Download citation
Download citation
link to html
Single crystals of the title compound, Ca3La3(BO3)5, were obtained by spontaneous nucleation from a high-temperature melt. The crystal structure of Ca3La3(BO3)5 has been determined previously from X-ray powder data [Zhang, Liang, Chen, He & Xu (2001). J. Alloys Compd, 327, 96-99]. The present refinement shows a significant improvement in terms of the precision of the geometric parameters and the correct determination of the absolute configuration in space group P63mc with all atoms refined with anisotropic displacement parameters. The structure consists of isolated BO3 triangles and distorted [CaO8] and [LaO10] polyhedra. Except for one O atom, all other atoms are situated on special positions: La, all O and one B atom on mirror planes, and two B atoms with site symmetry 3m.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536808014785/wm2179sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536808014785/wm2179Isup2.hkl
Contains datablock I

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](La-B) = 0.004 Å
  • R factor = 0.012
  • wR factor = 0.031
  • Data-to-parameter ratio = 10.1

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT731_ALERT_1_C Bond Calc 2.811(2), Rep 2.8112(8) ...... 2.50 su-Ra LA1 -O3 1.555 6.554 PLAT731_ALERT_1_C Bond Calc 2.811(2), Rep 2.8112(8) ...... 2.50 su-Ra LA1 -O3 1.555 5.564
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 27.47 From the CIF: _reflns_number_total 534 Count of symmetry unique reflns 298 Completeness (_total/calc) 179.19% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 236 Fraction of Friedel pairs measured 0.792 Are heavy atom types Z>Si present yes PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Borate crystals containing parallel aligned BO3 anions are predicted to have large nonlinear optical (NLO) coefficients, moderate birefringence and wide transparency in the UV-region. Therefore they are considered to be good candidates for NLO applications (Chen, 1999). The title compound Ca3La3(BO3)5, (I), has been investigated previously by Zhang et al. (2001a) during analysis of phase equilibria in the system La2O3—CaO—B2O3, and NLO and luminescent properties of this material have also been reported (Zhang, 2005; Han, 2007). The crystal structure of Ca3La3 (BO3)5 was originally determined from X-ray powder diffraction data in conjunction with IR spectroscopy (Zhang et al., 2001b).

The structure of compound (I) can be described in terms of BO3 triangles and complex irregular [CaO8] and [LaO10] polyhedra. Each of the three crystallographically different B atoms is coordinated to three O atoms to form planar BO3 triangles. The B—O bond lengths range from 1.384 (3) to 1.389 (3) Å, which is in good agreement with the results of geometric studies of the BO3 unit (Zobetz, 1982). Two of the three BO3 groups exhibit 3m symmetry, and the third BO3 group has m symmetry with O–B–O angles very close to 120°. The La3+ cations are 10-fold coordinated by oxygen atoms with La—O bond lengths ranging from 2.501 (2) to 2.812 (2) Å. The [LaO10] polyhedra are connected to each other and to the borate groups by sharing corners and edges forming a three-dimensional network with channels running parallel to [001]. In these channels the Ca2+ cations are situated and are surrounded by eight oxygen atoms with Ca—O bond lengths ranging from 2.3139 (13) to 2.662 (3) Å (Table 1).

Related literature top

For phase equilibria in the system La2O3—CaO—B2O3, see: Zhang et al. (2001a). For a previous structure analysis of Ca3La3(BO3)5 based on X-ray powder diffraction data, see: Zhang et al. (2001b). For non-linear optical (NLO) applications of borate crystals containing triangular BO3 anions, see: Chen et al. (1999). For a review of the geometry of the BO3 group, see: Zobetz (1982). Fo the potential applications of Ca3La3(BO3)5 for photoluminescence, see: Zhang et al. (2005); Han et al. (2007).

Experimental top

Single crystals of compound (I) were grown using a LiBO2-containing flux. The composition of the mixture for crystal growth was 1:1:4:3 of CaCO3 (Sinopharm Regent, AR), La2O3 (Materials, 99.8%), H3BO3 (Sinopharm Regent, 99.99%), and Li2CO3 (Sinopharm Reagent, AR). The mixture was heated in a platinum crucible to 1373 K, held at this temperature for several hours, and then cooled at a rate of 10 K/h from 1373 to 873 K. The remaining solified flux attached to the crystals was readily dissolved in water. Crystals with an average size of 0.5 mm and mostly rod shaped habit were obtained.

Refinement top

The present study confirms the basic structural features determined from the previous investigation by Zhang et al. (2001b) with a much higher precesion and with all displacement parameters refined anisotropically.

Computing details top

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear (Rigaku, 2000); data reduction: CrystalClear (Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2004); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The structure of (I) in a projection approximatly along the [001] direction with displacement ellipsoids drawn at the 85% probability level.
[Figure 2] Fig. 2. Packing diagram of the structure of (I). [CaO8] polyhedra are yellow, [LaO10] polyhedra are blue and [BO3] units are green.
tricalcium trilanthanum pentakis(orthoborate) top
Crystal data top
Ca3La3(BO3)5Dx = 4.492 Mg m3
Mr = 831.02Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63mcCell parameters from 1909 reflections
Hall symbol: P 6c -2cθ = 2.2–27.5°
a = 10.530 (3) ŵ = 11.59 mm1
c = 6.398 (2) ÅT = 293 K
V = 614.4 (3) Å3Rod, colourless
Z = 20.22 × 0.12 × 0.10 mm
F(000) = 752
Data collection top
Rigaku Mercury CCD
diffractometer
534 independent reflections
Radiation source: Sealed Tube534 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.035
Detector resolution: 14.6306 pixels mm-1θmax = 27.5°, θmin = 2.2°
CCD_Profile_fitting scansh = 1313
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
k = 1313
Tmin = 0.206, Tmax = 0.304l = 87
4065 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.02P)2 + 1.5843P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.012(Δ/σ)max < 0.001
wR(F2) = 0.030Δρmax = 0.41 e Å3
S = 0.89Δρmin = 0.59 e Å3
534 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
53 parametersExtinction coefficient: 0.0632 (12)
1 restraintAbsolute structure: Flack (1983), 236 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (3)
Crystal data top
Ca3La3(BO3)5Z = 2
Mr = 831.02Mo Kα radiation
Hexagonal, P63mcµ = 11.59 mm1
a = 10.530 (3) ÅT = 293 K
c = 6.398 (2) Å0.22 × 0.12 × 0.10 mm
V = 614.4 (3) Å3
Data collection top
Rigaku Mercury CCD
diffractometer
534 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
534 reflections with I > 2σ(I)
Tmin = 0.206, Tmax = 0.304Rint = 0.035
4065 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0121 restraint
wR(F2) = 0.030Δρmax = 0.41 e Å3
S = 0.89Δρmin = 0.59 e Å3
534 reflectionsAbsolute structure: Flack (1983), 236 Friedel pairs
53 parametersAbsolute structure parameter: 0.03 (3)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ca10.47334 (5)0.52666 (5)0.76261 (15)0.00673 (19)
La10.156065 (12)0.843935 (12)0.08229 (8)0.00493 (11)
B10.1989 (3)0.8011 (3)0.5473 (8)0.0049 (10)
B2000.2435 (15)0.0086 (17)
B30.66670.33330.598 (3)0.0092 (19)
O10.6272 (3)0.9278 (2)0.4462 (4)0.0067 (5)
O20.07534 (16)0.92466 (16)0.7399 (6)0.0097 (7)
O30.59052 (16)0.40948 (16)0.5984 (8)0.0083 (6)
O40.22657 (17)0.77343 (17)0.7443 (5)0.0066 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.0060 (3)0.0060 (3)0.0073 (4)0.0023 (3)0.0001 (2)0.0001 (2)
La10.00442 (12)0.00442 (12)0.00474 (14)0.00129 (9)0.00003 (8)0.00003 (8)
B10.0052 (15)0.0052 (15)0.007 (3)0.0044 (18)0.0006 (10)0.0006 (10)
B20.011 (3)0.011 (3)0.003 (4)0.0057 (13)00
B30.009 (2)0.009 (2)0.009 (6)0.0046 (11)00
O10.0069 (10)0.0056 (10)0.0073 (11)0.0029 (9)0.0014 (10)0.0016 (9)
O20.0090 (12)0.0090 (12)0.0124 (16)0.0055 (14)0.0005 (7)0.0005 (7)
O30.0101 (10)0.0101 (10)0.0067 (17)0.0065 (11)0.0005 (9)0.0005 (9)
O40.0067 (11)0.0067 (11)0.0055 (16)0.0026 (13)0.0014 (7)0.0014 (7)
Geometric parameters (Å, º) top
Ca1—O4i2.3139 (13)La1—O1i2.678 (3)
Ca1—O4ii2.3139 (13)La1—O3xiv2.8112 (8)
Ca1—O1iii2.376 (3)La1—O3xv2.8112 (8)
Ca1—O1iv2.376 (3)La1—B2xvi3.028 (3)
Ca1—O32.382 (4)La1—B13.076 (5)
Ca1—O3v2.444 (5)B1—O41.358 (6)
Ca1—O1ii2.662 (3)B1—O1i1.384 (3)
Ca1—O1vi2.662 (3)B1—O1xiii1.384 (3)
Ca1—B1i2.858 (4)B1—Ca1i2.858 (4)
Ca1—B1ii2.858 (4)B1—Ca1ii2.858 (4)
Ca1—Ca1v3.3435 (11)B2—O2xvii1.374 (3)
Ca1—Ca1vii3.3435 (11)B2—O2xviii1.374 (3)
La1—O1viii2.501 (2)B2—O2xix1.374 (3)
La1—O1ix2.501 (2)B2—La1xx3.028 (3)
La1—O4x2.516 (4)B2—La1i3.028 (3)
La1—O2x2.639 (3)B2—La1xxi3.028 (3)
La1—O2xi2.6639 (15)B3—O3xxii1.389 (3)
La1—O2xii2.6639 (15)B3—O3xxiii1.389 (3)
La1—O1xiii2.678 (3)B3—O31.389 (3)
O4i—Ca1—O4ii93.58 (15)O1ix—La1—O3xiv116.83 (10)
O4i—Ca1—O1iii151.80 (11)O4x—La1—O3xiv64.52 (12)
O4ii—Ca1—O1iii80.01 (9)O2x—La1—O3xiv122.29 (12)
O4i—Ca1—O1iv80.01 (9)O2xi—La1—O3xiv155.42 (13)
O4ii—Ca1—O1iv151.80 (11)O2xii—La1—O3xiv121.81 (10)
O1iii—Ca1—O1iv92.72 (12)O1xiii—La1—O3xiv88.50 (10)
O4i—Ca1—O3126.18 (10)O1i—La1—O3xiv65.77 (12)
O4ii—Ca1—O3126.18 (10)O1viii—La1—O3xv116.83 (9)
O1iii—Ca1—O377.64 (10)O1ix—La1—O3xv69.51 (8)
O1iv—Ca1—O377.64 (10)O4x—La1—O3xv64.52 (12)
O4i—Ca1—O3v73.69 (10)O2x—La1—O3xv122.29 (12)
O4ii—Ca1—O3v73.69 (10)O2xi—La1—O3xv121.81 (10)
O1iii—Ca1—O3v78.17 (9)O2xii—La1—O3xv155.42 (13)
O1iv—Ca1—O3v78.17 (9)O1xiii—La1—O3xv65.77 (12)
O3—Ca1—O3v144.65 (19)O1i—La1—O3xv88.50 (10)
O4i—Ca1—O1ii56.39 (9)O3xiv—La1—O3xv50.66 (12)
O4ii—Ca1—O1ii112.85 (10)O4—B1—O1i119.7 (2)
O1iii—Ca1—O1ii151.00 (8)O4—B1—O1xiii119.7 (2)
O1iv—Ca1—O1ii86.53 (8)O1i—B1—O1xiii120.6 (4)
O3—Ca1—O1ii73.88 (10)O2xvii—B2—O2xviii120.00 (1)
O3v—Ca1—O1ii129.62 (7)O2xvii—B2—O2xix120.00 (1)
O4i—Ca1—O1vi112.85 (10)O2xviii—B2—O2xix120.00 (1)
O4ii—Ca1—O1vi56.39 (9)O3xxii—B3—O3xxiii120.00 (1)
O1iii—Ca1—O1vi86.53 (8)O3xxii—B3—O3120.00 (1)
O1iv—Ca1—O1vi151.00 (8)O3xxiii—B3—O3120.00 (1)
O3—Ca1—O1vi73.88 (10)B1ii—O1—Ca1xv147.6 (3)
O3v—Ca1—O1vi129.62 (7)B1ii—O1—La1xxiv114.0 (3)
O1ii—Ca1—O1vi80.50 (11)Ca1xv—O1—La1xxiv94.81 (8)
O1viii—La1—O1ix138.96 (12)B1ii—O1—Ca1i83.5 (2)
O1viii—La1—O4x73.88 (6)Ca1xv—O1—Ca1i82.95 (8)
O1ix—La1—O4x73.88 (6)La1xxiv—O1—Ca1i87.75 (8)
O1viii—La1—O2x71.80 (6)B1ii—O1—La1ii92.9 (2)
O1ix—La1—O2x71.80 (6)Ca1xv—O1—La1ii89.98 (9)
O4x—La1—O2x64.64 (11)La1xxiv—O1—La1ii111.47 (9)
O1viii—La1—O2xi121.07 (8)Ca1i—O1—La1ii160.08 (10)
O1ix—La1—O2xi71.30 (9)B2xxv—O2—La1xxvi123.0 (5)
O4x—La1—O2xi137.71 (9)B2xxv—O2—La1xxvii91.42 (19)
O2x—La1—O2xi82.07 (7)La1xxvi—O2—La1xxvii107.69 (7)
O1viii—La1—O2xii71.30 (9)B2xxv—O2—La1xxviii91.42 (19)
O1ix—La1—O2xii121.07 (8)La1xxvi—O2—La1xxviii107.69 (7)
O4x—La1—O2xii137.71 (9)La1xxvii—O2—La1xxviii135.45 (14)
O2x—La1—O2xii82.07 (7)B3—O3—Ca1154.0 (8)
O2xi—La1—O2xii53.07 (13)B3—O3—Ca1vii118.3 (8)
O1viii—La1—O1xiii137.03 (9)Ca1—O3—Ca1vii87.71 (10)
O1ix—La1—O1xiii83.72 (6)B3—O3—La1xxix94.64 (7)
O4x—La1—O1xiii129.92 (8)Ca1—O3—La1xxix86.76 (7)
O2x—La1—O1xiii146.79 (6)Ca1vii—O3—La1xxix85.94 (9)
O2xi—La1—O1xiii68.76 (8)B3—O3—La1iii94.64 (7)
O2xii—La1—O1xiii92.23 (9)Ca1—O3—La1iii86.76 (7)
O1viii—La1—O1i83.72 (6)Ca1vii—O3—La1iii85.94 (9)
O1ix—La1—O1i137.03 (9)La1xxix—O3—La1iii169.80 (13)
O4x—La1—O1i129.92 (8)B1—O4—Ca1ii98.91 (12)
O2x—La1—O1i146.79 (6)B1—O4—Ca1i98.91 (12)
O2xi—La1—O1i92.23 (9)Ca1ii—O4—Ca1i145.78 (15)
O2xii—La1—O1i68.76 (8)B1—O4—La1xxvi127.4 (3)
O1xiii—La1—O1i53.37 (10)Ca1ii—O4—La1xxvi96.00 (9)
O1viii—La1—O3xiv69.51 (8)Ca1i—O4—La1xxvi96.00 (9)
Symmetry codes: (i) y+1, xy+1, z; (ii) x+y, x+1, z; (iii) xy+1, x, z+1/2; (iv) x+1, x+y, z+1/2; (v) x+1, y+1, z+1/2; (vi) x, xy+1, z; (vii) x+1, y+1, z1/2; (viii) y1, x, z1/2; (ix) x+1, y+2, z1/2; (x) x, y, z1; (xi) xy+1, x+1, z1/2; (xii) y1, x+y, z1/2; (xiii) x+y, y, z; (xiv) xy, x, z1/2; (xv) y, x+y+1, z1/2; (xvi) x, y+1, z; (xvii) y1, x+y1, z1/2; (xviii) xy+1, x, z1/2; (xix) x, y+1, z1/2; (xx) x+y1, x, z; (xxi) x, y1, z; (xxii) x+y+1, x+1, z; (xxiii) y+1, xy, z; (xxiv) x+1, y+2, z+1/2; (xxv) x, y+1, z+1/2; (xxvi) x, y, z+1; (xxvii) y1, x+y, z+1/2; (xxviii) xy+1, x+1, z+1/2; (xxix) y, x+y, z+1/2.

Experimental details

Crystal data
Chemical formulaCa3La3(BO3)5
Mr831.02
Crystal system, space groupHexagonal, P63mc
Temperature (K)293
a, c (Å)10.530 (3), 6.398 (2)
V3)614.4 (3)
Z2
Radiation typeMo Kα
µ (mm1)11.59
Crystal size (mm)0.22 × 0.12 × 0.10
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2000)
Tmin, Tmax0.206, 0.304
No. of measured, independent and
observed [I > 2σ(I)] reflections
4065, 534, 534
Rint0.035
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.012, 0.030, 0.89
No. of reflections534
No. of parameters53
No. of restraints1
Δρmax, Δρmin (e Å3)0.41, 0.59
Absolute structureFlack (1983), 236 Friedel pairs
Absolute structure parameter0.03 (3)

Computer programs: CrystalClear (Rigaku, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2004), enCIFer (Allen et al., 2004).

Selected geometric parameters (Å, º) top
Ca1—O4i2.3139 (13)La1—O3vii2.8112 (8)
Ca1—O1ii2.376 (3)B1—O41.358 (6)
Ca1—O32.382 (4)B1—O1i1.384 (3)
Ca1—O1iii2.662 (3)B2—O2viii1.374 (3)
La1—O1iv2.501 (2)B3—O3ix1.389 (3)
La1—O4v2.516 (4)B3—O31.389 (3)
La1—O2vi2.6639 (15)
O4—B1—O1i119.7 (2)O2viii—B2—O2xi120.00 (1)
O1i—B1—O1x120.6 (4)O3ix—B3—O3120.00 (1)
Symmetry codes: (i) y+1, xy+1, z; (ii) xy+1, x, z+1/2; (iii) x+y, x+1, z; (iv) y1, x, z1/2; (v) x, y, z1; (vi) xy+1, x+1, z1/2; (vii) xy, x, z1/2; (viii) y1, x+y1, z1/2; (ix) x+y+1, x+1, z; (x) x+y, y, z; (xi) xy+1, x, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds