Our calculations of the global instability index (G) values for some diamond-like materials with the general formula I2–II–IV–VI4 have indicated that the structures may be unstable or incorrectly determined. To compute the G value of a given compound, the bond valence sums (BVSs) must first be calculated using a crystal structure. Two examples of compounds with high G values, based on data from the literature, are the wurtz–stannite-type dicopper cadmium silicon tetrasulfide (Cu2CdSiS4) and the stannite-type dicopper mercury tin tetrasulfide (Cu2HgSnS4), which were first reported in 1967 and 1965, respectively. In the present study, Cu2CdSiS4 and Cu2HgSnS4 were prepared by solid-state synthesis at 1000 and 900 °C, respectively. The phase purity was assessed by powder X-ray diffraction. Optical diffuse reflectance UV/Vis/NIR spectroscopy was used to estimate the optical bandgaps of 2.52 and 0.83 eV for Cu2CdSiS4 and Cu2HgSnS4, respectively. The structures were solved and refined using single-crystal X-ray diffraction data. The structure type of Cu2CdSiS4 was confirmed, where Cd2+, Si4+ and two of the three crystallographically unique S2− ions lie on a mirror plane. The structure type of Cu2HgSnS4 was also verified, where all ions lie on special positions. The S2− ion resides on a mirror plane, the Cu+ ion is situated on a fourfold rotary inversion axis and both the Hg2+ and the Sn4+ ions are located on the intersection of a fourfold rotary inversion axis, a mirror plane and a twofold rotation axis. Using the crystal structures solved and refined here, the G values were reassessed and found to be in the range that indicates reasonable strain for a stable crystal structure. This work, together with some examples gathered from the literature, shows that accurate data collected on modern instrumentation should be used to reliably calculate BVSs and G values.
Supporting information
CCDC references: 2262648; 2262647
For both structures, data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018). Program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a) for Cu2CdSiS4; SHELXL2014 (Sheldrick, 2015a) for Cu2HgSnS4. For both structures, program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ShelXle (Hübschle et al., 2011); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b).
Copper cadmium silicon sulfide (Cu2CdSiS4)
top
Crystal data top
Cu2CdSiS4 | Dx = 4.266 Mg m−3 |
Mr = 395.81 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pmn21 | Cell parameters from 5413 reflections |
a = 7.60853 (11) Å | θ = 3.1–32.8° |
b = 6.48071 (9) Å | µ = 11.67 mm−1 |
c = 6.24923 (10) Å | T = 296 K |
V = 308.14 (1) Å3 | Polyhedra, green-yellow |
Z = 2 | 0.25 × 0.14 × 0.09 mm |
F(000) = 368 | |
Data collection top
Bruker SMART APEXII diffractometer | 719 reflections with I > 2σ(I) |
Radiation source: fine focus sealed tube X-ray source | Rint = 0.033 |
φ and ω Scans scans | θmax = 27.5°, θmin = 3.1° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | h = −9→9 |
Tmin = 0.357, Tmax = 0.747 | k = −8→8 |
3842 measured reflections | l = −8→8 |
723 independent reflections | |
Refinement top
Refinement on F2 | w = 1/[σ2(Fo2) + (0.0249P)2 + 0.0278P] where P = (Fo2 + 2Fc2)/3 |
Least-squares matrix: full | (Δ/σ)max = 0.001 |
R[F2 > 2σ(F2)] = 0.022 | Δρmax = 1.33 e Å−3 |
wR(F2) = 0.047 | Δρmin = −2.26 e Å−3 |
S = 1.27 | Extinction correction: SHELXL2018 (Sheldrick, 2015<>i>b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
723 reflections | Extinction coefficient: 0.446 (15) |
44 parameters | Absolute structure: Flack x determined using 305 quotients [(I+)-(I-)]/[(I+)+(I-)]
(Parsons et al., 2013) |
1 restraint | Absolute structure parameter: 0.006 (10) |
Primary atom site location: structure-invariant direct methods | |
Special details top
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell esds are taken
into account individually in the estimation of esds in distances, angles
and torsion angles; correlations between esds in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Cd1 | 0.000000 | 0.34757 (5) | 0.87283 (5) | 0.0154 (2) | |
Cu1 | 0.24779 (7) | 0.17667 (7) | 0.36705 (17) | 0.0187 (2) | |
Si1 | 0.000000 | 0.68042 (19) | 0.3742 (6) | 0.0077 (3) | |
S1 | 0.000000 | 0.3642 (2) | 0.4680 (3) | 0.0107 (4) | |
S2 | 0.000000 | 0.7045 (2) | 0.0337 (3) | 0.0102 (3) | |
S3 | 0.27593 (17) | 0.16155 (17) | 0.9983 (2) | 0.0100 (3) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Cd1 | 0.0156 (3) | 0.0145 (3) | 0.0162 (3) | 0.000 | 0.000 | −0.0003 (2) |
Cu1 | 0.0194 (3) | 0.0180 (3) | 0.0188 (4) | −0.00103 (18) | −0.0009 (3) | −0.0003 (3) |
Si1 | 0.0083 (7) | 0.0059 (6) | 0.0090 (9) | 0.000 | 0.000 | 0.0002 (7) |
S1 | 0.0128 (7) | 0.0063 (6) | 0.0130 (8) | 0.000 | 0.000 | 0.0004 (5) |
S2 | 0.0113 (6) | 0.0110 (7) | 0.0084 (7) | 0.000 | 0.000 | 0.0013 (6) |
S3 | 0.0106 (4) | 0.0087 (5) | 0.0107 (6) | −0.0019 (3) | 0.0013 (4) | 0.0005 (3) |
Geometric parameters (Å, º) top
Cd1—S2i | 2.5223 (18) | Cu1—S1 | 2.3301 (11) |
Cd1—S1 | 2.5320 (18) | Cu1—S3v | 2.3473 (16) |
Cd1—S3 | 2.5448 (13) | Si1—S1 | 2.132 (2) |
Cd1—S3ii | 2.5448 (13) | Si1—S2 | 2.134 (5) |
Cu1—S2iii | 2.3152 (13) | Si1—S3vi | 2.135 (2) |
Cu1—S3iv | 2.316 (2) | Si1—S3vii | 2.135 (2) |
| | | |
S2i—Cd1—S1 | 111.06 (5) | Si1—S1—Cu1 | 115.27 (9) |
S2i—Cd1—S3 | 108.16 (4) | Si1—S1—Cu1ii | 115.27 (9) |
S1—Cd1—S3 | 109.15 (4) | Cu1—S1—Cu1ii | 108.02 (7) |
S2i—Cd1—S3ii | 108.16 (4) | Si1—S1—Cd1 | 108.39 (12) |
S1—Cd1—S3ii | 109.15 (4) | Cu1—S1—Cd1 | 104.38 (6) |
S3—Cd1—S3ii | 111.17 (5) | Cu1ii—S1—Cd1 | 104.38 (6) |
S2iii—Cu1—S3iv | 112.65 (7) | Si1—S2—Cu1vii | 118.23 (8) |
S2iii—Cu1—S1 | 112.05 (6) | Si1—S2—Cu1vi | 118.23 (8) |
S3iv—Cu1—S1 | 111.49 (7) | Cu1vii—S2—Cu1vi | 111.96 (10) |
S2iii—Cu1—S3v | 102.54 (8) | Si1—S2—Cd1iv | 109.30 (7) |
S3iv—Cu1—S3v | 108.38 (6) | Cu1vii—S2—Cd1iv | 97.22 (7) |
S1—Cu1—S3v | 109.27 (6) | Cu1vi—S2—Cd1iv | 97.22 (7) |
S1—Si1—S2 | 110.15 (15) | Si1iii—S3—Cu1i | 114.51 (13) |
S1—Si1—S3vi | 111.19 (13) | Si1iii—S3—Cu1viii | 112.49 (11) |
S2—Si1—S3vi | 109.10 (11) | Cu1i—S3—Cu1viii | 112.34 (6) |
S1—Si1—S3vii | 111.19 (13) | Si1iii—S3—Cd1 | 108.64 (7) |
S2—Si1—S3vii | 109.10 (11) | Cu1i—S3—Cd1 | 102.14 (5) |
S3vi—Si1—S3vii | 106.00 (13) | Cu1viii—S3—Cd1 | 105.74 (6) |
Symmetry codes: (i) x, y, z+1; (ii) −x, y, z; (iii) −x+1/2, −y+1, z+1/2; (iv) x, y, z−1; (v) −x+1/2, −y, z−1/2; (vi) −x+1/2, −y+1, z−1/2; (vii) x−1/2, −y+1, z−1/2; (viii) −x+1/2, −y, z+1/2. |
Copper mercury tin sulfide (Cu2HgSnS4)
top
Crystal data top
Cu2HgSnS4 | Dx = 5.644 Mg m−3 |
Mr = 574.60 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, I42m | Cell parameters from 1625 reflections |
a = 5.5798 (12) Å | θ = 3.8–27.3° |
c = 10.860 (3) Å | µ = 33.60 mm−1 |
V = 338.11 (17) Å3 | T = 296 K |
Z = 2 | Prism, black |
F(000) = 504 | 0.14 × 0.13 × 0.08 mm |
Data collection top
Bruker SMART APEXII CCD diffractometer | 218 reflections with I > 2σ(I) |
Radiation source: fine focus sealed tube X-ray source | Rint = 0.040 |
φ and ω scans | θmax = 27.3°, θmin = 3.8° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | h = −7→7 |
Tmin = 0.352, Tmax = 0.746 | k = −7→7 |
2088 measured reflections | l = −13→14 |
218 independent reflections | |
Refinement top
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0124P)2] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.014 | (Δ/σ)max < 0.001 |
wR(F2) = 0.032 | Δρmax = 0.53 e Å−3 |
S = 1.08 | Δρmin = −0.85 e Å−3 |
218 reflections | Extinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
14 parameters | Extinction coefficient: 0.0232 (10) |
0 restraints | Absolute structure: Flack x determined using 76 quotients [(I+)-(I-)]/[(I+)+(I-)]
(Parsons et al., 2013) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.021 (11) |
Special details top
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell esds are taken
into account individually in the estimation of esds in distances, angles
and torsion angles; correlations between esds in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Hg1 | 0.500000 | 0.500000 | 0.500000 | 0.0195 (2) | |
Sn1 | 0.000000 | 0.000000 | 0.500000 | 0.00651 (19) | |
Cu1 | 0.500000 | 0.000000 | 0.250000 | 0.0181 (3) | |
S1 | 0.24020 (16) | 0.24020 (16) | 0.36322 (16) | 0.0093 (4) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Hg1 | 0.0186 (2) | 0.0186 (2) | 0.0214 (3) | 0.000 | 0.000 | 0.000 |
Sn1 | 0.0064 (2) | 0.0064 (2) | 0.0067 (3) | 0.000 | 0.000 | 0.000 |
Cu1 | 0.0172 (4) | 0.0172 (4) | 0.0200 (6) | 0.000 | 0.000 | 0.000 |
S1 | 0.0094 (6) | 0.0094 (6) | 0.0092 (8) | −0.0003 (6) | 0.0014 (3) | 0.0014 (3) |
Geometric parameters (Å, º) top
Hg1—S1i | 2.5317 (17) | Sn1—S1vi | 2.4081 (14) |
Hg1—S1ii | 2.5317 (17) | Sn1—S1 | 2.4081 (14) |
Hg1—S1iii | 2.5317 (17) | Cu1—S1 | 2.3258 (10) |
Hg1—S1 | 2.5317 (17) | Cu1—S1vii | 2.3258 (10) |
Sn1—S1iv | 2.4081 (14) | Cu1—S1viii | 2.3258 (10) |
Sn1—S1v | 2.4081 (14) | Cu1—S1ix | 2.3258 (10) |
| | | |
S1i—Hg1—S1ii | 108.15 (7) | S1—Cu1—S1vii | 106.23 (4) |
S1i—Hg1—S1iii | 110.14 (4) | S1—Cu1—S1viii | 106.23 (4) |
S1ii—Hg1—S1iii | 110.14 (4) | S1vii—Cu1—S1viii | 116.17 (8) |
S1i—Hg1—S1 | 110.14 (4) | S1—Cu1—S1ix | 116.17 (8) |
S1ii—Hg1—S1 | 110.14 (4) | S1vii—Cu1—S1ix | 106.23 (4) |
S1iii—Hg1—S1 | 108.15 (7) | S1viii—Cu1—S1ix | 106.23 (4) |
S1iv—Sn1—S1v | 112.36 (4) | Cu1—S1—Cu1x | 116.03 (8) |
S1iv—Sn1—S1vi | 112.36 (4) | Cu1—S1—Sn1 | 110.63 (3) |
S1v—Sn1—S1vi | 103.83 (8) | Cu1x—S1—Sn1 | 110.63 (3) |
S1iv—Sn1—S1 | 103.83 (8) | Cu1—S1—Hg1 | 106.45 (4) |
S1v—Sn1—S1 | 112.36 (4) | Cu1x—S1—Hg1 | 106.45 (4) |
S1vi—Sn1—S1 | 112.36 (4) | Sn1—S1—Hg1 | 105.99 (7) |
Symmetry codes: (i) −y+1, x, −z+1; (ii) y, −x+1, −z+1; (iii) −x+1, −y+1, z; (iv) −x, −y, z; (v) −y, x, −z+1; (vi) y, −x, −z+1; (vii) −y+1/2, x−1/2, −z+1/2; (viii) y+1/2, −x+1/2, −z+1/2; (ix) −x+1, −y, z; (x) −x+1/2, y+1/2, −z+1/2. |
Bond lengths and angles (Å, °) for Cu2CdSiS4 topAtoms | Distance | Atoms | Angle |
Cu1—S2i | 2.3152 (13) | S3i—Cu1—S2iii | 102.54 (8) |
Cu1—S3ii | 2.316 (2) | S3ii—Cu1—S3iii | 108.38 (6) |
Cu1—S1 | 2.3301 (11) | S3iii—Cu1—S1 | 109.27 (6) |
Cu1—S3iii | 2.3473 (16) | S1—Cu1—S3ii | 111.49 (7) |
Average Cu—S: 2.327 (3) | | S1—Cu1—S2i | 112.05 (6) |
| | S2i—Cu1—S3ii | 112.65 (7) |
| | Average S—Cu—S: 109.4 (2) | |
Cd1—S2iv | 2.5223 (18) | S2iv—Cd1—S3 | 108.16 (4) |
Cd1—S1 | 2.5320 (18) | S2iv—Cd1—S3v | 108.16 (4) |
Cd1—S3 | 2.5448 (13) | S1—Cd1—S3 | 109.15 (4) |
Cd1—S3v | 2.5448 (13) | S1—Cd1—S3v | 109.15 (4) |
Average Cd—S: 2.536 (3) | | S1—Cd1—S2iv | 111.06 (5) |
| | S3—Cd1—S3v | 111.17 (5) |
| | Average S—Cd—S: 109.5 (1) | |
Si1—S1 | 2.132 (2) | S3vi—Si1—S3vii | 106.00 (13) |
Si1—S2 | 2.134 (5) | S3vi—Si1—S2 | 109.10 (11) |
Si1—S3vi | 2.135 (2) | S3vii—Si1—S2 | 109.10 (11) |
Si1—S3vii | 2.135 (2) | S1—Si1—S2 | 110.15 (15) |
Average Si—S: 2.134 (6) | | S3vi—Si1—S1 | 111.19 (13) |
| | S3vii—Si1—S1 | 111.19 (13) |
| | Average S—Si—S: 109.5 (3) | |
Symmetry codes: (i) -x+1/2, -y+1, z+1/2;
(ii) x, y, z-1;
(iii) -x+1/2, -y, z-1/2;
(iv) x, y, z+1;
(v) -x, y, z;
(vi) -x+1/2, -y+1, z-1/2;
(vii) x-1/2, -y, z-1/2. |
PIEFACE ellipsoid data* for Cu2CdSiS4 and Cu2HgSnS4 top | R1 | R2 | R3 | <R> | σ(R) | S | D | Coordination number |
Cu2CdSiS4 | | | | | | | | |
Cu | 2.398 | 2.352 | 2.223 | 2.324 | 0.074 | -0.036 | 0.091 | 4 |
Cd | 2.571 | 2.555 | 2.481 | 2.536 | 0.039 | -0.022 | 0.011 | 4 |
Si | 2.178 | 2.132 | 2.088 | 2.133 | 0.037 | 0.0004 | 0.039 | 4 |
S1 | 2.368 | 2.309 | 2.300 | 2.326 | 0.030 | 0.021 | 0.210 | 4 |
S2 | 2.372 | 2.350 | 2.177 | 2.300 | 0.087 | -0.064 | 0.334 | 4 |
S3 | 2.413 | 2.320 | 2.259 | 2.331 | 0.063 | 0.012 | 0.201 | 4 |
| | | | | | | | |
Cu2HgSnS4 | | | | | | | | |
Cu | 2.42 | 2.42 | 2.13 | 2.32 | 0.14 | -0.12 | 0.00 | 4 |
Hg | 2.57 | 2.51 | 2.51 | 2.53 | 0.03 | 0.02 | 0.00 | 4 |
Sn | 2.57 | 2.32 | 2.32 | 2.41 | 0.12 | 0.10 | 0.00 | 4 |
S | 2.42 | 2.42 | 2.35 | 2.39 | 0.03 | -0.03 | 0.15 | 4 |
Note: (*) a maximum radius of 3 Å was used. R1, R2, and
R3 are the ellipsoid radii, <R> is the average radius for each
crystallographically unique atom, σ(R) is the polyhedral distortion,
S is the ellipsoid shape parameter, where a value of 0 represents a
sphere, and D is the displacement of the atom relative to the
ellipsoid center. |
Crystallographic data and global instability index (G) values of select
diamond-like semiconductors determined using crystal structures obtained from
single-crystal X-ray diffraction data, unless otherwise noted top | Year | Space group | Lattice parameters | | | G (v.u.) |
| | | a (Å) | b (Å) | c (Å) | |
Cu2CdSiS4 | 19681 | Pmn21 | 7.60 | 6.48 | 6.25 | 0.89 |
| 19722 | | 7.598 (8) | 6.486 (6) | 6.258 (1) | 0.23 |
| 2022* | | 7.60853 (1) | 6.48071 (9) | 6.24923 (1) | 0.18 |
| | | | | | |
Cu2MnGeS4 | 19703,a | Pmn21 | 7.61 | 6.50 | 6.18 | 0.54$, 0.50$$ |
| 20054 | | 7.635 (1) | 6.5267 (7) | 6.2438 (7) | 0.18$,$$ |
| | | | | | |
Cu3.75Hg1.75Sn2S8 | 19775 | I42m | 5.542 (3) | | 10.908 (7) | 0.40 |
Cu1.924Hg0.976SnS4 | 19986,b | I4 | 5.5749 (6) | | 10.882 (1) | 0.25 |
Cu2HgSnS4 | 2022* | I42m | 5.580 (1) | | 10.860 (3) | 0.18 |
LT-Cu2ZnGeS4 | 19867,c | I42m | 5.27 | | 10.54 | 0.27 |
| 20058,b | | 5.34127 (9) | | 10.5090 (2) | 0.18 |
| 2022** | | 5.3392 (1) | | 10.523 (3) | 0.17 |
References : (1) Chapuis & Niggli (1968);
(2) Chapuis & Niggli (1972);
(3) Allemand & Wintenberger (1970);
(4) Bernert & Pfitzner (2005);
(5) Kaplunnik et al. (1977);
(6) Kabalov & Evstigneeva (1998);
(7) Moodie & Whitfield (1986);
(8) Parasyuk et al. (2005).
Notes: (a) neutron diffraction data;
(b) powder X-ray diffraction data;
(c) electron diffraction data;
($) G calculated using an unchecked r0;
($$) G calculated using r0 with an unspecified oxidation state;
(*) this work;
(**) unpublished results;
LT = low-temperature polymorph. |
Bond valence sums calculated for the Cu2CdSiS4 and Cu2HgSnS4 using
previously published crystal structures and those reported here topCompound I2–II–IV–VI4 | Space group | I | II | IV | VI | Reference |
Cu2CdSiS4 | | 1.28 | 3.83 | 2.37 | 2.17, 2.21, 2.19 | Chapuis & Niggli (1968) |
| | 1.27 | 2.10 | 4.07 | 1.95, 2.46, 2.15 | Chapuis & Niggli (1972) |
| | 1.26 | 2.14 | 3.91 | 2.15, 2.18, 2.12 | This work |
Cu3.75Hg1.75Sn2S8 | | 1.50 | 1.98 | 3.12 | 2.03 | Kaplunnik et al. (1977) |
Cu1.924Hg0.976SnS4 | | 1.64, 0.99 | 2.06 | 3.95 | 2.16 | Kabalov & Evstigneeva (1998) |
Cu2HgSnS4 | | 1.26 | 2.19 | 3.90 | 2.15 | This work |