20N2O4Z = 2
Mr = 268.31F(000) = 288
Triclinic, P1Dx = 1.259 Mg m3
a = 8.2881 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.5302 (8) ÅCell parameters from 893 reflections
c = 10.6708 (11) Åθ = 2.4–26.6°
α = 113.460 (4)°µ = 0.09 mm1
β = 105.990 (3)°T = 298 K
γ = 99.162 (2)°Block-like, colorless
V = 707.87 (12) Å30.46 × 0.40 × 0.37 mm
Data collection top
CCD area detector
diffractometer
1412 reflections with I > 2σ(I)
phi and ω scansRint = 0.026
Absorption correction: multi-scan
sadabs
θmax = 25.0°, θmin = 2.4°
Tmin = 0.958, Tmax = 0.966h = 95
3533 measured reflectionsk = 1111
2449 independent reflectionsl = 1112
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.139 w = 1/[σ2(Fo2) + (0.057P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2449 reflectionsΔρmax = 0.18 e Å3
174 parametersΔρmin = 0.30 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.9161 (3)0.7792 (2)0.0280 (2)0.0432 (6)
H1A0.9341860.8798310.0932720.065*
H1B0.8708830.7677000.0627320.065*
H1C1.0180760.7571820.0413120.065*
N20.7035 (3)0.1756 (2)0.1711 (2)0.0436 (6)
H2A0.6554320.1791470.0872650.065*
H2B0.6352420.0932120.1707700.065*
H2C0.8096600.1635370.1797380.065*
O10.0156 (2)0.1062 (2)0.2303 (2)0.0524 (5)
O20.2469 (3)0.2868 (3)0.2601 (2)0.0795 (7)
O30.7572 (2)0.2511 (2)0.8799 (2)0.0563 (6)
O40.5216 (3)0.0999 (2)0.87532 (19)0.0562 (6)
C10.1755 (4)0.1933 (3)0.2973 (3)0.0442 (7)
C20.5984 (4)0.1717 (3)0.8210 (3)0.0371 (6)
C30.2849 (3)0.1845 (3)0.4310 (3)0.0352 (6)
C40.2153 (4)0.0800 (3)0.4766 (3)0.0433 (7)
H40.0995210.0133630.4231890.052*
C50.3146 (3)0.0731 (3)0.5997 (3)0.0410 (7)
H50.2647290.0022980.6283330.049*
C60.4879 (3)0.1703 (3)0.6816 (2)0.0326 (6)
C70.5580 (3)0.2742 (3)0.6351 (3)0.0398 (6)
H70.6746620.3389230.6869390.048*
C80.4569 (3)0.2826 (3)0.5129 (3)0.0404 (7)
H80.5053740.3553330.4854480.049*
C90.7922 (4)0.6680 (3)0.0481 (3)0.0468 (7)
H9A0.7396850.5666950.0418580.056*
H9B0.6982230.7124670.0650360.056*
C100.8777 (4)0.6370 (3)0.1738 (3)0.0440 (7)
H10A0.9259880.7376110.2644120.053*
H10B0.9746880.5964930.1588990.053*
C110.7520 (4)0.5184 (3)0.1897 (3)0.0447 (7)
H11A0.6935940.4225820.0953150.054*
H11B0.6622390.5645590.2152030.054*
C120.8387 (4)0.4705 (3)0.3050 (3)0.0471 (7)
H12A0.9443310.4464840.2924900.057*
H12B0.8739290.5606700.4019910.057*
C130.7204 (4)0.3270 (3)0.2968 (3)0.0509 (8)
H13A0.7679880.3208960.3876800.061*
H13B0.6045950.3401850.2867220.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0411 (14)0.0446 (12)0.0450 (13)0.0108 (11)0.0105 (11)0.0263 (10)
N20.0383 (14)0.0464 (12)0.0465 (13)0.0049 (11)0.0071 (11)0.0308 (11)
O10.0426 (13)0.0513 (11)0.0515 (12)0.0130 (10)0.0002 (10)0.0248 (9)
O20.0694 (16)0.0987 (16)0.0679 (14)0.0034 (13)0.0019 (12)0.0654 (14)
O30.0345 (12)0.0813 (14)0.0550 (13)0.0154 (11)0.0093 (10)0.0394 (11)
O40.0586 (14)0.0570 (11)0.0477 (12)0.0006 (10)0.0046 (10)0.0363 (10)
C10.0453 (19)0.0464 (16)0.0365 (16)0.0135 (15)0.0043 (14)0.0226 (14)
C20.0416 (18)0.0378 (14)0.0344 (15)0.0140 (13)0.0108 (14)0.0208 (12)
C30.0376 (16)0.0344 (13)0.0323 (14)0.0120 (12)0.0101 (13)0.0160 (11)
C40.0357 (16)0.0401 (14)0.0435 (16)0.0010 (12)0.0029 (13)0.0212 (13)
C50.0434 (17)0.0360 (13)0.0397 (15)0.0023 (13)0.0067 (13)0.0233 (12)
C60.0345 (15)0.0332 (13)0.0298 (13)0.0121 (12)0.0100 (12)0.0149 (11)
C70.0285 (15)0.0529 (15)0.0360 (14)0.0059 (12)0.0075 (12)0.0242 (12)
C80.0383 (17)0.0480 (15)0.0405 (15)0.0096 (13)0.0129 (14)0.0283 (13)
C90.0410 (17)0.0484 (15)0.0542 (18)0.0119 (13)0.0152 (14)0.0293 (14)
C100.0440 (17)0.0420 (14)0.0435 (16)0.0088 (13)0.0120 (14)0.0222 (13)
C110.0464 (18)0.0423 (14)0.0522 (17)0.0165 (13)0.0207 (14)0.0257 (13)
C120.0549 (19)0.0428 (15)0.0419 (16)0.0122 (14)0.0162 (14)0.0204 (13)
C130.057 (2)0.0579 (17)0.0464 (17)0.0168 (15)0.0233 (15)0.0298 (15)
Geometric parameters (Å, º) top
N1—C91.477 (3)C5—H50.9300
N1—H1A0.8900C6—C71.389 (3)
N1—H1B0.8900C7—C81.383 (3)
N1—H1C0.8900C7—H70.9300
N2—C131.480 (3)C8—H80.9300
N2—H2A0.8900C9—C101.499 (3)
N2—H2B0.8900C9—H9A0.9700
N2—H2C0.8900C9—H9B0.9700
O1—C11.269 (3)C10—C111.506 (3)
O2—C11.243 (3)C10—H10A0.9700
O3—C21.244 (3)C10—H10B0.9700
O4—C21.261 (3)C11—C121.517 (3)
C1—C31.508 (3)C11—H11A0.9700
C2—C61.511 (3)C11—H11B0.9700
C3—C81.382 (3)C12—C131.507 (3)
C3—C41.385 (3)C12—H12A0.9700
C4—C51.377 (4)C12—H12B0.9700
C4—H40.9300C13—H13A0.9700
C5—C61.388 (3)C13—H13B0.9700
C9—N1—H1A109.5C3—C8—C7120.9 (2)
C9—N1—H1B109.5C3—C8—H8119.6
H1A—N1—H1B109.5C7—C8—H8119.6
C9—N1—H1C109.5N1—C9—C10113.2 (2)
H1A—N1—H1C109.5N1—C9—H9A108.9
H1B—N1—H1C109.5C10—C9—H9A108.9
C13—N2—H2A109.5N1—C9—H9B108.9
C13—N2—H2B109.5C10—C9—H9B108.9
H2A—N2—H2B109.5H9A—C9—H9B107.7
C13—N2—H2C109.5C9—C10—C11112.9 (2)
H2A—N2—H2C109.5C9—C10—H10A109.0
H2B—N2—H2C109.5C11—C10—H10A109.0
O2—C1—O1123.9 (2)C9—C10—H10B109.0
O2—C1—C3118.0 (2)C11—C10—H10B109.0
O1—C1—C3118.1 (2)H10A—C10—H10B107.8
O3—C2—O4123.9 (2)C10—C11—C12114.1 (2)
O3—C2—C6118.2 (2)C10—C11—H11A108.7
O4—C2—C6117.8 (2)C12—C11—H11A108.7
C8—C3—C4118.2 (2)C10—C11—H11B108.7
C8—C3—C1120.7 (2)C12—C11—H11B108.7
C4—C3—C1121.1 (2)H11A—C11—H11B107.6
C5—C4—C3121.1 (2)C13—C12—C11113.2 (2)
C5—C4—H4119.4C13—C12—H12A108.9
C3—C4—H4119.4C11—C12—H12A108.9
C4—C5—C6121.0 (2)C13—C12—H12B108.9
C4—C5—H5119.5C11—C12—H12B108.9
C6—C5—H5119.5H12A—C12—H12B107.7
C5—C6—C7117.9 (2)N2—C13—C12111.7 (2)
C5—C6—C2122.6 (2)N2—C13—H13A109.3
C7—C6—C2119.5 (2)C12—C13—H13A109.3
C8—C7—C6121.0 (2)N2—C13—H13B109.3
C8—C7—H7119.5C12—C13—H13B109.3
C6—C7—H7119.5H13A—C13—H13B107.9
O2—C1—C3—C82.7 (4)O3—C2—C6—C79.3 (3)
O1—C1—C3—C8176.6 (2)O4—C2—C6—C7166.7 (2)
O2—C1—C3—C4178.3 (3)C5—C6—C7—C81.3 (4)
O1—C1—C3—C42.4 (4)C2—C6—C7—C8176.2 (2)
C8—C3—C4—C50.3 (4)C4—C3—C8—C71.4 (4)
C1—C3—C4—C5179.3 (2)C1—C3—C8—C7179.6 (2)
C3—C4—C5—C60.3 (4)C6—C7—C8—C32.0 (4)
C4—C5—C6—C70.2 (4)N1—C9—C10—C11177.7 (2)
C4—C5—C6—C2177.2 (2)C9—C10—C11—C12173.6 (2)
O3—C2—C6—C5173.4 (2)C10—C11—C12—C13167.5 (2)
O4—C2—C6—C510.7 (3)C11—C12—C13—N275.2 (3)
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds