Download citation
Download citation
link to html
Single crystals of Cd4As2Br3 (tetra­cadmium biarsenide tri­bromide) were grown by a chemical transport reaction. The structure is isotypic with the members of the cadmium and mercury pnictidohalides family with general formula M4A2X3 (M = Cd, Hg; A = P, As, Sb; X = Cl, Br, I) and contains two independent As atoms on special positions with site symmetry -3 and two independent Cd atoms, of which one is on a special position with site symmetry -3. The Cd4As2Br3 structure consists of AsCd4 tetra­hedra sharing vertices with isolated As2Cd6 octa­hedra that contain As–As dumbbells in the centre of the octahedron. The Br atoms are located in the voids of this three-dimensional arrangement and bridge the different polyhedra through Cd...Br contacts.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053681400395X/vn2080sup1.cif
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053681400395X/vn2080Isup2.hkl
Contains datablock I

CCDC reference: 988028

Key indicators

  • Single-crystal X-ray study
  • T = 150 K
  • Mean [sigma](As-As) = 0.001 Å
  • R factor = 0.039
  • wR factor = 0.092
  • Data-to-parameter ratio = 51.2

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT731_ALERT_1_C Bond Calc 2.3945(8), Rep 2.3945(19) ...... 2 su-Rat AS1 -AS1 1.555 13.666 # 9 PLAT906_ALERT_3_C Large K value in the Analysis of Variance ...... 2.002 Check PLAT913_ALERT_3_C Missing # of Very Strong Reflections in FCF .... 1 Note PLAT934_ALERT_3_C Number of (Iobs-Icalc)/SigmaW > 10 Outliers .... 1 Check PLAT971_ALERT_2_C Check Calcd Residual Density 0.58A From Cd1 2.23 eA-3 PLAT971_ALERT_2_C Check Calcd Residual Density 0.58A From Cd1 2.23 eA-3 PLAT971_ALERT_2_C Check Calcd Residual Density 1.20A From As1 2.15 eA-3 PLAT971_ALERT_2_C Check Calcd Residual Density 0.84A From Br1 1.81 eA-3 PLAT971_ALERT_2_C Check Calcd Residual Density 0.84A From Br1 1.81 eA-3 PLAT971_ALERT_2_C Check Calcd Residual Density 0.99A From As1 1.78 eA-3 PLAT971_ALERT_2_C Check Calcd Residual Density 0.77A From Cd1 1.73 eA-3 PLAT971_ALERT_2_C Check Calcd Residual Density 0.83A From Cd1 1.72 eA-3 PLAT971_ALERT_2_C Check Calcd Residual Density 1.53A From Cd2 1.64 eA-3 PLAT971_ALERT_2_C Check Calcd Residual Density 1.41A From Br1 1.56 eA-3 PLAT971_ALERT_2_C Check Calcd Residual Density 0.96A From Cd1 1.51 eA-3 PLAT971_ALERT_2_C Check Calcd Residual Density 0.96A From Cd1 1.51 eA-3 PLAT971_ALERT_2_C Check Calcd Residual Density 0.79A From Br1 1.51 eA-3 PLAT972_ALERT_2_C Check Calcd Residual Density 1.14A From Cd2 -1.89 eA-3 PLAT972_ALERT_2_C Check Calcd Residual Density 1.15A From Br1 -1.71 eA-3 PLAT972_ALERT_2_C Check Calcd Residual Density 1.46A From Br1 -1.59 eA-3 PLAT972_ALERT_2_C Check Calcd Residual Density 1.97A From Cd1 -1.57 eA-3 PLAT972_ALERT_2_C Check Calcd Residual Density 1.77A From Br1 -1.57 eA-3 PLAT972_ALERT_2_C Check Calcd Residual Density 0.62A From Cd1 -1.52 eA-3 PLAT973_ALERT_2_C Check Calcd Positive Residual Density on Cd1 1.40 eA-3
Alert level G PLAT004_ALERT_5_G Polymeric Structure Found with Dimension ....... 1 Info PLAT005_ALERT_5_G No _iucr_refine_instructions_details in the CIF Please Do ! PLAT066_ALERT_1_G Predicted and Reported Tmin&Tmax Range Identical ? Check PLAT083_ALERT_2_G SHELXL Second Parameter in WGHT Unusually Large. 11.00 Why ? PLAT180_ALERT_4_G Check Cell Rounding: # of Values Ending with 0 = 3 PLAT232_ALERT_2_G Hirshfeld Test Diff (M-X) Cd1 -- Br1_a .. 15.7 su PLAT232_ALERT_2_G Hirshfeld Test Diff (M-X) Cd1 -- Br1_l .. 23.7 su PLAT232_ALERT_2_G Hirshfeld Test Diff (M-X) Cd2 -- Br1 .. 14.0 su PLAT794_ALERT_5_G Tentative Bond Valency for Cd1 (II) ..... 1.92 Note PLAT794_ALERT_5_G Tentative Bond Valency for Cd2 (II) ..... 1.68 Note PLAT950_ALERT_5_G Reported and Calculated Hmax Values Differ by .. 3
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 24 ALERT level C = Check. Ensure it is not caused by an omission or oversight 11 ALERT level G = General information/check it is not something unexpected 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 24 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 5 ALERT type 5 Informative message, check

Comment top

Le composé Cd4As2Br3 a été étudié au préalable par diffraction des rayons X sur poudre (Suchow & Stemple, 1963; Rebbah & Deschanvres, 1981). Ce composé appartient à la famille des composés semi-conducteurs de formule générale M4A2X3 (M = Cd, Hg; A = P, As, Sb; X = Cl, Br, I), connue sous le nom de halogénopnictures de cadmium et de mercure (Rebbah & Rebbah, 1994; Shevelkov & Shatruk, 2001). La principale caractéristique de ces composés polyanioniques est la présence de liaisons anion-anion (AA). Dans le composé Cd4As2Br3 il existe deux types d'atomes d'arsenic ayant une coordination tétraédrique légèrement déformée. Les atomes d'arsenic de type As1 sont entourés de trois atomes Cd1 et un atome As1 de même type formant ainsi un doublet As12. Les distances anion-anion As1—As1 [2.3945 (19) Å] et Cd1—As1 [2.5595 (5) Å] sont comparables à celles observées dans d'autres composés polyanioniques de la même famille: Cd4As2I3 [As1—As1 = 2.397 (5) Å et Cd1—As1 = 2.574 (5) Å], Gallay et al. (1975); Hg4As2I3 [As1—As1 = 2.415 (2) Å], Labbé et al. (1989); Hg4As2Br3 [As1—As1 = 2.37 (2) Å], Shevelkov et al. (1996). Les angles Cd1—As1—Cd1 et As1—As1—Cd1 qui valent 107.99 (2)° et 110.91 (2)° respectivement, indiquent un tétraèdre légèrement distordu. Les deux tétraèdres correspondant à une même liaison As1—As1 forment un groupement octaédrique As(1)2Cd6. Les atomes d'arsenic de type As2 ne forment pas de paire anionique et sont entourés de quatre atomes de cadmium: un atome Cd2 à 2.5655 (13) Å et trois atomes Cd1 à 2.5400 (6) Å, ces distances sont très voisines de celles autour de l'atome As1. Le tétraèdre As2Cd4 est aussi légèrement distordu avec des angles Cd1—As2—Cd1 et Cd1—As2—Cd2 de 118.414 (12)° et 97.29 (3)° respectivement. La charpente de cette structure est ainsi form\'ee par des octaèdres As12Cd6 déterminant des files parallèles dans les trois directions. L'interconnexion des ces files est assurées par les tétraèdres As2Cd4, déterminant des cavités occupées par les atomes de brome. Ces atomes de brome assurent la cohésion de la structure par l'intermédiaire de liaisons Cd—Br en reliant d'une part deux groupements octaédriques As12Cd6 et d'autre part un groupement octaédrique As12Cd6 avec un groupement tétraédrique As2Cd4. La plus courte distance 2.7596 (7) Å est proche de celles trouvées dans Cd4P2Br3 [2.733 (2) Å, Kassama et al. 1994] ou dans Cd4PAsBr3 [2.760 (5) Å, Rebbah & Deschanvres, 1981]. Enfin l'équilibre des charges dans ce composé peut s'écrire: Cd4+2As1-2As2-3Br3-.

Related literature top

For structural data of the title compound extracted from X-ray powder diffraction data, see: Suchow & Stemple (1963); Rebbah & Deschanvres (1981). For classification and bond character of cadmium and mercury pnictidohalides, see: Rebbah & Rebbah (1994). For the relationship between the crystal and electronic structures including the Zintl–Klemn approach for interpreting and predicting the properties of these phases, see: Shevelkov & Shatruk (2001). For isotypic cadmium pnictidohalides, see: Gallay et al. (1975); Kassama et al. (1994) and for isotypic mercury pnictidohalides, see: Labbé et al. (1989); Shevelkov et al. (1996).

Experimental top

Les cristaux de Cd4As2Br3 ont été préparés par transport en phase vapeur à partir d'un mélange stoechiométrique des éléments Cd, As et de CdBr2. Le mélange est broyé puis introduit dans un tube en quartz scellé; des cristaux de couleur rouge foncée sont obtenus après un chauffage à 1073 K durant une semaine.

Refinement top

La structure a été déterminée par isotypie aux halogénopnictures de cadmium et de mercure de formule générale M4A2X3 (M = Cd, Hg; A = P, As, Sb; X = Cl, Br, I). En fin d'affinement, la carte de densité électronique obtenue est: ρmax = 1.932 e Å-3 (localisée à 0.61 Å de C d1) et ρmin = -1.571 e Å-3 (localisée à 1.16 Å de Br1).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012) and CRYSCAL (Roisnel, 2013).

Figures top
[Figure 1] Fig. 1. Structure de Cd4As2Br3 montrant les files octaédriques As(1)2Cd6 (en gris) reliées par les tétraèdres As(2)Cd4 (en violet).
[Figure 2] Fig. 2. Environnement tétraèdrique distordu des atomes de As, avec un déplacement des ellipsoīdes à 95% de probabilité.
Tetracadmium diarsenide tribromide top
Crystal data top
Cd4As2Br3Dx = 5.54 Mg m3
Mr = 839.17Mo Kα radiation, λ = 0.71073 Å
Cubic, Pa3Cell parameters from 1340 reflections
Hall symbol: -P 2ac 2ab 3θ = 2.8–34.9°
a = 12.625 (4) ŵ = 26.70 mm1
V = 2012.4 (6) Å3T = 150 K
Z = 8Prism, red
F(000) = 29040.21 × 0.2 × 0.17 mm
Data collection top
Bruker APEXII
diffractometer
1238 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.088
CCD rotation images, thin slices scansθmax = 34.9°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1715
Tmin = 0.005, Tmax = 0.011k = 2010
6624 measured reflectionsl = 1219
1485 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0052P)2 + 11.0012P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.092(Δ/σ)max = 0.003
S = 1.09Δρmax = 1.93 e Å3
1485 reflectionsΔρmin = 1.57 e Å3
29 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00161 (12)
Crystal data top
Cd4As2Br3Z = 8
Mr = 839.17Mo Kα radiation
Cubic, Pa3µ = 26.70 mm1
a = 12.625 (4) ÅT = 150 K
V = 2012.4 (6) Å30.21 × 0.2 × 0.17 mm
Data collection top
Bruker APEXII
diffractometer
1485 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1238 reflections with I > 2σ(I)
Tmin = 0.005, Tmax = 0.011Rint = 0.088
6624 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0052P)2 + 11.0012P]
where P = (Fo2 + 2Fc2)/3
S = 1.09Δρmax = 1.93 e Å3
1485 reflectionsΔρmin = 1.57 e Å3
29 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.02627 (4)0.01237 (4)0.24906 (3)0.00853 (12)
Cd20.21971 (3)0.21971 (3)0.21971 (3)0.00892 (16)
As10.44525 (4)0.44525 (4)0.44525 (4)0.00244 (19)
As20.10239 (5)0.10239 (5)0.10239 (5)0.00298 (19)
Br10.18751 (5)0.43173 (4)0.26201 (5)0.00566 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0091 (2)0.0118 (2)0.00468 (19)0.00282 (14)0.00066 (14)0.00389 (14)
Cd20.00892 (16)0.00892 (16)0.00892 (16)0.00209 (14)0.00209 (14)0.00209 (14)
As10.00244 (19)0.00244 (19)0.00244 (19)0.00002 (17)0.00002 (17)0.00002 (17)
As20.00298 (19)0.00298 (19)0.00298 (19)0.00131 (18)0.00131 (18)0.00131 (18)
Br10.0036 (2)0.0050 (2)0.0083 (3)0.00048 (17)0.00135 (18)0.00099 (18)
Geometric parameters (Å, º) top
Cd1—As22.5400 (5)As1—As1vi2.3945 (19)
Cd1—As1i2.5595 (5)As1—Cd1vii2.5594 (9)
Cd1—Br1ii2.7933 (11)As1—Cd1viii2.5595 (5)
Cd1—Br1iii2.9999 (8)As1—Cd1ix2.5595 (5)
Cd2—As22.5655 (13)As2—Cd1v2.5400 (6)
Cd2—Br1iv2.7596 (11)As2—Cd1iv2.5400 (5)
Cd2—Br12.7596 (7)Br1—Cd1x2.7932 (11)
Cd2—Br1v2.7596 (7)Br1—Cd1vii2.9999 (8)
As2—Cd1—As1i140.50 (3)Cd1vii—As1—Cd1viii107.99 (2)
As2—Cd1—Br1ii118.24 (3)As1vi—As1—Cd1ix110.91 (2)
As1i—Cd1—Br1ii97.55 (2)Cd1vii—As1—Cd1ix107.99 (2)
As2—Cd1—Br1iii106.62 (2)Cd1viii—As1—Cd1ix107.99 (2)
As1i—Cd1—Br1iii91.57 (2)Cd1v—As2—Cd1118.414 (12)
Br1ii—Cd1—Br1iii85.291 (15)Cd1v—As2—Cd1iv118.414 (14)
As2—Cd2—Br1iv125.922 (19)Cd1—As2—Cd1iv118.416 (17)
As2—Cd2—Br1125.923 (19)Cd1v—As2—Cd297.29 (3)
Br1iv—Cd2—Br189.07 (3)Cd1—As2—Cd297.29 (3)
As2—Cd2—Br1v125.922 (17)Cd1iv—As2—Cd297.29 (3)
Br1iv—Cd2—Br1v89.07 (3)Cd2—Br1—Cd1x112.19 (2)
Br1—Cd2—Br1v89.07 (2)Cd2—Br1—Cd1vii108.48 (2)
As1vi—As1—Cd1vii110.91 (3)Cd1x—Br1—Cd1vii104.66 (2)
As1vi—As1—Cd1viii110.91 (2)
As1i—Cd1—As2—Cd1v90.34 (7)Br1iv—Cd2—As2—Cd1129.443 (19)
Br1ii—Cd1—As2—Cd1v117.28 (4)Br1—Cd2—As2—Cd1110.56 (2)
Br1iii—Cd1—As2—Cd1v23.66 (5)Br1v—Cd2—As2—Cd19.442 (19)
As1i—Cd1—As2—Cd1iv114.45 (6)Br1iv—Cd2—As2—Cd1iv110.56 (2)
Br1ii—Cd1—As2—Cd1iv37.93 (6)Br1—Cd2—As2—Cd1iv9.443 (19)
Br1iii—Cd1—As2—Cd1iv131.55 (4)Br1v—Cd2—As2—Cd1iv129.44 (2)
As1i—Cd1—As2—Cd212.05 (5)As2—Cd2—Br1—Cd1x27.93 (3)
Br1ii—Cd1—As2—Cd2140.33 (2)Br1iv—Cd2—Br1—Cd1x163.39 (3)
Br1iii—Cd1—As2—Cd2126.06 (2)Br1v—Cd2—Br1—Cd1x107.53 (3)
Br1iv—Cd2—As2—Cd1v9.443 (19)As2—Cd2—Br1—Cd1vii143.055 (14)
Br1—Cd2—As2—Cd1v129.44 (2)Br1iv—Cd2—Br1—Cd1vii81.486 (14)
Br1v—Cd2—As2—Cd1v110.557 (19)Br1v—Cd2—Br1—Cd1vii7.60 (2)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x, y1/2, z+1/2; (iii) y+1/2, z1/2, x; (iv) y, z, x; (v) z, x, y; (vi) x+1, y+1, z+1; (vii) z, x+1/2, y+1/2; (viii) y+1/2, z, x+1/2; (ix) x+1/2, y+1/2, z; (x) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaCd4As2Br3
Mr839.17
Crystal system, space groupCubic, Pa3
Temperature (K)150
a (Å)12.625 (4)
V3)2012.4 (6)
Z8
Radiation typeMo Kα
µ (mm1)26.70
Crystal size (mm)0.21 × 0.2 × 0.17
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.005, 0.011
No. of measured, independent and
observed [I > 2σ(I)] reflections
6624, 1485, 1238
Rint0.088
(sin θ/λ)max1)0.806
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.092, 1.09
No. of reflections1485
No. of parameters29
w = 1/[σ2(Fo2) + (0.0052P)2 + 11.0012P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.93, 1.57

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 1999), WinGX (Farrugia, 2012) and CRYSCAL (Roisnel, 2013).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds