Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536808014785/wm2179sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S1600536808014785/wm2179Isup2.hkl |
Key indicators
- Single-crystal X-ray study
- T = 293 K
- Mean (La-B) = 0.004 Å
- R factor = 0.012
- wR factor = 0.031
- Data-to-parameter ratio = 10.1
checkCIF/PLATON results
No syntax errors found
Alert level C PLAT731_ALERT_1_C Bond Calc 2.811(2), Rep 2.8112(8) ...... 2.50 su-Ra LA1 -O3 1.555 6.554 PLAT731_ALERT_1_C Bond Calc 2.811(2), Rep 2.8112(8) ...... 2.50 su-Ra LA1 -O3 1.555 5.564
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 27.47 From the CIF: _reflns_number_total 534 Count of symmetry unique reflns 298 Completeness (_total/calc) 179.19% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 236 Fraction of Friedel pairs measured 0.792 Are heavy atom types Z>Si present yes PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check
Single crystals of compound (I) were grown using a LiBO_{2}-containing flux. The composition of the mixture for crystal growth was 1:1:4:3 of CaCO_{3} (Sinopharm Regent, AR), La_{2}O_{3} (Materials, 99.8%), H_{3}BO_{3} (Sinopharm Regent, 99.99%), and Li_{2}CO_{3} (Sinopharm Reagent, AR). The mixture was heated in a platinum crucible to 1373 K, held at this temperature for several hours, and then cooled at a rate of 10 K/h from 1373 to 873 K. The remaining solified flux attached to the crystals was readily dissolved in water. Crystals with an average size of 0.5 mm and mostly rod shaped habit were obtained.
The present study confirms the basic structural features determined from the previous investigation by Zhang et al. (2001b) with a much higher precesion and with all displacement parameters refined anisotropically.
Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear (Rigaku, 2000); data reduction: CrystalClear (Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2004); software used to prepare material for publication: enCIFer (Allen et al., 2004).
Ca_{3}La_{3}(BO_{3})_{5} | D_{x} = 4.492 Mg m^{−}^{3} |
M_{r} = 831.02 | Mo Kα radiation, λ = 0.71073 Å |
Hexagonal, P6_{3}mc | Cell parameters from 1909 reflections |
Hall symbol: P 6c -2c | θ = 2.2–27.5° |
a = 10.530 (3) Å | µ = 11.59 mm^{−}^{1} |
c = 6.398 (2) Å | T = 293 K |
V = 614.4 (3) Å^{3} | Rod, colourless |
Z = 2 | 0.22 × 0.12 × 0.10 mm |
F(000) = 752 |
Rigaku Mercury CCD diffractometer | 534 independent reflections |
Radiation source: Sealed Tube | 534 reflections with I > 2σ(I) |
Graphite Monochromator monochromator | R_{int} = 0.035 |
Detector resolution: 14.6306 pixels mm^{-1} | θ_{max} = 27.5°, θ_{min} = 2.2° |
CCD_Profile_fitting scans | h = −13→13 |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2000) | k = −13→13 |
T_{min} = 0.206, T_{max} = 0.304 | l = −8→7 |
4065 measured reflections |
Refinement on F^{2} | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | w = 1/[σ^{2}(F_{o}^{2}) + (0.02P)^{2} + 1.5843P] where P = (F_{o}^{2} + 2F_{c}^{2})/3 |
R[F^{2} > 2σ(F^{2})] = 0.012 | (Δ/σ)_{max} < 0.001 |
wR(F^{2}) = 0.030 | Δρ_{max} = 0.41 e Å^{−}^{3} |
S = 0.89 | Δρ_{min} = −0.59 e Å^{−}^{3} |
534 reflections | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc^{*}=kFc[1+0.001xFc^{2}λ^{3}/sin(2θ)]^{-1/4} |
53 parameters | Extinction coefficient: 0.0632 (12) |
1 restraint | Absolute structure: Flack (1983), 236 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.03 (3) |
Ca_{3}La_{3}(BO_{3})_{5} | Z = 2 |
M_{r} = 831.02 | Mo Kα radiation |
Hexagonal, P6_{3}mc | µ = 11.59 mm^{−}^{1} |
a = 10.530 (3) Å | T = 293 K |
c = 6.398 (2) Å | 0.22 × 0.12 × 0.10 mm |
V = 614.4 (3) Å^{3} |
Rigaku Mercury CCD diffractometer | 534 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2000) | 534 reflections with I > 2σ(I) |
T_{min} = 0.206, T_{max} = 0.304 | R_{int} = 0.035 |
4065 measured reflections |
R[F^{2} > 2σ(F^{2})] = 0.012 | 1 restraint |
wR(F^{2}) = 0.030 | Δρ_{max} = 0.41 e Å^{−}^{3} |
S = 0.89 | Δρ_{min} = −0.59 e Å^{−}^{3} |
534 reflections | Absolute structure: Flack (1983), 236 Friedel pairs |
53 parameters | Absolute structure parameter: −0.03 (3) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of F^{2} > σ(F^{2}) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | U_{iso}*/U_{eq} | ||
Ca1 | 0.47334 (5) | 0.52666 (5) | 0.76261 (15) | 0.00673 (19) | |
La1 | 0.156065 (12) | 0.843935 (12) | 0.08229 (8) | 0.00493 (11) | |
B1 | 0.1989 (3) | 0.8011 (3) | 0.5473 (8) | 0.0049 (10) | |
B2 | 0 | 0 | 0.2435 (15) | 0.0086 (17) | |
B3 | 0.6667 | 0.3333 | 0.598 (3) | 0.0092 (19) | |
O1 | 0.6272 (3) | 0.9278 (2) | 0.4462 (4) | 0.0067 (5) | |
O2 | 0.07534 (16) | 0.92466 (16) | 0.7399 (6) | 0.0097 (7) | |
O3 | 0.59052 (16) | 0.40948 (16) | 0.5984 (8) | 0.0083 (6) | |
O4 | 0.22657 (17) | 0.77343 (17) | 0.7443 (5) | 0.0066 (6) |
U^{11} | U^{22} | U^{33} | U^{12} | U^{13} | U^{23} | |
Ca1 | 0.0060 (3) | 0.0060 (3) | 0.0073 (4) | 0.0023 (3) | −0.0001 (2) | 0.0001 (2) |
La1 | 0.00442 (12) | 0.00442 (12) | 0.00474 (14) | 0.00129 (9) | 0.00003 (8) | −0.00003 (8) |
B1 | 0.0052 (15) | 0.0052 (15) | 0.007 (3) | 0.0044 (18) | −0.0006 (10) | 0.0006 (10) |
B2 | 0.011 (3) | 0.011 (3) | 0.003 (4) | 0.0057 (13) | 0 | 0 |
B3 | 0.009 (2) | 0.009 (2) | 0.009 (6) | 0.0046 (11) | 0 | 0 |
O1 | 0.0069 (10) | 0.0056 (10) | 0.0073 (11) | 0.0029 (9) | −0.0014 (10) | 0.0016 (9) |
O2 | 0.0090 (12) | 0.0090 (12) | 0.0124 (16) | 0.0055 (14) | −0.0005 (7) | 0.0005 (7) |
O3 | 0.0101 (10) | 0.0101 (10) | 0.0067 (17) | 0.0065 (11) | 0.0005 (9) | −0.0005 (9) |
O4 | 0.0067 (11) | 0.0067 (11) | 0.0055 (16) | 0.0026 (13) | −0.0014 (7) | 0.0014 (7) |
Ca1—O4^{i} | 2.3139 (13) | La1—O1^{i} | 2.678 (3) |
Ca1—O4^{ii} | 2.3139 (13) | La1—O3^{xiv} | 2.8112 (8) |
Ca1—O1^{iii} | 2.376 (3) | La1—O3^{xv} | 2.8112 (8) |
Ca1—O1^{iv} | 2.376 (3) | La1—B2^{xvi} | 3.028 (3) |
Ca1—O3 | 2.382 (4) | La1—B1 | 3.076 (5) |
Ca1—O3^{v} | 2.444 (5) | B1—O4 | 1.358 (6) |
Ca1—O1^{ii} | 2.662 (3) | B1—O1^{i} | 1.384 (3) |
Ca1—O1^{vi} | 2.662 (3) | B1—O1^{xiii} | 1.384 (3) |
Ca1—B1^{i} | 2.858 (4) | B1—Ca1^{i} | 2.858 (4) |
Ca1—B1^{ii} | 2.858 (4) | B1—Ca1^{ii} | 2.858 (4) |
Ca1—Ca1^{v} | 3.3435 (11) | B2—O2^{xvii} | 1.374 (3) |
Ca1—Ca1^{vii} | 3.3435 (11) | B2—O2^{xviii} | 1.374 (3) |
La1—O1^{viii} | 2.501 (2) | B2—O2^{xix} | 1.374 (3) |
La1—O1^{ix} | 2.501 (2) | B2—La1^{xx} | 3.028 (3) |
La1—O4^{x} | 2.516 (4) | B2—La1^{i} | 3.028 (3) |
La1—O2^{x} | 2.639 (3) | B2—La1^{xxi} | 3.028 (3) |
La1—O2^{xi} | 2.6639 (15) | B3—O3^{xxii} | 1.389 (3) |
La1—O2^{xii} | 2.6639 (15) | B3—O3^{xxiii} | 1.389 (3) |
La1—O1^{xiii} | 2.678 (3) | B3—O3 | 1.389 (3) |
O4^{i}—Ca1—O4^{ii} | 93.58 (15) | O1^{ix}—La1—O3^{xiv} | 116.83 (10) |
O4^{i}—Ca1—O1^{iii} | 151.80 (11) | O4^{x}—La1—O3^{xiv} | 64.52 (12) |
O4^{ii}—Ca1—O1^{iii} | 80.01 (9) | O2^{x}—La1—O3^{xiv} | 122.29 (12) |
O4^{i}—Ca1—O1^{iv} | 80.01 (9) | O2^{xi}—La1—O3^{xiv} | 155.42 (13) |
O4^{ii}—Ca1—O1^{iv} | 151.80 (11) | O2^{xii}—La1—O3^{xiv} | 121.81 (10) |
O1^{iii}—Ca1—O1^{iv} | 92.72 (12) | O1^{xiii}—La1—O3^{xiv} | 88.50 (10) |
O4^{i}—Ca1—O3 | 126.18 (10) | O1^{i}—La1—O3^{xiv} | 65.77 (12) |
O4^{ii}—Ca1—O3 | 126.18 (10) | O1^{viii}—La1—O3^{xv} | 116.83 (9) |
O1^{iii}—Ca1—O3 | 77.64 (10) | O1^{ix}—La1—O3^{xv} | 69.51 (8) |
O1^{iv}—Ca1—O3 | 77.64 (10) | O4^{x}—La1—O3^{xv} | 64.52 (12) |
O4^{i}—Ca1—O3^{v} | 73.69 (10) | O2^{x}—La1—O3^{xv} | 122.29 (12) |
O4^{ii}—Ca1—O3^{v} | 73.69 (10) | O2^{xi}—La1—O3^{xv} | 121.81 (10) |
O1^{iii}—Ca1—O3^{v} | 78.17 (9) | O2^{xii}—La1—O3^{xv} | 155.42 (13) |
O1^{iv}—Ca1—O3^{v} | 78.17 (9) | O1^{xiii}—La1—O3^{xv} | 65.77 (12) |
O3—Ca1—O3^{v} | 144.65 (19) | O1^{i}—La1—O3^{xv} | 88.50 (10) |
O4^{i}—Ca1—O1^{ii} | 56.39 (9) | O3^{xiv}—La1—O3^{xv} | 50.66 (12) |
O4^{ii}—Ca1—O1^{ii} | 112.85 (10) | O4—B1—O1^{i} | 119.7 (2) |
O1^{iii}—Ca1—O1^{ii} | 151.00 (8) | O4—B1—O1^{xiii} | 119.7 (2) |
O1^{iv}—Ca1—O1^{ii} | 86.53 (8) | O1^{i}—B1—O1^{xiii} | 120.6 (4) |
O3—Ca1—O1^{ii} | 73.88 (10) | O2^{xvii}—B2—O2^{xviii} | 120.00 (1) |
O3^{v}—Ca1—O1^{ii} | 129.62 (7) | O2^{xvii}—B2—O2^{xix} | 120.00 (1) |
O4^{i}—Ca1—O1^{vi} | 112.85 (10) | O2^{xviii}—B2—O2^{xix} | 120.00 (1) |
O4^{ii}—Ca1—O1^{vi} | 56.39 (9) | O3^{xxii}—B3—O3^{xxiii} | 120.00 (1) |
O1^{iii}—Ca1—O1^{vi} | 86.53 (8) | O3^{xxii}—B3—O3 | 120.00 (1) |
O1^{iv}—Ca1—O1^{vi} | 151.00 (8) | O3^{xxiii}—B3—O3 | 120.00 (1) |
O3—Ca1—O1^{vi} | 73.88 (10) | B1^{ii}—O1—Ca1^{xv} | 147.6 (3) |
O3^{v}—Ca1—O1^{vi} | 129.62 (7) | B1^{ii}—O1—La1^{xxiv} | 114.0 (3) |
O1^{ii}—Ca1—O1^{vi} | 80.50 (11) | Ca1^{xv}—O1—La1^{xxiv} | 94.81 (8) |
O1^{viii}—La1—O1^{ix} | 138.96 (12) | B1^{ii}—O1—Ca1^{i} | 83.5 (2) |
O1^{viii}—La1—O4^{x} | 73.88 (6) | Ca1^{xv}—O1—Ca1^{i} | 82.95 (8) |
O1^{ix}—La1—O4^{x} | 73.88 (6) | La1^{xxiv}—O1—Ca1^{i} | 87.75 (8) |
O1^{viii}—La1—O2^{x} | 71.80 (6) | B1^{ii}—O1—La1^{ii} | 92.9 (2) |
O1^{ix}—La1—O2^{x} | 71.80 (6) | Ca1^{xv}—O1—La1^{ii} | 89.98 (9) |
O4^{x}—La1—O2^{x} | 64.64 (11) | La1^{xxiv}—O1—La1^{ii} | 111.47 (9) |
O1^{viii}—La1—O2^{xi} | 121.07 (8) | Ca1^{i}—O1—La1^{ii} | 160.08 (10) |
O1^{ix}—La1—O2^{xi} | 71.30 (9) | B2^{xxv}—O2—La1^{xxvi} | 123.0 (5) |
O4^{x}—La1—O2^{xi} | 137.71 (9) | B2^{xxv}—O2—La1^{xxvii} | 91.42 (19) |
O2^{x}—La1—O2^{xi} | 82.07 (7) | La1^{xxvi}—O2—La1^{xxvii} | 107.69 (7) |
O1^{viii}—La1—O2^{xii} | 71.30 (9) | B2^{xxv}—O2—La1^{xxviii} | 91.42 (19) |
O1^{ix}—La1—O2^{xii} | 121.07 (8) | La1^{xxvi}—O2—La1^{xxviii} | 107.69 (7) |
O4^{x}—La1—O2^{xii} | 137.71 (9) | La1^{xxvii}—O2—La1^{xxviii} | 135.45 (14) |
O2^{x}—La1—O2^{xii} | 82.07 (7) | B3—O3—Ca1 | 154.0 (8) |
O2^{xi}—La1—O2^{xii} | 53.07 (13) | B3—O3—Ca1^{vii} | 118.3 (8) |
O1^{viii}—La1—O1^{xiii} | 137.03 (9) | Ca1—O3—Ca1^{vii} | 87.71 (10) |
O1^{ix}—La1—O1^{xiii} | 83.72 (6) | B3—O3—La1^{xxix} | 94.64 (7) |
O4^{x}—La1—O1^{xiii} | 129.92 (8) | Ca1—O3—La1^{xxix} | 86.76 (7) |
O2^{x}—La1—O1^{xiii} | 146.79 (6) | Ca1^{vii}—O3—La1^{xxix} | 85.94 (9) |
O2^{xi}—La1—O1^{xiii} | 68.76 (8) | B3—O3—La1^{iii} | 94.64 (7) |
O2^{xii}—La1—O1^{xiii} | 92.23 (9) | Ca1—O3—La1^{iii} | 86.76 (7) |
O1^{viii}—La1—O1^{i} | 83.72 (6) | Ca1^{vii}—O3—La1^{iii} | 85.94 (9) |
O1^{ix}—La1—O1^{i} | 137.03 (9) | La1^{xxix}—O3—La1^{iii} | 169.80 (13) |
O4^{x}—La1—O1^{i} | 129.92 (8) | B1—O4—Ca1^{ii} | 98.91 (12) |
O2^{x}—La1—O1^{i} | 146.79 (6) | B1—O4—Ca1^{i} | 98.91 (12) |
O2^{xi}—La1—O1^{i} | 92.23 (9) | Ca1^{ii}—O4—Ca1^{i} | 145.78 (15) |
O2^{xii}—La1—O1^{i} | 68.76 (8) | B1—O4—La1^{xxvi} | 127.4 (3) |
O1^{xiii}—La1—O1^{i} | 53.37 (10) | Ca1^{ii}—O4—La1^{xxvi} | 96.00 (9) |
O1^{viii}—La1—O3^{xiv} | 69.51 (8) | Ca1^{i}—O4—La1^{xxvi} | 96.00 (9) |
Symmetry codes: (i) −y+1, x−y+1, z; (ii) −x+y, −x+1, z; (iii) x−y+1, x, z+1/2; (iv) −x+1, −x+y, z+1/2; (v) −x+1, −y+1, z+1/2; (vi) x, x−y+1, z; (vii) −x+1, −y+1, z−1/2; (viii) y−1, x, z−1/2; (ix) −x+1, −y+2, z−1/2; (x) x, y, z−1; (xi) x−y+1, x+1, z−1/2; (xii) y−1, −x+y, z−1/2; (xiii) −x+y, y, z; (xiv) x−y, x, z−1/2; (xv) y, −x+y+1, z−1/2; (xvi) x, y+1, z; (xvii) y−1, −x+y−1, z−1/2; (xviii) x−y+1, x, z−1/2; (xix) −x, −y+1, z−1/2; (xx) −x+y−1, −x, z; (xxi) x, y−1, z; (xxii) −x+y+1, −x+1, z; (xxiii) −y+1, x−y, z; (xxiv) −x+1, −y+2, z+1/2; (xxv) −x, −y+1, z+1/2; (xxvi) x, y, z+1; (xxvii) y−1, −x+y, z+1/2; (xxviii) x−y+1, x+1, z+1/2; (xxix) y, −x+y, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | Ca_{3}La_{3}(BO_{3})_{5} |
M_{r} | 831.02 |
Crystal system, space group | Hexagonal, P6_{3}mc |
Temperature (K) | 293 |
a, c (Å) | 10.530 (3), 6.398 (2) |
V (Å^{3}) | 614.4 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm^{−}^{1}) | 11.59 |
Crystal size (mm) | 0.22 × 0.12 × 0.10 |
Data collection | |
Diffractometer | Rigaku Mercury CCD diffractometer |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2000) |
T_{min}, T_{max} | 0.206, 0.304 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4065, 534, 534 |
R_{int} | 0.035 |
(sin θ/λ)_{max} (Å^{−}^{1}) | 0.649 |
Refinement | |
R[F^{2} > 2σ(F^{2})], wR(F^{2}), S | 0.012, 0.030, 0.89 |
No. of reflections | 534 |
No. of parameters | 53 |
No. of restraints | 1 |
Δρ_{max}, Δρ_{min} (e Å^{−}^{3}) | 0.41, −0.59 |
Absolute structure | Flack (1983), 236 Friedel pairs |
Absolute structure parameter | −0.03 (3) |
Computer programs: CrystalClear (Rigaku, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2004), enCIFer (Allen et al., 2004).
Ca1—O4^{i} | 2.3139 (13) | La1—O3^{vii} | 2.8112 (8) |
Ca1—O1^{ii} | 2.376 (3) | B1—O4 | 1.358 (6) |
Ca1—O3 | 2.382 (4) | B1—O1^{i} | 1.384 (3) |
Ca1—O1^{iii} | 2.662 (3) | B2—O2^{viii} | 1.374 (3) |
La1—O1^{iv} | 2.501 (2) | B3—O3^{ix} | 1.389 (3) |
La1—O4^{v} | 2.516 (4) | B3—O3 | 1.389 (3) |
La1—O2^{vi} | 2.6639 (15) | ||
O4—B1—O1^{i} | 119.7 (2) | O2^{viii}—B2—O2^{xi} | 120.00 (1) |
O1^{i}—B1—O1^{x} | 120.6 (4) | O3^{ix}—B3—O3 | 120.00 (1) |
Symmetry codes: (i) −y+1, x−y+1, z; (ii) x−y+1, x, z+1/2; (iii) −x+y, −x+1, z; (iv) y−1, x, z−1/2; (v) x, y, z−1; (vi) x−y+1, x+1, z−1/2; (vii) x−y, x, z−1/2; (viii) y−1, −x+y−1, z−1/2; (ix) −x+y+1, −x+1, z; (x) −x+y, y, z; (xi) x−y+1, x, z−1/2. |
Borate crystals containing parallel aligned BO_{3} anions are predicted to have large nonlinear optical (NLO) coefficients, moderate birefringence and wide transparency in the UV-region. Therefore they are considered to be good candidates for NLO applications (Chen, 1999). The title compound Ca_{3}La_{3}(BO_{3})_{5}, (I), has been investigated previously by Zhang et al. (2001a) during analysis of phase equilibria in the system La_{2}O_{3}—CaO—B_{2}O_{3}, and NLO and luminescent properties of this material have also been reported (Zhang, 2005; Han, 2007). The crystal structure of Ca_{3}La_{3} (BO_{3})_{5} was originally determined from X-ray powder diffraction data in conjunction with IR spectroscopy (Zhang et al., 2001b).
The structure of compound (I) can be described in terms of BO_{3} triangles and complex irregular [CaO_{8}] and [LaO_{10}] polyhedra. Each of the three crystallographically different B atoms is coordinated to three O atoms to form planar BO_{3} triangles. The B—O bond lengths range from 1.384 (3) to 1.389 (3) Å, which is in good agreement with the results of geometric studies of the BO_{3} unit (Zobetz, 1982). Two of the three BO_{3} groups exhibit 3m symmetry, and the third BO_{3} group has m symmetry with O–B–O angles very close to 120°. The La^{3+} cations are 10-fold coordinated by oxygen atoms with La—O bond lengths ranging from 2.501 (2) to 2.812 (2) Å. The [LaO_{10}] polyhedra are connected to each other and to the borate groups by sharing corners and edges forming a three-dimensional network with channels running parallel to [001]. In these channels the Ca^{2+} cations are situated and are surrounded by eight oxygen atoms with Ca—O bond lengths ranging from 2.3139 (13) to 2.662 (3) Å (Table 1).