Download citation
Download citation
link to html
Our calculations of the global instability index (G) values for some diamond-like materials with the general formula I2–II–IV–VI4 have indicated that the structures may be unstable or incorrectly determined. To com­pute the G value of a given com­pound, the bond valence sums (BVSs) must first be calculated using a crystal structure. Two examples of com­pounds with high G values, based on data from the literature, are the wurtz–stannite-type dicopper cadmium silicon tetra­sulfide (Cu2CdSiS4) and the stannite-type dicopper mercury tin tetra­sulfide (Cu2HgSnS4), which were first reported in 1967 and 1965, respectively. In the present study, Cu2CdSiS4 and Cu2HgSnS4 were prepared by solid-state synthesis at 1000 and 900 °C, respectively. The phase purity was assessed by powder X-ray diffraction. Optical diffuse reflectance UV/Vis/NIR spectroscopy was used to estimate the optical bandgaps of 2.52 and 0.83 eV for Cu2CdSiS4 and Cu2HgSnS4, respectively. The structures were solved and refined using single-crystal X-ray diffraction data. The structure type of Cu2CdSiS4 was confirmed, where Cd2+, Si4+ and two of the three crystallographically unique S2− ions lie on a mirror plane. The structure type of Cu2HgSnS4 was also verified, where all ions lie on special positions. The S2− ion resides on a mirror plane, the Cu+ ion is situated on a fourfold rotary inversion axis and both the Hg2+ and the Sn4+ ions are located on the inter­section of a fourfold rotary inversion axis, a mirror plane and a twofold rotation axis. Using the crystal structures solved and refined here, the G values were reassessed and found to be in the range that indicates reasonable strain for a stable crystal structure. This work, together with some examples gathered from the literature, shows that accurate data collected on modern instrumentation should be used to reliably calculate BVSs and G values.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229623006848/vx3001sup1.cif
Contains datablocks Cu2CdSiS4, Cu2HgSnS4, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229623006848/vx3001Cu2CdSiS4sup2.hkl
Contains datablock Cu2CdSiS4

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229623006848/vx3001Cu2HgSnS4sup3.hkl
Contains datablock Cu2HgSnS4

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229623006848/vx3001sup4.pdf
Supplementary material

CCDC references: 2262648; 2262647

Computing details top

For both structures, data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018). Program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a) for Cu2CdSiS4; SHELXL2014 (Sheldrick, 2015a) for Cu2HgSnS4. For both structures, program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ShelXle (Hübschle et al., 2011); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b).

Copper cadmium silicon sulfide (Cu2CdSiS4) top
Crystal data top
Cu2CdSiS4Dx = 4.266 Mg m3
Mr = 395.81Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pmn21Cell parameters from 5413 reflections
a = 7.60853 (11) Åθ = 3.1–32.8°
b = 6.48071 (9) ŵ = 11.67 mm1
c = 6.24923 (10) ÅT = 296 K
V = 308.14 (1) Å3Polyhedra, green-yellow
Z = 20.25 × 0.14 × 0.09 mm
F(000) = 368
Data collection top
Bruker SMART APEXII
diffractometer
719 reflections with I > 2σ(I)
Radiation source: fine focus sealed tube X-ray sourceRint = 0.033
φ and ω Scans scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 99
Tmin = 0.357, Tmax = 0.747k = 88
3842 measured reflectionsl = 88
723 independent reflections
Refinement top
Refinement on F2 w = 1/[σ2(Fo2) + (0.0249P)2 + 0.0278P]
where P = (Fo2 + 2Fc2)/3
Least-squares matrix: full(Δ/σ)max = 0.001
R[F2 > 2σ(F2)] = 0.022Δρmax = 1.33 e Å3
wR(F2) = 0.047Δρmin = 2.26 e Å3
S = 1.27Extinction correction: SHELXL2018 (Sheldrick, 2015<>i>b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
723 reflectionsExtinction coefficient: 0.446 (15)
44 parametersAbsolute structure: Flack x determined using 305 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.006 (10)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.0000000.34757 (5)0.87283 (5)0.0154 (2)
Cu10.24779 (7)0.17667 (7)0.36705 (17)0.0187 (2)
Si10.0000000.68042 (19)0.3742 (6)0.0077 (3)
S10.0000000.3642 (2)0.4680 (3)0.0107 (4)
S20.0000000.7045 (2)0.0337 (3)0.0102 (3)
S30.27593 (17)0.16155 (17)0.9983 (2)0.0100 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0156 (3)0.0145 (3)0.0162 (3)0.0000.0000.0003 (2)
Cu10.0194 (3)0.0180 (3)0.0188 (4)0.00103 (18)0.0009 (3)0.0003 (3)
Si10.0083 (7)0.0059 (6)0.0090 (9)0.0000.0000.0002 (7)
S10.0128 (7)0.0063 (6)0.0130 (8)0.0000.0000.0004 (5)
S20.0113 (6)0.0110 (7)0.0084 (7)0.0000.0000.0013 (6)
S30.0106 (4)0.0087 (5)0.0107 (6)0.0019 (3)0.0013 (4)0.0005 (3)
Geometric parameters (Å, º) top
Cd1—S2i2.5223 (18)Cu1—S12.3301 (11)
Cd1—S12.5320 (18)Cu1—S3v2.3473 (16)
Cd1—S32.5448 (13)Si1—S12.132 (2)
Cd1—S3ii2.5448 (13)Si1—S22.134 (5)
Cu1—S2iii2.3152 (13)Si1—S3vi2.135 (2)
Cu1—S3iv2.316 (2)Si1—S3vii2.135 (2)
S2i—Cd1—S1111.06 (5)Si1—S1—Cu1115.27 (9)
S2i—Cd1—S3108.16 (4)Si1—S1—Cu1ii115.27 (9)
S1—Cd1—S3109.15 (4)Cu1—S1—Cu1ii108.02 (7)
S2i—Cd1—S3ii108.16 (4)Si1—S1—Cd1108.39 (12)
S1—Cd1—S3ii109.15 (4)Cu1—S1—Cd1104.38 (6)
S3—Cd1—S3ii111.17 (5)Cu1ii—S1—Cd1104.38 (6)
S2iii—Cu1—S3iv112.65 (7)Si1—S2—Cu1vii118.23 (8)
S2iii—Cu1—S1112.05 (6)Si1—S2—Cu1vi118.23 (8)
S3iv—Cu1—S1111.49 (7)Cu1vii—S2—Cu1vi111.96 (10)
S2iii—Cu1—S3v102.54 (8)Si1—S2—Cd1iv109.30 (7)
S3iv—Cu1—S3v108.38 (6)Cu1vii—S2—Cd1iv97.22 (7)
S1—Cu1—S3v109.27 (6)Cu1vi—S2—Cd1iv97.22 (7)
S1—Si1—S2110.15 (15)Si1iii—S3—Cu1i114.51 (13)
S1—Si1—S3vi111.19 (13)Si1iii—S3—Cu1viii112.49 (11)
S2—Si1—S3vi109.10 (11)Cu1i—S3—Cu1viii112.34 (6)
S1—Si1—S3vii111.19 (13)Si1iii—S3—Cd1108.64 (7)
S2—Si1—S3vii109.10 (11)Cu1i—S3—Cd1102.14 (5)
S3vi—Si1—S3vii106.00 (13)Cu1viii—S3—Cd1105.74 (6)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z; (iii) x+1/2, y+1, z+1/2; (iv) x, y, z1; (v) x+1/2, y, z1/2; (vi) x+1/2, y+1, z1/2; (vii) x1/2, y+1, z1/2; (viii) x+1/2, y, z+1/2.
Copper mercury tin sulfide (Cu2HgSnS4) top
Crystal data top
Cu2HgSnS4Dx = 5.644 Mg m3
Mr = 574.60Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I42mCell parameters from 1625 reflections
a = 5.5798 (12) Åθ = 3.8–27.3°
c = 10.860 (3) ŵ = 33.60 mm1
V = 338.11 (17) Å3T = 296 K
Z = 2Prism, black
F(000) = 5040.14 × 0.13 × 0.08 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
218 reflections with I > 2σ(I)
Radiation source: fine focus sealed tube X-ray sourceRint = 0.040
φ and ω scansθmax = 27.3°, θmin = 3.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 77
Tmin = 0.352, Tmax = 0.746k = 77
2088 measured reflectionsl = 1314
218 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0124P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.014(Δ/σ)max < 0.001
wR(F2) = 0.032Δρmax = 0.53 e Å3
S = 1.08Δρmin = 0.85 e Å3
218 reflectionsExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
14 parametersExtinction coefficient: 0.0232 (10)
0 restraintsAbsolute structure: Flack x determined using 76 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.021 (11)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.5000000.5000000.5000000.0195 (2)
Sn10.0000000.0000000.5000000.00651 (19)
Cu10.5000000.0000000.2500000.0181 (3)
S10.24020 (16)0.24020 (16)0.36322 (16)0.0093 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.0186 (2)0.0186 (2)0.0214 (3)0.0000.0000.000
Sn10.0064 (2)0.0064 (2)0.0067 (3)0.0000.0000.000
Cu10.0172 (4)0.0172 (4)0.0200 (6)0.0000.0000.000
S10.0094 (6)0.0094 (6)0.0092 (8)0.0003 (6)0.0014 (3)0.0014 (3)
Geometric parameters (Å, º) top
Hg1—S1i2.5317 (17)Sn1—S1vi2.4081 (14)
Hg1—S1ii2.5317 (17)Sn1—S12.4081 (14)
Hg1—S1iii2.5317 (17)Cu1—S12.3258 (10)
Hg1—S12.5317 (17)Cu1—S1vii2.3258 (10)
Sn1—S1iv2.4081 (14)Cu1—S1viii2.3258 (10)
Sn1—S1v2.4081 (14)Cu1—S1ix2.3258 (10)
S1i—Hg1—S1ii108.15 (7)S1—Cu1—S1vii106.23 (4)
S1i—Hg1—S1iii110.14 (4)S1—Cu1—S1viii106.23 (4)
S1ii—Hg1—S1iii110.14 (4)S1vii—Cu1—S1viii116.17 (8)
S1i—Hg1—S1110.14 (4)S1—Cu1—S1ix116.17 (8)
S1ii—Hg1—S1110.14 (4)S1vii—Cu1—S1ix106.23 (4)
S1iii—Hg1—S1108.15 (7)S1viii—Cu1—S1ix106.23 (4)
S1iv—Sn1—S1v112.36 (4)Cu1—S1—Cu1x116.03 (8)
S1iv—Sn1—S1vi112.36 (4)Cu1—S1—Sn1110.63 (3)
S1v—Sn1—S1vi103.83 (8)Cu1x—S1—Sn1110.63 (3)
S1iv—Sn1—S1103.83 (8)Cu1—S1—Hg1106.45 (4)
S1v—Sn1—S1112.36 (4)Cu1x—S1—Hg1106.45 (4)
S1vi—Sn1—S1112.36 (4)Sn1—S1—Hg1105.99 (7)
Symmetry codes: (i) y+1, x, z+1; (ii) y, x+1, z+1; (iii) x+1, y+1, z; (iv) x, y, z; (v) y, x, z+1; (vi) y, x, z+1; (vii) y+1/2, x1/2, z+1/2; (viii) y+1/2, x+1/2, z+1/2; (ix) x+1, y, z; (x) x+1/2, y+1/2, z+1/2.
Bond lengths and angles (Å, °) for Cu2CdSiS4 top
AtomsDistanceAtomsAngle
Cu1—S2i2.3152 (13)S3i—Cu1—S2iii102.54 (8)
Cu1—S3ii2.316 (2)S3ii—Cu1—S3iii108.38 (6)
Cu1—S12.3301 (11)S3iii—Cu1—S1109.27 (6)
Cu1—S3iii2.3473 (16)S1—Cu1—S3ii111.49 (7)
Average Cu—S: 2.327 (3)S1—Cu1—S2i112.05 (6)
S2i—Cu1—S3ii112.65 (7)
Average S—Cu—S: 109.4 (2)
Cd1—S2iv2.5223 (18)S2iv—Cd1—S3108.16 (4)
Cd1—S12.5320 (18)S2iv—Cd1—S3v108.16 (4)
Cd1—S32.5448 (13)S1—Cd1—S3109.15 (4)
Cd1—S3v2.5448 (13)S1—Cd1—S3v109.15 (4)
Average Cd—S: 2.536 (3)S1—Cd1—S2iv111.06 (5)
S3—Cd1—S3v111.17 (5)
Average S—Cd—S: 109.5 (1)
Si1—S12.132 (2)S3vi—Si1—S3vii106.00 (13)
Si1—S22.134 (5)S3vi—Si1—S2109.10 (11)
Si1—S3vi2.135 (2)S3vii—Si1—S2109.10 (11)
Si1—S3vii2.135 (2)S1—Si1—S2110.15 (15)
Average Si—S: 2.134 (6)S3vi—Si1—S1111.19 (13)
S3vii—Si1—S1111.19 (13)
Average S—Si—S: 109.5 (3)
Symmetry codes: (i) -x+1/2, -y+1, z+1/2; (ii) x, y, z-1; (iii) -x+1/2, -y, z-1/2; (iv) x, y, z+1; (v) -x, y, z; (vi) -x+1/2, -y+1, z-1/2; (vii) x-1/2, -y, z-1/2.
PIEFACE ellipsoid data* for Cu2CdSiS4 and Cu2HgSnS4 top
R1R2R3<R>σ(R)SDCoordination number
Cu2CdSiS4
Cu2.3982.3522.2232.3240.074-0.0360.0914
Cd2.5712.5552.4812.5360.039-0.0220.0114
Si2.1782.1322.0882.1330.0370.00040.0394
S12.3682.3092.3002.3260.0300.0210.2104
S22.3722.3502.1772.3000.087-0.0640.3344
S32.4132.3202.2592.3310.0630.0120.2014
Cu2HgSnS4
Cu2.422.422.132.320.14-0.120.004
Hg2.572.512.512.530.030.020.004
Sn2.572.322.322.410.120.100.004
S2.422.422.352.390.03-0.030.154
Note: (*) a maximum radius of 3 Å was used. R1, R2, and R3 are the ellipsoid radii, <R> is the average radius for each crystallographically unique atom, σ(R) is the polyhedral distortion, S is the ellipsoid shape parameter, where a value of 0 represents a sphere, and D is the displacement of the atom relative to the ellipsoid center.
Crystallographic data and global instability index (G) values of select diamond-like semiconductors determined using crystal structures obtained from single-crystal X-ray diffraction data, unless otherwise noted top
YearSpace groupLattice parametersG (v.u.)
a (Å)b (Å)c (Å)
Cu2CdSiS419681Pmn217.606.486.250.89
197227.598 (8)6.486 (6)6.258 (1)0.23
2022*7.60853 (1)6.48071 (9)6.24923 (1)0.18
Cu2MnGeS419703,aPmn217.616.506.180.54$, 0.50$$
200547.635 (1)6.5267 (7)6.2438 (7)0.18$,$$
Cu3.75Hg1.75Sn2S819775I42m5.542 (3)10.908 (7)0.40
Cu1.924Hg0.976SnS419986,bI45.5749 (6)10.882 (1)0.25
Cu2HgSnS42022*I42m5.580 (1)10.860 (3)0.18
LT-Cu2ZnGeS419867,cI42m5.2710.540.27
20058,b5.34127 (9)10.5090 (2)0.18
2022**5.3392 (1)10.523 (3)0.17
References : (1) Chapuis & Niggli (1968); (2) Chapuis & Niggli (1972); (3) Allemand & Wintenberger (1970); (4) Bernert & Pfitzner (2005); (5) Kaplunnik et al. (1977); (6) Kabalov & Evstigneeva (1998); (7) Moodie & Whitfield (1986); (8) Parasyuk et al. (2005). Notes: (a) neutron diffraction data; (b) powder X-ray diffraction data; (c) electron diffraction data; ($) G calculated using an unchecked r0; ($$) G calculated using r0 with an unspecified oxidation state; (*) this work; (**) unpublished results; LT = low-temperature polymorph.
Bond valence sums calculated for the Cu2CdSiS4 and Cu2HgSnS4 using previously published crystal structures and those reported here top
Compound I2–II–IV–VI4Space groupIIIIVVIReference
Cu2CdSiS41.283.832.372.17, 2.21, 2.19Chapuis & Niggli (1968)
1.272.104.071.95, 2.46, 2.15Chapuis & Niggli (1972)
1.262.143.912.15, 2.18, 2.12This work
Cu3.75Hg1.75Sn2S81.501.983.122.03Kaplunnik et al. (1977)
Cu1.924Hg0.976SnS41.64, 0.992.063.952.16Kabalov & Evstigneeva (1998)
Cu2HgSnS41.262.193.902.15This work
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds