research papers
Si(111) wafers patterned with an array of vertical 100 µm-wide Al-doped (1 × 1019 cm−3) p-channels extending through the whole wafer were studied by X-ray Laue diffraction techniques. The X-ray techniques included projection topography, and measurement of rocking curves and cross sections in the vicinity of the 02 reciprocal space node in the double- and triple-crystal geometry, respectively. The channels are uniform along the depth of the wafer, and their structural perfection is comparable to that of the silicon matrix between the channels. Simulation of the rocking curves was performed using the methods of the dynamical theory of X-ray diffraction. The rocking-curve calculations both taking into account and neglecting the effect of the instrumental function were carried out using the Takagi–Taupin equations. The calculated angular dependences of intensities of both diffracted and transmitted X-rays correspond well to the experimentally obtained rocking curves and demonstrate their high sensitivity to the structural distortions in the channel. An unambiguous reconstruction of strain and structural distortions in the Si(Al) channel using the Laue diffraction data requires further development of the theoretical model.