Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536810037736/vm2043sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S1600536810037736/vm2043Isup2.hkl |
CCDC reference: 797677
Key indicators
- Single-crystal X-ray study
- T = 120 K
- Mean (C-C) = 0.002 Å
- R factor = 0.025
- wR factor = 0.064
- Data-to-parameter ratio = 10.8
checkCIF/PLATON results
No syntax errors found
Alert level C PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ..... 5 PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.595 4 PLAT042_ALERT_1_C Calc. and Reported MoietyFormula Strings Differ ? PLAT480_ALERT_4_C Long H...A H-Bond Reported H22A .. N4 .. 2.68 Ang.
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check
A solution of pyzdcH2 (0.60 mmol, 0.10 g), ampym (1.2 mmol, 0.13 g), and CoCl2.6H2O (0.02 mmol, 0.05 g) at 333 K lead to formation of (ampymH)2[Co(pyzdc)2(H2O)2].6H2O orange block crystals after slow evaporation of solvent at room temperature.
Carbon and nitrogen bound hydrogen atoms were positioned geometrically and refined as riding using standard SHELXTL constraints, with their Uiso set to either 1.2Ueq or 1.5Ueq (methyl) of their parent atoms. The C-H distances were set to 0.95 and 0.98 \%A for aromatic and methyl groups, respectively, the N-H distances used were 0.88 \%A. Oxygen bound hydrogen atoms were located in a difference Fourier map and refined isotropically.
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Crystal Impact, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).
(C5H8N3)2[Co(C6H2N2O4)2(H2O)2]·6H2O | Z = 1 |
Mr = 755.54 | F(000) = 393 |
Triclinic, P1 | Dx = 1.601 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.5880 (4) Å | Cell parameters from 4417 reflections |
b = 8.0591 (5) Å | θ = 3.1–27.6° |
c = 15.0285 (8) Å | µ = 0.64 mm−1 |
α = 98.085 (5)° | T = 120 K |
β = 96.940 (4)° | Plate, pale orange |
γ = 91.261 (5)° | 0.40 × 0.40 × 0.20 mm |
V = 783.58 (8) Å3 |
Oxford Diffraction Xcalibur diffractometer with Sapphire2 (large Be window) detector | 2758 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 2428 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.011 |
Detector resolution: 8.4353 pixels mm-1 | θmax = 25.0°, θmin = 3.1° |
ω scan | h = −7→7 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) | k = −9→9 |
Tmin = 0.903, Tmax = 1.000 | l = −17→17 |
5733 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.025 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.064 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0279P)2 + 0.458P] where P = (Fo2 + 2Fc2)/3 |
2758 reflections | (Δ/σ)max < 0.001 |
256 parameters | Δρmax = 0.30 e Å−3 |
0 restraints | Δρmin = −0.40 e Å−3 |
(C5H8N3)2[Co(C6H2N2O4)2(H2O)2]·6H2O | γ = 91.261 (5)° |
Mr = 755.54 | V = 783.58 (8) Å3 |
Triclinic, P1 | Z = 1 |
a = 6.5880 (4) Å | Mo Kα radiation |
b = 8.0591 (5) Å | µ = 0.64 mm−1 |
c = 15.0285 (8) Å | T = 120 K |
α = 98.085 (5)° | 0.40 × 0.40 × 0.20 mm |
β = 96.940 (4)° |
Oxford Diffraction Xcalibur diffractometer with Sapphire2 (large Be window) detector | 2758 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) | 2428 reflections with I > 2σ(I) |
Tmin = 0.903, Tmax = 1.000 | Rint = 0.011 |
5733 measured reflections |
R[F2 > 2σ(F2)] = 0.025 | 0 restraints |
wR(F2) = 0.064 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.30 e Å−3 |
2758 reflections | Δρmin = −0.40 e Å−3 |
256 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Co2 | 0.5000 | 0.5000 | 0.5000 | 0.01426 (11) | |
O1 | 0.58615 (17) | 0.62856 (14) | 0.25548 (7) | 0.0143 (3) | |
O2 | 0.62546 (18) | 0.51362 (15) | 0.38308 (8) | 0.0167 (3) | |
O3 | 0.33723 (18) | 0.93937 (14) | 0.19964 (8) | 0.0163 (3) | |
O4 | 0.17222 (18) | 0.69382 (14) | 0.14483 (8) | 0.0144 (3) | |
O5 | 0.6551 (2) | 0.72932 (17) | 0.55885 (9) | 0.0201 (3) | |
H5A | 0.572 (4) | 0.793 (3) | 0.5817 (18) | 0.053 (8)* | |
H5B | 0.748 (4) | 0.733 (3) | 0.5952 (17) | 0.037 (8)* | |
N1 | 0.0477 (2) | 0.84612 (18) | 0.33031 (9) | 0.0150 (3) | |
N2 | 0.2829 (2) | 0.64620 (17) | 0.43486 (9) | 0.0136 (3) | |
N3 | 0.7241 (2) | 0.96452 (17) | −0.03740 (9) | 0.0115 (3) | |
H3A | 0.7142 | 1.0023 | −0.0898 | 0.014* | |
N4 | 0.7962 (2) | 1.02237 (18) | 0.12227 (9) | 0.0142 (3) | |
N5 | 0.8275 (2) | 1.23050 (17) | 0.03349 (9) | 0.0132 (3) | |
H5C | 0.8654 | 1.3024 | 0.0827 | 0.016* | |
H5D | 0.8193 | 1.2640 | −0.0201 | 0.016* | |
C1 | 0.3367 (2) | 0.6769 (2) | 0.35513 (11) | 0.0111 (3) | |
C2 | 0.2154 (3) | 0.7745 (2) | 0.30243 (11) | 0.0114 (3) | |
C3 | −0.0026 (3) | 0.8140 (2) | 0.40958 (11) | 0.0154 (4) | |
H3 | −0.1212 | 0.8619 | 0.4311 | 0.018* | |
C4 | 0.1129 (3) | 0.7127 (2) | 0.46163 (11) | 0.0150 (4) | |
H4 | 0.0704 | 0.6903 | 0.5171 | 0.018* | |
C5 | 0.5328 (2) | 0.6005 (2) | 0.32850 (11) | 0.0115 (4) | |
C6 | 0.2498 (2) | 0.8028 (2) | 0.20784 (11) | 0.0123 (4) | |
C7 | 0.7832 (2) | 1.0727 (2) | 0.03993 (11) | 0.0115 (4) | |
C8 | 0.7472 (3) | 0.8626 (2) | 0.12403 (12) | 0.0157 (4) | |
H8 | 0.7518 | 0.8251 | 0.1814 | 0.019* | |
C9 | 0.6893 (3) | 0.7459 (2) | 0.04676 (12) | 0.0158 (4) | |
H9 | 0.6572 | 0.6322 | 0.0514 | 0.019* | |
C10 | 0.6801 (2) | 0.7997 (2) | −0.03562 (12) | 0.0133 (4) | |
C11 | 0.6237 (3) | 0.6941 (2) | −0.12543 (12) | 0.0174 (4) | |
H11A | 0.7309 | 0.7070 | −0.1641 | 0.026* | |
H11B | 0.4936 | 0.7298 | −0.1542 | 0.026* | |
H11C | 0.6096 | 0.5762 | −0.1170 | 0.026* | |
O21 | 0.9070 (2) | 0.46146 (16) | 0.19544 (9) | 0.0162 (3) | |
O22 | 0.9951 (2) | 0.2292 (2) | 0.31495 (9) | 0.0216 (3) | |
O23 | 0.6098 (2) | 0.07554 (19) | 0.35418 (10) | 0.0228 (3) | |
H21A | 0.809 (4) | 0.516 (3) | 0.2147 (16) | 0.039 (7)* | |
H21B | 0.987 (4) | 0.530 (3) | 0.1837 (15) | 0.030 (6)* | |
H22A | 1.001 (4) | 0.142 (4) | 0.2846 (18) | 0.054 (9)* | |
H22B | 0.973 (4) | 0.300 (3) | 0.2803 (18) | 0.049 (8)* | |
H23A | 0.708 (4) | 0.136 (3) | 0.3438 (17) | 0.048 (8)* | |
H23B | 0.544 (4) | 0.039 (3) | 0.3088 (19) | 0.049 (9)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co2 | 0.01444 (19) | 0.0194 (2) | 0.01064 (18) | 0.00400 (14) | 0.00278 (13) | 0.00658 (13) |
O1 | 0.0159 (6) | 0.0177 (6) | 0.0109 (6) | 0.0020 (5) | 0.0042 (5) | 0.0054 (5) |
O2 | 0.0164 (6) | 0.0223 (7) | 0.0138 (6) | 0.0075 (5) | 0.0041 (5) | 0.0085 (5) |
O3 | 0.0210 (7) | 0.0146 (6) | 0.0137 (6) | −0.0042 (5) | −0.0001 (5) | 0.0054 (5) |
O4 | 0.0175 (6) | 0.0148 (6) | 0.0108 (6) | −0.0018 (5) | 0.0004 (5) | 0.0026 (5) |
O5 | 0.0173 (7) | 0.0245 (8) | 0.0181 (7) | 0.0034 (6) | 0.0006 (6) | 0.0024 (6) |
N1 | 0.0146 (7) | 0.0163 (8) | 0.0137 (7) | 0.0023 (6) | 0.0008 (6) | 0.0018 (6) |
N2 | 0.0142 (7) | 0.0164 (8) | 0.0105 (7) | 0.0000 (6) | 0.0017 (6) | 0.0027 (6) |
N3 | 0.0122 (7) | 0.0132 (7) | 0.0100 (7) | 0.0011 (6) | 0.0021 (6) | 0.0040 (6) |
N4 | 0.0136 (7) | 0.0171 (8) | 0.0127 (7) | 0.0004 (6) | 0.0016 (6) | 0.0054 (6) |
N5 | 0.0172 (8) | 0.0141 (8) | 0.0083 (7) | −0.0014 (6) | 0.0001 (6) | 0.0030 (6) |
C1 | 0.0128 (8) | 0.0110 (8) | 0.0095 (8) | −0.0017 (6) | 0.0006 (7) | 0.0019 (6) |
C2 | 0.0127 (8) | 0.0095 (8) | 0.0112 (8) | −0.0025 (6) | 0.0005 (7) | 0.0003 (6) |
C3 | 0.0141 (9) | 0.0179 (9) | 0.0139 (9) | 0.0023 (7) | 0.0028 (7) | 0.0002 (7) |
C4 | 0.0153 (9) | 0.0193 (9) | 0.0109 (8) | 0.0003 (7) | 0.0042 (7) | 0.0018 (7) |
C5 | 0.0128 (8) | 0.0101 (8) | 0.0113 (9) | −0.0009 (7) | 0.0003 (7) | 0.0011 (7) |
C6 | 0.0104 (8) | 0.0145 (9) | 0.0130 (9) | 0.0041 (7) | 0.0011 (7) | 0.0050 (7) |
C7 | 0.0067 (8) | 0.0162 (9) | 0.0120 (8) | 0.0019 (7) | 0.0019 (7) | 0.0028 (7) |
C8 | 0.0110 (8) | 0.0228 (10) | 0.0156 (9) | 0.0029 (7) | 0.0022 (7) | 0.0102 (7) |
C9 | 0.0130 (9) | 0.0140 (9) | 0.0217 (10) | 0.0004 (7) | 0.0023 (7) | 0.0071 (7) |
C10 | 0.0075 (8) | 0.0145 (9) | 0.0182 (9) | 0.0014 (7) | 0.0027 (7) | 0.0027 (7) |
C11 | 0.0189 (9) | 0.0145 (9) | 0.0185 (9) | 0.0009 (7) | 0.0032 (7) | 0.0006 (7) |
O21 | 0.0162 (7) | 0.0146 (7) | 0.0184 (7) | −0.0007 (6) | 0.0054 (5) | 0.0013 (5) |
O22 | 0.0257 (8) | 0.0183 (7) | 0.0198 (7) | 0.0030 (6) | 0.0000 (6) | 0.0018 (6) |
O23 | 0.0199 (8) | 0.0266 (8) | 0.0198 (8) | −0.0015 (6) | 0.0007 (6) | −0.0016 (6) |
Co2—O2i | 2.0455 (12) | N5—H5C | 0.8800 |
Co2—O2 | 2.0455 (12) | N5—H5D | 0.8800 |
Co2—N2i | 2.1101 (14) | C1—C2 | 1.390 (2) |
Co2—N2 | 2.1101 (14) | C1—C5 | 1.517 (2) |
Co2—O5i | 2.1167 (14) | C2—C6 | 1.513 (2) |
Co2—O5 | 2.1167 (14) | C3—C4 | 1.386 (2) |
O1—C5 | 1.240 (2) | C3—H3 | 0.9500 |
O2—C5 | 1.263 (2) | C4—H4 | 0.9500 |
O3—C6 | 1.259 (2) | C8—C9 | 1.396 (2) |
O4—C6 | 1.249 (2) | C8—H8 | 0.9500 |
O5—H5A | 0.83 (3) | C9—C10 | 1.363 (2) |
O5—H5B | 0.77 (3) | C9—H9 | 0.9500 |
N1—C3 | 1.332 (2) | C10—C11 | 1.492 (2) |
N1—C2 | 1.342 (2) | C11—H11A | 0.9800 |
N2—C4 | 1.334 (2) | C11—H11B | 0.9800 |
N2—C1 | 1.343 (2) | C11—H11C | 0.9800 |
N3—C10 | 1.358 (2) | O21—H21A | 0.85 (3) |
N3—C7 | 1.361 (2) | O21—H21B | 0.81 (2) |
N3—H3A | 0.8800 | O22—H22A | 0.79 (3) |
N4—C8 | 1.325 (2) | O22—H22B | 0.83 (3) |
N4—C7 | 1.349 (2) | O23—H23A | 0.85 (3) |
N5—C7 | 1.318 (2) | O23—H23B | 0.78 (3) |
O2i—Co2—O2 | 180.0 | C1—C2—C6 | 124.49 (15) |
O2i—Co2—N2i | 80.00 (5) | N1—C3—C4 | 121.94 (16) |
O2—Co2—N2i | 100.00 (5) | N1—C3—H3 | 119.0 |
O2i—Co2—N2 | 100.00 (5) | C4—C3—H3 | 119.0 |
O2—Co2—N2 | 80.00 (5) | N2—C4—C3 | 120.86 (16) |
N2i—Co2—N2 | 180.000 (1) | N2—C4—H4 | 119.6 |
O2i—Co2—O5i | 89.61 (5) | C3—C4—H4 | 119.6 |
O2—Co2—O5i | 90.39 (5) | O1—C5—O2 | 126.40 (15) |
N2i—Co2—O5i | 86.62 (6) | O1—C5—C1 | 117.16 (14) |
N2—Co2—O5i | 93.38 (6) | O2—C5—C1 | 116.44 (14) |
O2i—Co2—O5 | 90.39 (5) | O4—C6—O3 | 126.31 (15) |
O2—Co2—O5 | 89.61 (5) | O4—C6—C2 | 116.05 (14) |
N2i—Co2—O5 | 93.38 (6) | O3—C6—C2 | 117.32 (14) |
N2—Co2—O5 | 86.62 (6) | N5—C7—N4 | 119.64 (15) |
O5i—Co2—O5 | 180.00 (7) | N5—C7—N3 | 118.68 (15) |
C5—O2—Co2 | 116.20 (10) | N4—C7—N3 | 121.68 (15) |
Co2—O5—H5A | 108.8 (19) | N4—C8—C9 | 124.00 (16) |
Co2—O5—H5B | 121.8 (18) | N4—C8—H8 | 118.0 |
H5A—O5—H5B | 105 (3) | C9—C8—H8 | 118.0 |
C3—N1—C2 | 116.87 (15) | C10—C9—C8 | 118.16 (16) |
C4—N2—C1 | 118.22 (14) | C10—C9—H9 | 120.9 |
C4—N2—Co2 | 130.55 (12) | C8—C9—H9 | 120.9 |
C1—N2—Co2 | 111.19 (11) | N3—C10—C9 | 117.89 (15) |
C10—N3—C7 | 121.63 (14) | N3—C10—C11 | 116.07 (15) |
C10—N3—H3A | 119.2 | C9—C10—C11 | 126.04 (16) |
C7—N3—H3A | 119.2 | C10—C11—H11A | 109.5 |
C8—N4—C7 | 116.59 (15) | C10—C11—H11B | 109.5 |
C7—N5—H5C | 120.0 | H11A—C11—H11B | 109.5 |
C7—N5—H5D | 120.0 | C10—C11—H11C | 109.5 |
H5C—N5—H5D | 120.0 | H11A—C11—H11C | 109.5 |
N2—C1—C2 | 120.13 (15) | H11B—C11—H11C | 109.5 |
N2—C1—C5 | 116.11 (14) | H21A—O21—H21B | 106 (2) |
C2—C1—C5 | 123.75 (14) | H22A—O22—H22B | 107 (3) |
N1—C2—C1 | 121.91 (15) | H23A—O23—H23B | 110 (3) |
N1—C2—C6 | 113.51 (14) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···O3ii | 0.88 | 1.77 | 2.6487 (17) | 172 |
N5—H5C···O21iii | 0.88 | 1.96 | 2.8350 (18) | 172 |
N5—H5D···O4ii | 0.88 | 1.96 | 2.8310 (18) | 171 |
O21—H21B···O4iv | 0.81 (2) | 1.97 (3) | 2.7777 (18) | 175 (2) |
O21—H21A···O1 | 0.85 (3) | 1.86 (3) | 2.7093 (18) | 177 (2) |
O5—H5B···O22v | 0.77 (3) | 2.02 (3) | 2.784 (2) | 172 (2) |
O5—H5A···O23i | 0.83 (3) | 1.88 (3) | 2.706 (2) | 173 (3) |
O23—H23B···O3vi | 0.78 (3) | 2.06 (3) | 2.8302 (19) | 172 (3) |
O22—H22B···O21 | 0.83 (3) | 1.97 (3) | 2.794 (2) | 177 (3) |
O23—H23A···O22 | 0.85 (3) | 2.13 (3) | 2.959 (2) | 165 (2) |
O22—H22A···N1vii | 0.79 (3) | 2.59 (3) | 3.152 (2) | 130 (2) |
O22—H22A···N4vi | 0.79 (3) | 2.68 (3) | 3.242 (2) | 130 (2) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+2, −z; (iii) x, y+1, z; (iv) x+1, y, z; (v) −x+2, −y+1, −z+1; (vi) x, y−1, z; (vii) x+1, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | (C5H8N3)2[Co(C6H2N2O4)2(H2O)2]·6H2O |
Mr | 755.54 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 120 |
a, b, c (Å) | 6.5880 (4), 8.0591 (5), 15.0285 (8) |
α, β, γ (°) | 98.085 (5), 96.940 (4), 91.261 (5) |
V (Å3) | 783.58 (8) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.64 |
Crystal size (mm) | 0.40 × 0.40 × 0.20 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur diffractometer with Sapphire2 (large Be window) detector |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2009) |
Tmin, Tmax | 0.903, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5733, 2758, 2428 |
Rint | 0.011 |
(sin θ/λ)max (Å−1) | 0.594 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.025, 0.064, 1.04 |
No. of reflections | 2758 |
No. of parameters | 256 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.30, −0.40 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Crystal Impact, 2009), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···O3i | 0.88 | 1.77 | 2.6487 (17) | 172.0 |
N5—H5C···O21ii | 0.88 | 1.96 | 2.8350 (18) | 171.5 |
N5—H5D···O4i | 0.88 | 1.96 | 2.8310 (18) | 170.5 |
O21—H21B···O4iii | 0.81 (2) | 1.97 (3) | 2.7777 (18) | 175 (2) |
O21—H21A···O1 | 0.85 (3) | 1.86 (3) | 2.7093 (18) | 177 (2) |
O5—H5B···O22iv | 0.77 (3) | 2.02 (3) | 2.784 (2) | 172 (2) |
O5—H5A···O23v | 0.83 (3) | 1.88 (3) | 2.706 (2) | 173 (3) |
O23—H23B···O3vi | 0.78 (3) | 2.06 (3) | 2.8302 (19) | 172 (3) |
O22—H22B···O21 | 0.83 (3) | 1.97 (3) | 2.794 (2) | 177 (3) |
O23—H23A···O22 | 0.85 (3) | 2.13 (3) | 2.959 (2) | 165 (2) |
O22—H22A···N1vii | 0.79 (3) | 2.59 (3) | 3.152 (2) | 130 (2) |
O22—H22A···N4vi | 0.79 (3) | 2.68 (3) | 3.242 (2) | 130 (2) |
Symmetry codes: (i) −x+1, −y+2, −z; (ii) x, y+1, z; (iii) x+1, y, z; (iv) −x+2, −y+1, −z+1; (v) −x+1, −y+1, −z+1; (vi) x, y−1, z; (vii) x+1, y−1, z. |
Many organic aromatic ligands and metal ions may aggregate into supramolecular networks using coordination and hydrogen bonds and π –π stacking interactions. Metal pyrazine-(di)carboxylates may possess versatile structural motifs, which finally aggregate to various supramolecular architectures with interesting properties. For the first time, Takusagawa & Shimada (1973) determined the structure of pyzdcH2. Until now, several proton transfer compounds with pyzdcH2 have been synthesized by our research group such as, (ampyH)2[M(pyzdc)2(H2O)2].6H2O (M = Co (1), Cu, Zn and ampy = 2-amino-4-methyl pyridine) (Eshtiagh-Hosseini et al., 2010b,cd). Continuing our previous work on the syntheses of coordination compounds via proton transfer mechanism, we planned the reaction between pyzdcH2, ampym and cobaltII chloride in order to provide a new coordination compound containing a proton transfer ligand. The title compound, (ampymH)2[Co(pyzdcH)2(H2O)2].6H2O, is analogous to previously synthesized compound 1 in which ampy was replaced by ampym (Fig. 1). The equatorial plane is occupied by two (pyzdc)2- ligands coordinating through the pyrazine nitrogen and one oxygen of the deprotonated carboxylate groups. The two coordinated water molecules occupy the axial plane. This compound consists of an anionic moiety, trans-[Co(pyzdc)2(H2O)2]2- complex, counter-ions, (ampymH)+, and six uncoordinated water molecules. The Co—O and Co—N bond distances related to the (pyzdc)2- ligand are 2.0445 (12) Å, and 2.1086 (14) Å, respectively. The intermolecular forces between the anionic, cationic parts, and uncoordinated water molecules consist of hydrogen bonding interactions. The hydrogen bond interactions cause further stabilization for crystalline network using two types of graph-sets namely R22(8) and R46(12) (Fig. 2). Indeed, the arrangement of anionic parts in the network resulted in the creation of anionic holes for entering cationic parts; this arrangement results in off-set or slipped π -π stacking interactions with the distance of 3.6337 (9) Å between the centroids of the rings (Fig. 3). Moreover, six uncoordinated water molecules increase the number of hydrogen bonds in the crystalline network and lead to the formation of (H2O)n clusters throughout the crystalline network (Aghabozorg et al. 2010).