Download citation
Download citation
link to html
Single crystals of the title compound, {Na4[MoVIO2(SO4)3]}n, were grown from a melt of MoO3 and Na2SO4 in Na2S2O7. In contrast to the structure of the isoformular K compound, K4[MoVIO2(SO4)3], with its monomeric anion, this sodium analogue contains a polymeric anion of the type {[MoVIO2(SO4)2-μ-(SO4)]4−}n. The MoVI cations, surrounded by two tightly bonded O atoms and four O atoms of one bridging and two terminal sulfato ligands, form zigzag chains parallel to [100]. All four Na+ cations are situated between the anionic chains and have distorted octa­hedral coordination spheres.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536808030328/wm2186sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536808030328/wm2186Isup2.hkl
Contains datablock I

Key indicators

  • Single-crystal X-ray study
  • T = 120 K
  • Mean [sigma](S-O) = 0.002 Å
  • R factor = 0.017
  • wR factor = 0.043
  • Data-to-parameter ratio = 14.4

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ?
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 27.98 From the CIF: _reflns_number_total 2861 Count of symmetry unique reflns 1662 Completeness (_total/calc) 172.14% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1199 Fraction of Friedel pairs measured 0.721 Are heavy atom types Z>Si present yes
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Considerable amounts of molybdenum(VI) oxide, a solid well known for its insolubility in many acids, can be dissolved in sulfate melts at high temperatures, as was previously found for the chemically related tungsten(VI) oxide (Schäffer & Berg, 2005, Berg et al., 2006). When varying molar amounts of MoO3, Na2SO4, and hygroscopic Na2S2O7 are placed in ampoules in a dry box, sealed, and heated to equilibration in a rocking furnace at 773 K for ca. 1 h, the resulting clear melts contain [MoO2]2+ moieties that are bonded to SO42- units. The compositions of the reaction products have been determined to be in the stoichiometric ratio 1:1:1, or MoO3 + M2SO4 + M2S2O7 M4[Mo(SO4)3O2]. In the case where M = K, a monomeric anion is formed (Schäffer & Berg, 2008), while for M = Na the anion is in a polymeric form.

The distorted octahedral coordination sphere of the MoVI cation contains two oxido ligands (cis), two terminally bound sulfato ligands (trans), and two O atoms of symmetry-related (x + 1/2, -y + 1/2, -z + 1) bridging sulfato ligands (cis), with O–Mo–O angles between any two cis oxygen atoms deviating as much as 15° from ideal values. The Mo–O bond distances to the tightly- bonded oxido ligands are similar (1.6905 (16) Å, 1.7108 (16) Å), which is expected as both bonds are trans to oxygen atoms in the bridging sulfato ligands. The Mo–O distances to the terminal sulfato ligands (Mo1–O4 and Mo1–O5) are slightly shorter than those to the brigding sulfato ligands, Mo1–03 and Mo1–O6A. The Mo–O distances compare well with previously reported values for related structures (Salles et al., 1996; Nørbygaard et al., 1998; Schäffer & Berg, 2008).

The coordination geometry of the sulfato ligands can be described as slightly distorted from tetrahedral, with angles ranging from 103.55 (9) to 113.77 (10)°. From the shortest to the longest, the S–O bond distances vary by type: S to terminal O atoms, 1.4516 (17)–1.4681 (17) Å; S to briding O atoms, 1.4941 (16) Å and 1.4953 (16) Å; S in the terminal sulfato ligands to the coordinating O atoms, 1.5589 (17) Å and 1.5346 (16) Å. This variation is typical for sulfato complexes of many different transition metal centers (Borup et al., 1990; Nielsen et al., 1993; Rasmussen et al., 2003, and Berg & Thorup, 2005).

All four sodium cations are situated between the anionic chains and are six-coordinate with Na–O bond distances ranging from 2.2713 (18) to 2.7652 (18) Å.

Related literature top

The structure of the title isoformular potassium compound, K4[MoVI(SO4)3O2], was determined by Schäffer & Berg (2008). For related Mo-containing compounds, see: Salles et al. (1996) and Nørbygaard et al. (1998). Related compounds with Mo replaced by W were discussed by Schäffer & Berg (2005) and Berg et al. (2006). Other sulfato complexes coordinated to late transition metal centers were reported by Berg & Thorup (2005), Borup et al. (1990), Nielsen et al. (1993) and Rasmussen et al. (2003).

Experimental top

Crystals were grown from a melt of equimolar amounts of MoO3, Na2SO4, and Na2S2O7, using a method described previously (Nørbygaard et al., 1998).

Refinement top

On the basis of 1205 unmerged Friedel opposites, the fractional contribrution of the racemic twin was negligible (Flack, 1983). The two highest peaks in the final difference Fourier map were, respectively, 0.78 Å and 0.79 Å from Mo1, and the deepest hole was 1.31 Å from S2.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Plot of the asymmetric unit of Na4[MoVI(SO4)3O2], showing atoms as ellipsoids at the 50% probability level. [Symmetry code A) x+0.5, -y+0.5, -z+1.]
[Figure 2] Fig. 2. The crystal packing of Na4[MoVI(SO4)3O2], viewed along the b axis, showing the chains (thick black lines). Ellipsoids are displayed at the 50% probability level.
catena-Poly[tetrasodium [[cis-dioxido-trans- bis(sulfato-κO)molybdate(VI)]-µ-sulfato-κ2O:O']] top
Crystal data top
Na4[Mo(SO4)3O2]F(000) = 984
Mr = 508.08Dx = 2.838 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5457 reflections
a = 8.4739 (6) Åθ = 2.6–27.9°
b = 9.2892 (7) ŵ = 1.86 mm1
c = 15.1046 (11) ÅT = 120 K
V = 1188.97 (15) Å3Tabular, colorless
Z = 40.24 × 0.18 × 0.02 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2861 independent reflections
Radiation source: normal-focus sealed tube2817 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 28.0°, θmin = 2.6°
Absorption correction: gaussian
(SHELXTL; Sheldrick, 2008)
h = 1111
Tmin = 0.665, Tmax = 0.964k = 1212
14125 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.017 w = 1/[σ2(Fo2) + (0.0214P)2 + 0.3747P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.042(Δ/σ)max = 0.001
S = 1.10Δρmax = 0.51 e Å3
2861 reflectionsΔρmin = 0.26 e Å3
199 parametersAbsolute structure: Flack (1983), 1205 Friedel pairs
0 restraintsAbsolute structure parameter: 0.01 (2)
Crystal data top
Na4[Mo(SO4)3O2]V = 1188.97 (15) Å3
Mr = 508.08Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.4739 (6) ŵ = 1.86 mm1
b = 9.2892 (7) ÅT = 120 K
c = 15.1046 (11) Å0.24 × 0.18 × 0.02 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2861 independent reflections
Absorption correction: gaussian
(SHELXTL; Sheldrick, 2008)
2817 reflections with I > 2σ(I)
Tmin = 0.665, Tmax = 0.964Rint = 0.031
14125 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0170 restraints
wR(F2) = 0.042Δρmax = 0.51 e Å3
S = 1.10Δρmin = 0.26 e Å3
2861 reflectionsAbsolute structure: Flack (1983), 1205 Friedel pairs
199 parametersAbsolute structure parameter: 0.01 (2)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Five frame series were filtered for statistical outliers then corrected for absorption by integration using SHELXTL/XPREP (Bruker, 2001) before using SAINT/SADABS (Bruker, 2002) to sort, merge, and scale the combined data. A series of identical frames was collected twice during the experiment to monitor decay. No decay correction was applied. The systematic conditions suggested the uambiguous space group. The structure was solved by direct methods (Sheldrick, 2001). The final space group choice was confirmed by successful convergence of the full-matrix least-squares refinement on F2. An extinction correction was not applied. The two highest peaks in the final difference Fourier map were, repectively, 0.78Å and 0.79Å from Mo1; the deepest hole was 1.31Å from S2. The final map had no other significant features. A final analysis of variance between observed and calculated structure factors showed no dependence on amplitude or resolution.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.77389 (2)0.108886 (19)0.426923 (11)0.00683 (5)
S10.42167 (6)0.29669 (6)0.38157 (3)0.00770 (11)
S20.52730 (7)0.14389 (6)0.48393 (3)0.00870 (11)
S30.87553 (6)0.37753 (6)0.29746 (3)0.00819 (10)
Na10.20072 (11)0.58268 (10)0.34042 (6)0.01293 (19)
Na20.80653 (11)0.75841 (10)0.31656 (6)0.01239 (19)
Na30.67303 (11)0.51270 (10)0.46834 (6)0.0144 (2)
Na40.57005 (11)0.46216 (10)0.21305 (6)0.01274 (19)
O10.70335 (19)0.03236 (17)0.33180 (10)0.0107 (3)
O20.94651 (19)0.02131 (17)0.44263 (11)0.0119 (3)
O30.57359 (18)0.25797 (17)0.42577 (11)0.0107 (3)
O40.6456 (2)0.02040 (17)0.50576 (10)0.0116 (3)
O50.88450 (19)0.28237 (18)0.38036 (10)0.0120 (3)
O60.29354 (19)0.27689 (17)0.44854 (9)0.0096 (3)
O70.3902 (2)0.20606 (18)0.30489 (10)0.0123 (3)
O80.4313 (2)0.44896 (18)0.35609 (11)0.0124 (3)
O90.49519 (19)0.20813 (17)0.56967 (11)0.0130 (3)
O100.60611 (19)0.24259 (18)0.42327 (12)0.0147 (3)
O110.38958 (19)0.07781 (18)0.44282 (11)0.0139 (3)
O120.7888 (2)0.29908 (17)0.22934 (10)0.0124 (3)
O130.7899 (2)0.50790 (17)0.32281 (10)0.0126 (3)
O141.03833 (19)0.40786 (18)0.27218 (10)0.0133 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.00576 (8)0.00737 (9)0.00738 (8)0.00034 (7)0.00028 (6)0.00021 (7)
S10.0056 (2)0.0096 (3)0.0078 (2)0.0014 (2)0.00017 (19)0.0001 (2)
S20.0073 (2)0.0093 (2)0.0095 (2)0.0009 (2)0.0006 (2)0.00087 (19)
S30.0073 (2)0.0087 (2)0.0086 (2)0.0001 (2)0.00067 (18)0.0004 (2)
Na10.0125 (5)0.0130 (5)0.0133 (4)0.0022 (4)0.0012 (3)0.0019 (3)
Na20.0111 (5)0.0126 (4)0.0135 (4)0.0012 (4)0.0018 (4)0.0017 (3)
Na30.0123 (4)0.0166 (5)0.0145 (5)0.0034 (4)0.0023 (4)0.0024 (4)
Na40.0107 (4)0.0156 (5)0.0120 (4)0.0010 (4)0.0008 (4)0.0020 (4)
O10.0097 (8)0.0119 (8)0.0104 (7)0.0002 (6)0.0002 (6)0.0008 (6)
O20.0113 (8)0.0112 (8)0.0130 (8)0.0020 (6)0.0021 (6)0.0007 (6)
O30.0086 (7)0.0128 (7)0.0107 (7)0.0044 (6)0.0029 (7)0.0008 (7)
O40.0138 (8)0.0116 (8)0.0095 (7)0.0053 (7)0.0018 (6)0.0001 (6)
O50.0116 (8)0.0121 (8)0.0122 (8)0.0036 (6)0.0020 (6)0.0042 (6)
O60.0080 (7)0.0110 (7)0.0098 (7)0.0010 (6)0.0006 (6)0.0012 (6)
O70.0116 (8)0.0162 (9)0.0092 (7)0.0016 (7)0.0016 (6)0.0028 (6)
O80.0121 (8)0.0111 (8)0.0140 (8)0.0018 (7)0.0023 (7)0.0023 (6)
O90.0141 (8)0.0131 (8)0.0119 (7)0.0042 (6)0.0001 (7)0.0028 (7)
O100.0151 (8)0.0119 (8)0.0171 (8)0.0010 (7)0.0051 (7)0.0045 (7)
O110.0093 (8)0.0190 (9)0.0133 (8)0.0021 (7)0.0016 (6)0.0017 (6)
O120.0141 (8)0.0120 (8)0.0109 (7)0.0002 (7)0.0015 (6)0.0011 (6)
O130.0106 (8)0.0108 (8)0.0163 (8)0.0025 (7)0.0008 (7)0.0015 (6)
O140.0095 (8)0.0167 (9)0.0136 (7)0.0012 (7)0.0042 (6)0.0008 (7)
Geometric parameters (Å, º) top
Mo1—O21.6905 (16)Na1—O9iv2.4972 (19)
Mo1—O11.7108 (16)Na1—O1ii2.7652 (18)
Mo1—O51.9925 (16)Na2—O132.3333 (18)
Mo1—O42.0102 (16)Na2—O14v2.3350 (19)
Mo1—O6i2.1661 (15)Na2—O10vi2.3415 (19)
Mo1—O32.1907 (15)Na2—O9i2.3932 (19)
S1—O71.4564 (16)Na2—O7ii2.5262 (18)
S1—O81.4681 (17)Na2—O1vi2.7006 (19)
S1—O31.4941 (16)Na2—S3v3.3837 (11)
S1—O61.4953 (16)Na3—O11i2.3524 (19)
S2—O91.4516 (17)Na3—O2iv2.3649 (19)
S2—O111.4575 (17)Na3—O132.4115 (18)
S2—O101.4581 (17)Na3—O10vi2.4398 (19)
S2—O41.5589 (17)Na3—O32.5928 (19)
S3—O141.4590 (17)Na3—O82.724 (2)
S3—O121.4595 (16)Na4—O7ii2.3065 (19)
S3—O131.4627 (16)Na4—O122.407 (2)
S3—O51.5346 (16)Na4—O11ii2.4078 (19)
Na1—O12ii2.2713 (18)Na4—O82.4629 (19)
Na1—O82.3273 (19)Na4—O1ii2.5003 (19)
Na1—O14iii2.3649 (19)Na4—O132.5297 (19)
Na1—O4iv2.4394 (18)
O2—Mo1—O1102.72 (8)O11i—Na3—O3129.03 (7)
O2—Mo1—O591.81 (7)O2iv—Na3—O375.84 (6)
O1—Mo1—O5101.77 (7)O13—Na3—O383.71 (6)
O2—Mo1—O495.58 (7)O10vi—Na3—O3134.87 (6)
O1—Mo1—O493.46 (7)O11i—Na3—O8175.92 (7)
O5—Mo1—O4161.18 (7)O2iv—Na3—O873.41 (6)
O2—Mo1—O6i92.71 (7)O13—Na3—O874.78 (6)
O1—Mo1—O6i163.68 (7)O10vi—Na3—O881.61 (6)
O5—Mo1—O6i82.77 (6)O3—Na3—O853.34 (5)
O4—Mo1—O6i79.62 (6)O7ii—Na4—O12121.20 (7)
O2—Mo1—O3167.36 (7)O7ii—Na4—O11ii90.91 (6)
O1—Mo1—O389.16 (7)O12—Na4—O11ii83.88 (6)
O5—Mo1—O381.39 (6)O7ii—Na4—O8102.80 (7)
O4—Mo1—O387.91 (6)O12—Na4—O8104.28 (6)
O6i—Mo1—O375.92 (6)O11ii—Na4—O8156.62 (7)
O7—S1—O8111.01 (10)O7ii—Na4—O1ii81.21 (6)
O7—S1—O3111.95 (9)O12—Na4—O1ii154.90 (7)
O8—S1—O3107.53 (10)O11ii—Na4—O1ii84.66 (6)
O7—S1—O6109.52 (9)O8—Na4—O1ii78.95 (6)
O8—S1—O6109.65 (10)O7ii—Na4—O1378.73 (6)
O3—S1—O6107.08 (9)O12—Na4—O1358.10 (6)
O9—S2—O11113.77 (10)O11ii—Na4—O13124.20 (7)
O9—S2—O10112.83 (10)O8—Na4—O1377.59 (6)
O11—S2—O10111.33 (10)O1ii—Na4—O13144.70 (7)
O9—S2—O4103.55 (9)Mo1—O1—Na4vii131.27 (9)
O11—S2—O4107.18 (10)Mo1—O1—Na2viii110.49 (7)
O10—S2—O4107.52 (10)Na4vii—O1—Na2viii91.78 (6)
O14—S3—O12112.83 (10)Mo1—O1—Na1vii128.10 (8)
O14—S3—O13112.19 (10)Na4vii—O1—Na1vii93.53 (5)
O12—S3—O13110.37 (10)Na2viii—O1—Na1vii89.08 (5)
O14—S3—O5106.14 (9)Mo1—O2—Na3i147.82 (9)
O12—S3—O5108.22 (9)S1—O3—Mo1145.42 (10)
O13—S3—O5106.73 (10)S1—O3—Na399.86 (8)
O12ii—Na1—O8119.12 (7)Mo1—O3—Na3108.85 (6)
O12ii—Na1—O14iii115.36 (7)S2—O4—Mo1131.46 (9)
O8—Na1—O14iii99.58 (7)S2—O4—Na1i98.63 (8)
O12ii—Na1—O4iv131.24 (7)Mo1—O4—Na1i127.05 (8)
O8—Na1—O4iv86.40 (6)S3—O5—Mo1136.93 (10)
O14iii—Na1—O4iv98.10 (6)S1—O6—Mo1iv125.67 (9)
O12ii—Na1—O9iv82.33 (6)S1—O7—Na4vii129.39 (10)
O8—Na1—O9iv141.19 (7)S1—O7—Na2vii125.94 (10)
O14iii—Na1—O9iv98.72 (7)Na4vii—O7—Na2vii101.54 (7)
O4iv—Na1—O9iv57.26 (6)S1—O8—Na1119.62 (10)
O12ii—Na1—O1ii72.64 (6)S1—O8—Na4107.73 (9)
O8—Na1—O1ii76.04 (6)Na1—O8—Na4106.56 (7)
O14iii—Na1—O1ii69.21 (5)S1—O8—Na395.05 (8)
O4iv—Na1—O1ii155.81 (6)Na1—O8—Na3125.35 (7)
O9iv—Na1—O1ii142.71 (6)Na4—O8—Na3100.15 (7)
O13—Na2—O14v130.56 (7)S2—O9—Na2iv147.79 (11)
O13—Na2—O10vi85.66 (6)S2—O9—Na1i99.36 (8)
O14v—Na2—O10vi143.70 (7)Na2iv—O9—Na1i99.58 (7)
O13—Na2—O9i79.43 (6)S2—O10—Na2viii139.66 (10)
O14v—Na2—O9i98.75 (7)S2—O10—Na3viii121.13 (10)
O10vi—Na2—O9i89.40 (7)Na2viii—O10—Na3viii91.56 (6)
O13—Na2—O7ii78.32 (6)S2—O11—Na3iv119.33 (9)
O14v—Na2—O7ii93.97 (6)S2—O11—Na4vii111.58 (9)
O10vi—Na2—O7ii91.17 (7)Na3iv—O11—Na4vii128.97 (8)
O9i—Na2—O7ii157.64 (7)S3—O12—Na1vii138.53 (11)
O13—Na2—O1vi156.46 (7)S3—O12—Na498.37 (8)
O14v—Na2—O1vi70.79 (6)Na1vii—O12—Na4122.67 (8)
O10vi—Na2—O1vi73.15 (6)S3—O13—Na2141.74 (10)
O9i—Na2—O1vi109.81 (6)S3—O13—Na3117.23 (9)
O7ii—Na2—O1vi91.70 (6)Na2—O13—Na392.48 (6)
O11i—Na3—O2iv110.07 (7)S3—O13—Na493.14 (8)
O11i—Na3—O13101.80 (6)Na2—O13—Na4100.69 (7)
O2iv—Na3—O13148.13 (7)Na3—O13—Na4107.34 (7)
O11i—Na3—O10vi95.79 (7)S3—O14—Na2ix124.60 (10)
O2iv—Na3—O10vi95.42 (7)S3—O14—Na1x124.66 (10)
O13—Na3—O10vi81.85 (6)Na2ix—O14—Na1x109.32 (7)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1, y+1/2, z+1/2; (iii) x1, y, z; (iv) x1/2, y+1/2, z+1; (v) x+2, y+1/2, z+1/2; (vi) x, y+1, z; (vii) x+1, y1/2, z+1/2; (viii) x, y1, z; (ix) x+2, y1/2, z+1/2; (x) x+1, y, z.

Experimental details

Crystal data
Chemical formulaNa4[Mo(SO4)3O2]
Mr508.08
Crystal system, space groupOrthorhombic, P212121
Temperature (K)120
a, b, c (Å)8.4739 (6), 9.2892 (7), 15.1046 (11)
V3)1188.97 (15)
Z4
Radiation typeMo Kα
µ (mm1)1.86
Crystal size (mm)0.24 × 0.18 × 0.02
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionGaussian
(SHELXTL; Sheldrick, 2008)
Tmin, Tmax0.665, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
14125, 2861, 2817
Rint0.031
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.042, 1.10
No. of reflections2861
No. of parameters199
Δρmax, Δρmin (e Å3)0.51, 0.26
Absolute structureFlack (1983), 1205 Friedel pairs
Absolute structure parameter0.01 (2)

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Mo1—O21.6905 (16)Mo1—O42.0102 (16)
Mo1—O11.7108 (16)Mo1—O6i2.1661 (15)
Mo1—O51.9925 (16)Mo1—O32.1907 (15)
Symmetry code: (i) x+1/2, y+1/2, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds