Download citation
Download citation
link to html
In the title compound, [Cd(C10H6NO2)2]n, the CdII atom is coordinated by three O atoms and two N atoms from four quinoline-3-carboxyl­ate (L) ligands, leading to a distorted trigonal–bipyramidal geometry. The L ligands link the CdII atoms into a plane parallel to (100), with one ligand being tridentate, coordinating via the N atom and chelating a second Cd atom, and the other being bidentate, bridging two Cd atoms via the N and one O atom.. This two-dimensional network extends into a double-layer network by π–π inter­actions, with centroid–centroid distances of 3.680 (2) and 3.752 (2) Å. Another type of π–π inter­action between pyridine rings [centroid–centroid distance = 3.527 (2) Å] leads to a three-dimensional supra­molecular architecture.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536812001031/vn2029sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536812001031/vn2029Isup2.hkl
Contains datablock I

CCDC reference: 867978

Key indicators

  • Single-crystal X-ray study
  • T = 153 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.019
  • wR factor = 0.051
  • Data-to-parameter ratio = 12.4

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ..... 5 PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 26 PLAT913_ALERT_3_C Missing # of Very Strong Reflections in FCF .... 3
Alert level G PLAT004_ALERT_5_G Info: Polymeric Structure Found with Dimension . 2 PLAT005_ALERT_5_G No _iucr_refine_instructions_details in CIF .... ? PLAT232_ALERT_2_G Hirshfeld Test Diff (M-X) Cd1 -- O2 .. 14.9 su PLAT232_ALERT_2_G Hirshfeld Test Diff (M-X) Cd1 -- O3_d .. 6.3 su PLAT232_ALERT_2_G Hirshfeld Test Diff (M-X) Cd1 -- O4_d .. 6.0 su PLAT764_ALERT_4_G Overcomplete CIF Bond List Detected (Rep/Expd) . 1.12 Ratio PLAT909_ALERT_3_G Percentage of Observed Data at Theta(Max) still 72 Perc.
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 3 ALERT level C = Check. Ensure it is not caused by an omission or oversight 7 ALERT level G = General information/check it is not something unexpected 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check

Comment top

To date, much effort has been made on the construction of cadmium coordination polymers with a wide variety of topological structures which may possess promising perspectives toward molecular luminescent materials (Chi et al., 2007; Niu et al., 2006; Song et al., 2006; Lu et al., 2007). It is well known that nicotinic acid has been proved to be effective for constructing coordination polymers due to the versatile coordination fashion (Chen et al., 2003; Song et al., 2006). Compared with nicotinic acid, the structurally similar quinoline-3-carboxylic acid (HL) have been chosen to construct a new coordination polymer. Here, we report on the crystal structure of the title compound.

There is one cadmium (II) atom and two independent L- ligands in the asymmetric unit. The Cd (II) atom is five-coordinated by two N atoms [Cd1—N1ii=2.341 (2) Å, Cd1—N2=2.319 (2) Å] and three O atoms [Cd1—O1=2.163 (2) Å, Cd—O3i=2.386 (2) Å, Cd—O4i=2.277 (2) Å] from four L- ligands, showing a distorted trigonal bipyramidal coordination geometry (Fig. 1). The L- ligand containing the N1 atom, acts as bis-monodentate mode toward cadmium centers with pyridine nitrogen atoms linking the cadmium atom and the carboxylate group linking the cadmium atom in a monodentate fashion, leading to the formation of a 1D chain structure along the the b axis. The 1D chains are linked into a 2D layer network by bis-chelating L- ligand containing the N2 atom, There is in addition a 2D double-layer structure (black bond and green bond) which is connected by ππ interactions with the centroid to centroid distances of 3.680 (2) and 3.752 (2) Å, respectively (Fig. 2). The 2D double-layers are parallel to the (100) plane, and linked to each other by another type of ππ interaction between pyridine rings [centroid-to-centroid 3.527 (2) Å], resulting in a 3D supramolecular architecture.

There is a reported isostructural Zn analogue (Hu et al., 2007) which has a tetrahedral environment with L- in a bis-monodentate mode, while the title compound shows a distorted trigonal bipyramidal coordination geometry with L- in bis-monodentate and bis-chelating modes, respectively (Fig. 3). This comparison reveals the influence of different metal ion on the coordination mode of the ligand.

Related literature top

For background to the applications of cadmium coordination polymers and nicotinic acids, see: Niu et al. (2006); Song et al. (2006), Chen (2003); Chi et al. (2007); Lu et al. (2007). For a closely related structure, see: Hu et al. (2007).

Experimental top

Quinoline-3-carboxylic acid (HL) was purchased commercially and used without further purification. A mixture of CdCl2 (18.400 mg, 0.1 mmol), and HL (17.300 mg, 0.1 mmol) was dissolved in a 10 mL of water with a pH = 6. The resulting mixture was heated in a 15 mL autoclave with Teflon-liner at 438 K for three days. Then the autoclave was slowly cooled to room temperature, and colourless block-shaped crystals were obtained with a yield of 50 %.

Refinement top

All non-hydrogen atoms were refined anisotropically, and hydrogen atoms were positioned geometrically and refined using a riding model with C—H distances of 0.93 Å and Uiso(H)=1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalClear (Rigaku, 2007) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound showing displacement ellipsoids (drawn at a 30% probability level) and labeling. H atoms are drawn as a small spheres of arbitrary radius. [symmetry codes: (i) x, - y, z + 1/2; (ii) x, y - 1, z.]
[Figure 2] Fig. 2. 2D double-layer structure and π-π stacking interactions between different 2D layers. All hydrogen atoms were omitted for clarity.
[Figure 3] Fig. 3. The comparision of the metal coordination environment between a reported isostructural Zn analogue and the title compound.
Poly[(µ2-quinoline-3-carboxylato-κ2N:O)(µ2-quinoline- 3-carboxylato-κ3N:O,O')cadmium] top
Crystal data top
[Cd(C10H6NO2)2]F(000) = 1808
Mr = 456.72Dx = 1.821 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6971 reflections
a = 28.5458 (19) Åθ = 2.8–29.2°
b = 8.2274 (5) ŵ = 1.34 mm1
c = 15.381 (1) ÅT = 153 K
β = 112.708 (1)°Prism, colourless
V = 3332.3 (4) Å30.13 × 0.11 × 0.10 mm
Z = 8
Data collection top
Rigaku Saturn 724+ CCD area-detector
diffractometer
3014 independent reflections
Radiation source: fine-focus sealed tube2659 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
Detector resolution: 28.5714 pixels mm-1θmax = 25.3°, θmin = 3.1°
ω scansh = 3434
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
k = 99
Tmin = 0.845, Tmax = 0.910l = 1218
7361 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.051H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0291P)2 + 0.9823P]
where P = (Fo2 + 2Fc2)/3
3014 reflections(Δ/σ)max = 0.002
244 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Cd(C10H6NO2)2]V = 3332.3 (4) Å3
Mr = 456.72Z = 8
Monoclinic, C2/cMo Kα radiation
a = 28.5458 (19) ŵ = 1.34 mm1
b = 8.2274 (5) ÅT = 153 K
c = 15.381 (1) Å0.13 × 0.11 × 0.10 mm
β = 112.708 (1)°
Data collection top
Rigaku Saturn 724+ CCD area-detector
diffractometer
3014 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
2659 reflections with I > 2σ(I)
Tmin = 0.845, Tmax = 0.910Rint = 0.015
7361 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0190 restraints
wR(F2) = 0.051H-atom parameters constrained
S = 1.10Δρmax = 0.33 e Å3
3014 reflectionsΔρmin = 0.25 e Å3
244 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.34654 (8)0.4503 (3)0.04346 (16)0.0215 (5)
C20.32133 (8)0.6060 (2)0.00212 (15)0.0175 (4)
C30.34221 (7)0.7571 (2)0.03538 (14)0.0179 (4)
H30.37190.75770.08950.021*
C40.27770 (8)0.8986 (2)0.08096 (14)0.0171 (4)
C50.25472 (8)0.7512 (2)0.12288 (15)0.0184 (4)
C60.27767 (8)0.6043 (2)0.08109 (15)0.0196 (5)
H60.26300.50570.10740.023*
C70.25462 (8)1.0467 (3)0.12039 (16)0.0229 (5)
H70.26971.14470.09390.028*
C80.20978 (9)1.0464 (3)0.19802 (16)0.0285 (5)
H80.19401.14440.22270.034*
C90.18757 (9)0.9000 (3)0.24036 (17)0.0305 (6)
H90.15770.90190.29410.037*
C100.20908 (8)0.7552 (3)0.20397 (16)0.0251 (5)
H100.19380.65870.23240.030*
C110.40746 (8)0.0031 (2)0.24972 (14)0.0197 (5)
C120.43039 (8)0.0798 (2)0.15411 (14)0.0176 (4)
C130.40592 (8)0.0688 (2)0.09095 (14)0.0186 (4)
H130.37510.01390.11060.022*
C140.47532 (8)0.1623 (3)0.12613 (15)0.0203 (5)
H140.49210.17280.16710.024*
C150.49631 (8)0.2315 (2)0.03555 (14)0.0191 (5)
C160.46983 (8)0.2114 (2)0.02540 (14)0.0175 (4)
C170.49105 (8)0.2735 (2)0.11748 (15)0.0223 (5)
H170.47410.25990.15790.027*
C180.53653 (9)0.3542 (3)0.14796 (16)0.0273 (5)
H180.55070.39350.20940.033*
C190.56197 (9)0.3778 (3)0.08655 (18)0.0305 (6)
H190.59250.43440.10740.037*
C200.54238 (8)0.3188 (3)0.00257 (17)0.0275 (5)
H200.55950.33610.04240.033*
N10.32245 (6)0.89871 (19)0.00119 (12)0.0168 (4)
N20.42383 (6)0.13141 (19)0.00532 (12)0.0174 (4)
O10.32218 (6)0.32240 (18)0.00681 (12)0.0311 (4)
O20.38802 (6)0.45193 (19)0.11082 (12)0.0291 (4)
O30.36675 (6)0.07521 (18)0.27266 (10)0.0245 (3)
O40.43035 (6)0.02228 (19)0.30471 (10)0.0268 (4)
Cd10.371129 (5)0.122196 (17)0.077597 (10)0.01700 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0258 (12)0.0175 (11)0.0264 (12)0.0042 (10)0.0158 (10)0.0032 (9)
C20.0195 (11)0.0155 (10)0.0209 (11)0.0021 (9)0.0117 (9)0.0024 (8)
C30.0165 (11)0.0186 (11)0.0186 (11)0.0012 (9)0.0068 (9)0.0008 (9)
C40.0174 (10)0.0187 (11)0.0170 (11)0.0003 (9)0.0086 (9)0.0014 (8)
C50.0182 (10)0.0185 (10)0.0200 (11)0.0000 (9)0.0091 (9)0.0000 (9)
C60.0230 (11)0.0142 (10)0.0232 (12)0.0025 (9)0.0108 (10)0.0027 (8)
C70.0253 (12)0.0172 (11)0.0256 (12)0.0001 (10)0.0092 (10)0.0016 (9)
C80.0295 (13)0.0254 (12)0.0281 (13)0.0087 (11)0.0084 (11)0.0100 (10)
C90.0237 (12)0.0371 (14)0.0228 (13)0.0031 (11)0.0003 (10)0.0048 (10)
C100.0222 (12)0.0255 (12)0.0233 (12)0.0031 (10)0.0040 (10)0.0016 (10)
C110.0226 (12)0.0175 (10)0.0163 (11)0.0082 (10)0.0044 (9)0.0018 (8)
C120.0197 (11)0.0166 (10)0.0143 (11)0.0043 (9)0.0042 (9)0.0002 (8)
C130.0194 (11)0.0176 (10)0.0178 (11)0.0007 (9)0.0060 (9)0.0002 (8)
C140.0208 (11)0.0224 (11)0.0188 (11)0.0031 (9)0.0090 (9)0.0018 (9)
C150.0172 (11)0.0183 (10)0.0195 (12)0.0028 (9)0.0046 (9)0.0004 (9)
C160.0201 (11)0.0128 (10)0.0182 (11)0.0026 (9)0.0057 (9)0.0012 (8)
C170.0266 (12)0.0218 (11)0.0176 (11)0.0006 (10)0.0076 (9)0.0023 (9)
C180.0303 (13)0.0255 (12)0.0196 (12)0.0020 (11)0.0024 (10)0.0051 (9)
C190.0218 (12)0.0324 (14)0.0328 (14)0.0109 (11)0.0058 (10)0.0083 (10)
C200.0232 (12)0.0304 (12)0.0309 (14)0.0061 (10)0.0126 (11)0.0029 (10)
N10.0178 (9)0.0149 (9)0.0176 (9)0.0008 (7)0.0067 (7)0.0006 (7)
N20.0206 (9)0.0171 (9)0.0145 (9)0.0007 (7)0.0067 (7)0.0002 (7)
O10.0345 (9)0.0137 (7)0.0371 (10)0.0016 (7)0.0048 (8)0.0015 (7)
O20.0267 (9)0.0256 (9)0.0300 (9)0.0065 (7)0.0054 (7)0.0070 (7)
O30.0273 (9)0.0259 (8)0.0190 (8)0.0054 (7)0.0075 (7)0.0051 (6)
O40.0263 (8)0.0382 (9)0.0167 (8)0.0031 (7)0.0090 (7)0.0073 (7)
Cd10.02126 (10)0.01480 (10)0.01451 (10)0.00057 (6)0.00642 (7)0.00132 (6)
Geometric parameters (Å, º) top
C1—O21.236 (3)C12—C131.401 (3)
C1—O11.267 (3)C13—N21.320 (3)
C1—C21.504 (3)C13—H130.9300
C2—C61.364 (3)C14—C151.407 (3)
C2—C31.403 (3)C14—H140.9300
C3—N11.322 (3)C15—C201.410 (3)
C3—H30.9300C15—C161.423 (3)
C4—N11.388 (3)C16—N21.379 (3)
C4—C71.407 (3)C16—C171.404 (3)
C4—C51.411 (3)C17—C181.370 (3)
C5—C61.406 (3)C17—H170.9300
C5—C101.414 (3)C18—C191.410 (3)
C6—H60.9300C18—H180.9300
C7—C81.373 (3)C19—C201.355 (3)
C7—H70.9300C19—H190.9300
C8—C91.399 (3)C20—H200.9300
C8—H80.9300N1—Cd1ii2.3410 (16)
C9—C101.358 (3)O3—Cd1i2.3858 (15)
C9—H90.9300O4—Cd1i2.2770 (15)
C10—H100.9300Cd1—N1iii2.3410 (16)
C11—O31.255 (3)Cd1—N22.3188 (17)
C11—O41.262 (2)Cd1—O12.1625 (15)
C11—C121.499 (3)Cd1—O3iv2.3858 (15)
C11—Cd1i2.658 (2)Cd1—O4iv2.2770 (15)
C12—C141.366 (3)Cd1—C11iv2.658 (2)
O2—C1—O1124.4 (2)C15—C14—H14119.9
O2—C1—C2120.84 (19)C14—C15—C20123.0 (2)
O1—C1—C2114.72 (19)C14—C15—C16118.29 (19)
C6—C2—C3118.19 (18)C20—C15—C16118.76 (19)
C6—C2—C1120.99 (19)N2—C16—C17120.15 (18)
C3—C2—C1120.81 (19)N2—C16—C15120.50 (18)
N1—C3—C2124.21 (19)C17—C16—C15119.35 (19)
N1—C3—H3117.9C18—C17—C16120.3 (2)
C2—C3—H3117.9C18—C17—H17119.9
N1—C4—C7119.89 (18)C16—C17—H17119.9
N1—C4—C5120.76 (18)C17—C18—C19120.2 (2)
C7—C4—C5119.35 (19)C17—C18—H18119.9
C6—C5—C4118.53 (19)C19—C18—H18119.9
C6—C5—C10122.08 (19)C20—C19—C18120.7 (2)
C4—C5—C10119.38 (19)C20—C19—H19119.6
C2—C6—C5120.16 (19)C18—C19—H19119.6
C2—C6—H6119.9C19—C20—C15120.7 (2)
C5—C6—H6119.9C19—C20—H20119.7
C8—C7—C4119.8 (2)C15—C20—H20119.7
C8—C7—H7120.1C3—N1—C4118.13 (17)
C4—C7—H7120.1C3—N1—Cd1ii113.66 (13)
C7—C8—C9120.6 (2)C4—N1—Cd1ii128.17 (13)
C7—C8—H8119.7C13—N2—C16118.63 (17)
C9—C8—H8119.7C13—N2—Cd1116.90 (14)
C10—C9—C8120.8 (2)C16—N2—Cd1124.15 (13)
C10—C9—H9119.6C1—O1—Cd1105.75 (14)
C8—C9—H9119.6C11—O3—Cd1i88.09 (12)
C9—C10—C5120.0 (2)C11—O4—Cd1i92.87 (13)
C9—C10—H10120.0O1—Cd1—O4iv159.22 (6)
C5—C10—H10120.0O1—Cd1—N297.38 (6)
O3—C11—O4122.58 (19)O4iv—Cd1—N290.81 (5)
O3—C11—C12119.90 (19)O1—Cd1—N1iii101.45 (6)
O4—C11—C12117.52 (19)O4iv—Cd1—N1iii96.41 (6)
O3—C11—Cd1i63.76 (11)N2—Cd1—N1iii97.04 (6)
O4—C11—Cd1i58.81 (11)O1—Cd1—O3iv110.18 (6)
C12—C11—Cd1i176.28 (16)O4iv—Cd1—O3iv56.46 (5)
C14—C12—C13118.20 (19)N2—Cd1—O3iv145.40 (6)
C14—C12—C11121.32 (19)N1iii—Cd1—O3iv97.50 (6)
C13—C12—C11120.49 (19)O1—Cd1—C11iv136.51 (7)
N2—C13—C12124.2 (2)O4iv—Cd1—C11iv28.31 (6)
N2—C13—H13117.9N2—Cd1—C11iv118.46 (6)
C12—C13—H13117.9N1iii—Cd1—C11iv97.88 (6)
C12—C14—C15120.2 (2)O3iv—Cd1—C11iv28.14 (6)
C12—C14—H14119.9
O2—C1—C2—C6174.6 (2)C17—C18—C19—C201.2 (4)
O1—C1—C2—C64.8 (3)C18—C19—C20—C150.5 (4)
O2—C1—C2—C35.2 (3)C14—C15—C20—C19177.5 (2)
O1—C1—C2—C3175.38 (19)C16—C15—C20—C192.2 (3)
C6—C2—C3—N10.4 (3)C2—C3—N1—C41.1 (3)
C1—C2—C3—N1179.44 (18)C2—C3—N1—Cd1ii176.85 (15)
N1—C4—C5—C61.1 (3)C7—C4—N1—C3178.10 (19)
C7—C4—C5—C6178.4 (2)C5—C4—N1—C31.4 (3)
N1—C4—C5—C10179.84 (19)C7—C4—N1—Cd1ii4.3 (3)
C7—C4—C5—C100.3 (3)C5—C4—N1—Cd1ii176.15 (14)
C3—C2—C6—C50.0 (3)C12—C13—N2—C160.8 (3)
C1—C2—C6—C5179.81 (18)C12—C13—N2—Cd1172.89 (16)
C4—C5—C6—C20.4 (3)C17—C16—N2—C13177.34 (19)
C10—C5—C6—C2179.1 (2)C15—C16—N2—C132.5 (3)
N1—C4—C7—C8178.5 (2)C17—C16—N2—Cd19.4 (3)
C5—C4—C7—C81.0 (3)C15—C16—N2—Cd1170.71 (14)
C4—C7—C8—C92.1 (4)O2—C1—O1—Cd15.0 (3)
C7—C8—C9—C101.9 (4)C2—C1—O1—Cd1174.42 (14)
C8—C9—C10—C50.6 (4)O4—C11—O3—Cd1i0.1 (2)
C6—C5—C10—C9178.2 (2)C12—C11—O3—Cd1i179.26 (17)
C4—C5—C10—C90.5 (3)O3—C11—O4—Cd1i0.1 (2)
O3—C11—C12—C14178.30 (19)C12—C11—O4—Cd1i179.27 (15)
O4—C11—C12—C142.3 (3)C1—O1—Cd1—O4iv33.2 (2)
O3—C11—C12—C131.9 (3)C1—O1—Cd1—N279.22 (14)
O4—C11—C12—C13177.47 (19)C1—O1—Cd1—N1iii177.98 (13)
C14—C12—C13—N20.9 (3)C1—O1—Cd1—O3iv79.52 (14)
C11—C12—C13—N2179.27 (18)C1—O1—Cd1—C11iv67.38 (17)
C13—C12—C14—C151.0 (3)C13—N2—Cd1—O177.63 (15)
C11—C12—C14—C15179.23 (19)C16—N2—Cd1—O195.72 (15)
C12—C14—C15—C20179.7 (2)C13—N2—Cd1—O4iv121.51 (15)
C12—C14—C15—C160.7 (3)C16—N2—Cd1—O4iv65.14 (15)
C14—C15—C16—N22.5 (3)C13—N2—Cd1—N1iii24.95 (15)
C20—C15—C16—N2177.84 (19)C16—N2—Cd1—N1iii161.70 (15)
C14—C15—C16—C17177.42 (19)C13—N2—Cd1—O3iv139.20 (14)
C20—C15—C16—C172.3 (3)C16—N2—Cd1—O3iv47.45 (19)
N2—C16—C17—C18179.46 (19)C13—N2—Cd1—C11iv127.90 (14)
C15—C16—C17—C180.7 (3)C16—N2—Cd1—C11iv58.75 (16)
C16—C17—C18—C191.1 (3)
Symmetry codes: (i) x, y, z1/2; (ii) x, y+1, z; (iii) x, y1, z; (iv) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Cd(C10H6NO2)2]
Mr456.72
Crystal system, space groupMonoclinic, C2/c
Temperature (K)153
a, b, c (Å)28.5458 (19), 8.2274 (5), 15.381 (1)
β (°) 112.708 (1)
V3)3332.3 (4)
Z8
Radiation typeMo Kα
µ (mm1)1.34
Crystal size (mm)0.13 × 0.11 × 0.10
Data collection
DiffractometerRigaku Saturn 724+ CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2007)
Tmin, Tmax0.845, 0.910
No. of measured, independent and
observed [I > 2σ(I)] reflections
7361, 3014, 2659
Rint0.015
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.051, 1.10
No. of reflections3014
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.25

Computer programs: , SHELXL97 (Sheldrick, 2008), CrystalClear (Rigaku, 2007) and DIAMOND (Brandenburg, 1998), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cd1—N1i2.3410 (16)Cd1—O3ii2.3858 (15)
Cd1—N22.3188 (17)Cd1—O4ii2.2770 (15)
Cd1—O12.1625 (15)
Symmetry codes: (i) x, y1, z; (ii) x, y, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds