Download citation
Download citation
link to html
In the title compound, {[Cu(C6H2N2O4)(C3H7NO)]·H2O}n, the Cu(II) atom is coordinated by an N,O-bidentate pyrazine-2,3-dicarboxyl­ate (pzdc) dianion, two O atoms from two other pzdc anions and one O atom from the dimethlyformamide ligand, forming a distorted square-pyramidal CuNO4 geometry. The polymeric character of the structure is established by the formation of layers parallel to (100) via bridging pzdc ligands. O—H...O hydrogen bonding between water mol­ecules and uncoordinated carboxyl­ate O atoms leads to additional stabilization of the structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536809051332/wm2283sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536809051332/wm2283Isup2.hkl
Contains datablock I

CCDC reference: 751480

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.051
  • wR factor = 0.115
  • Data-to-parameter ratio = 12.7

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT230_ALERT_2_B Hirshfeld Test Diff for O5 -- C7 .. 7.52 su
Alert level C PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 3.99 Ratio PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.65 Ratio PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Cu1 -- O3_d .. 7.51 su PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N3 PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 21 PLAT731_ALERT_1_C Bond Calc 0.825(15), Rep 0.82(5) ...... 3.33 su-Ra O6 -H6B 1.555 1.555 PLAT732_ALERT_1_C Angle Calc 114(6), Rep 113.5(19) ...... 3.16 su-Ra H6A -O6 -H6B 1.555 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.825(15), Rep 0.82(5) ...... 3.33 su-Ra O6 -H6B 1.555 1.555 PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 17
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 3 PLAT380_ALERT_4_G Check Incorrectly? Oriented X(sp2)-Methyl Moiety C8 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 2 O3 -CU1 -O2 -C1 71.00 3.00 2.645 1.555 1.555 1.555
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 9 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Polymeric compounds play an important role in the field of molecular magnetism. Di- and polycarboxylates are capable of bridging and providing effective magnetic exchange pathways. Pyrazine-2,3-dicarboxylic acid (H2pzdc) has been widely applied to construct polymeric coordination compounds; their structures and magnetic properties were investigated (Li et al., 2004; Xiang et al., 2004; Hua & Liu, 2009; Lin et al., 2009; Tombul & Guven, 2009). We present here the structure of the title compound, {[Cu(pzdc)(DMF)].H2O}n, (I).

In the structure of compound (I), each Cu(II) atom is coordinated by an N atom of the pyrazine ring and a carboxylic O atom from one pzdc2- anion, two O atoms from two other pzdc2- anions, and O atom from DMF, forming a distorted square-pyramidal environment, as depicted in Fig. 1. The four atoms N1, O2, O5 and O3i form the basal plane, whereas the O3ii atom [symmetry code: (i) -x +1, y - 1/2, -z + 1; (ii) x, -y + 3/2, z -1/2] occupies the apical site with a longer Cu1—O3ii bond length of 2.378 (3) /%A. In the basal plane, the bond distances of Cu1—N1 and Cu1—O3i are 2.002 (3) and 1.958 (3) Å, which are shorter than those observed for the distorted square-pyramidal CuN2O3 coordination in a related structure of a Cu(II)pzdc derivative (Hua & Liu, 2009). The plane defined by carboxylic group O1—C1—C2—C3 is nearly coplanar to the pyrazine ring with the dihedral angle of 3.7 (7)°, while another carboxylate plane defined by the C2—C3—C6—O4 is approximately perpendicular to the pyrazine ring [dihedral angel of 92.9 (5)°]. This conformation was also observed in a series of other transition metal complexes formed with H2pzdc (Li et al., 2004; Xiang et al., 2004; Konar et al., 2004; Hua et al., 2009). Extensive hydrogen bonding interactions help to stabilize the structure. The carboxylate O atoms take part in a O—H···O hydrogen bonding and are acceptor atoms with O atoms of water molecules as donator atoms (Table 1).

Related literature top

For related structures with the pyrazine-2,3-dicarboxylate (pzdc) dianion, see: Hua & Liu (2009); Konar et al. (2004); Li et al. (2004); Lin et al. (2009); Tombul & Guven (2009); Wang et al. (2008); Xiang et al. (2004); Xu et al. (2008).

Experimental top

Mixed DMF and aqueous solution (15 ml) of CuCl2.2H2O (0.5 mmol) and 2,3-pyrazinedicarboxylic acid ((H2pzdc, 0.25 mmol) were slowly added into a methanolic (5 ml) solution of triethylene diamine (TED, 0.5 mmol); the resulting mixture was stirred for 5 minutes and allowed to stand at room temperature for about four days until blue single crystals were obtained.

Refinement top

H atoms of the water molecules were located in a difference Fourier map and were refined isotropically, with O—H and H—H distance restraints of 0.84 (1) Å and 1.37 (2) Å, respectively. The remaining H atoms were positioned geometrically (C—H = 0.93 Å) and allowed to ride on their parent atoms. The Uiso(H) values were set at 1.2Ueq(C) and 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination of the Cu(II) atom in the structure of compound (I), showing atom labels and 50% probability displacement ellipsoids for the non-H atoms.
[Figure 2] Fig. 2. The polymeric structure of compound (I); water molecules and DMF have been omitted for clarity.
Poly[[(N,N-dimethylformamide-κO)(µ3-pyrazine-2,3- dicarboxylato-κ4N1,O2:O3:O3)copper(II)] monohydrate] top
Crystal data top
[Cu(C6H2N2O4)(C3H7NO)]·H2OF(000) = 652
Mr = 320.75Dx = 1.682 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1111 reflections
a = 10.1656 (5) Åθ = 2.5–22.4°
b = 13.6310 (8) ŵ = 1.75 mm1
c = 9.1461 (2) ÅT = 298 K
β = 91.430 (2)°Prism, blue
V = 1266.96 (10) Å30.39 × 0.10 × 0.06 mm
Z = 4
Data collection top
Bruker APEX area-detector
diffractometer
2283 independent reflections
Radiation source: fine-focus sealed tube1600 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
phi and ω scansθmax = 25.3°, θmin = 2.0°
Absorption correction: integration
(SADABS; Bruker, 2002)
h = 812
Tmin = 0.549, Tmax = 0.902k = 1616
6222 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.0482P)2]
where P = (Fo2 + 2Fc2)/3
2283 reflections(Δ/σ)max < 0.001
180 parametersΔρmax = 0.48 e Å3
3 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Cu(C6H2N2O4)(C3H7NO)]·H2OV = 1266.96 (10) Å3
Mr = 320.75Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.1656 (5) ŵ = 1.75 mm1
b = 13.6310 (8) ÅT = 298 K
c = 9.1461 (2) Å0.39 × 0.10 × 0.06 mm
β = 91.430 (2)°
Data collection top
Bruker APEX area-detector
diffractometer
2283 independent reflections
Absorption correction: integration
(SADABS; Bruker, 2002)
1600 reflections with I > 2σ(I)
Tmin = 0.549, Tmax = 0.902Rint = 0.058
6222 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0513 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.48 e Å3
2283 reflectionsΔρmin = 0.34 e Å3
180 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.59999 (5)0.58784 (3)0.07521 (6)0.0402 (2)
O10.5775 (3)0.8747 (2)0.1085 (4)0.0526 (10)
O20.6295 (3)0.7254 (2)0.0382 (4)0.0463 (9)
O30.4380 (3)0.9489 (2)0.3914 (3)0.0386 (8)
O40.2821 (3)0.9362 (2)0.2189 (4)0.0511 (9)
O50.7494 (3)0.5510 (2)0.0435 (4)0.0503 (9)
O60.2218 (5)0.1287 (3)0.1467 (7)0.121 (2)
N10.4710 (3)0.6417 (2)0.2162 (4)0.0298 (8)
N20.3001 (3)0.7442 (2)0.3914 (4)0.0402 (9)
N30.9066 (4)0.5894 (4)0.2048 (5)0.0655 (13)
C10.5654 (4)0.7859 (3)0.1145 (5)0.0331 (10)
C20.4684 (4)0.7404 (3)0.2158 (4)0.0279 (9)
C30.3821 (4)0.7913 (3)0.3018 (5)0.0316 (10)
C40.3064 (4)0.6467 (3)0.3912 (5)0.0420 (12)
H40.25160.61180.45230.050*
C50.3912 (4)0.5951 (3)0.3039 (5)0.0381 (11)
H50.39200.52690.30710.046*
C60.3670 (4)0.9018 (3)0.3005 (5)0.0352 (10)
C70.8054 (5)0.6097 (4)0.1238 (6)0.0554 (14)
H70.77320.67350.12710.066*
C80.9664 (6)0.6630 (5)0.2983 (8)0.112 (3)
H8A0.92160.72440.28740.168*
H8B0.95930.64210.39850.168*
H8C1.05750.67070.27060.168*
C90.9607 (6)0.4924 (5)0.2062 (7)0.092 (2)
H9A1.04860.49370.16550.137*
H9B0.96240.46880.30510.137*
H9C0.90730.44960.14910.137*
H6A0.277 (5)0.148 (4)0.089 (6)0.110*
H6B0.219 (6)0.0685 (9)0.155 (7)0.110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0472 (4)0.0182 (3)0.0560 (4)0.0032 (2)0.0188 (3)0.0026 (3)
O10.075 (2)0.0191 (15)0.065 (3)0.0083 (15)0.029 (2)0.0011 (16)
O20.0559 (19)0.0221 (15)0.062 (2)0.0013 (14)0.0282 (17)0.0013 (16)
O30.0467 (17)0.0189 (14)0.050 (2)0.0034 (13)0.0072 (16)0.0062 (15)
O40.060 (2)0.0361 (18)0.057 (2)0.0112 (16)0.0027 (19)0.0003 (17)
O50.047 (2)0.0345 (17)0.070 (3)0.0050 (15)0.0268 (18)0.0034 (17)
O60.102 (4)0.071 (3)0.192 (6)0.010 (3)0.078 (4)0.054 (4)
N10.0353 (19)0.0157 (17)0.039 (2)0.0021 (14)0.0026 (17)0.0003 (16)
N20.049 (2)0.029 (2)0.043 (2)0.0043 (17)0.0103 (19)0.0032 (18)
N30.041 (2)0.083 (3)0.074 (4)0.010 (2)0.021 (2)0.004 (3)
C10.040 (2)0.025 (2)0.034 (3)0.0004 (19)0.008 (2)0.002 (2)
C20.036 (2)0.019 (2)0.029 (3)0.0042 (17)0.0021 (19)0.0008 (18)
C30.038 (2)0.025 (2)0.032 (3)0.0013 (18)0.001 (2)0.0019 (19)
C40.052 (3)0.030 (2)0.045 (3)0.010 (2)0.011 (2)0.002 (2)
C50.050 (3)0.021 (2)0.044 (3)0.004 (2)0.007 (2)0.000 (2)
C60.039 (2)0.026 (2)0.041 (3)0.004 (2)0.014 (2)0.004 (2)
C70.043 (3)0.053 (3)0.070 (4)0.009 (2)0.005 (3)0.007 (3)
C80.072 (4)0.144 (7)0.121 (7)0.014 (4)0.049 (4)0.053 (5)
C90.062 (4)0.098 (5)0.116 (6)0.011 (4)0.030 (4)0.050 (4)
Geometric parameters (Å, º) top
Cu1—O21.930 (3)N2—C31.346 (5)
Cu1—O51.954 (3)N3—C71.313 (6)
Cu1—O3i1.958 (3)N3—C91.432 (6)
Cu1—N12.002 (3)N3—C81.460 (7)
Cu1—O3ii2.378 (3)C1—C21.504 (5)
O1—C11.218 (5)C2—C31.380 (5)
O2—C11.271 (5)C3—C61.515 (5)
O3—C61.263 (5)C4—C51.381 (6)
O3—Cu1iii1.958 (3)C4—H40.9300
O3—Cu1iv2.378 (3)C5—H50.9300
O4—C61.220 (5)C7—H70.9300
O5—C71.235 (6)C8—H8A0.9600
O6—H6A0.82 (5)C8—H8B0.9600
O6—H6B0.82 (5)C8—H8C0.9600
N1—C51.318 (5)C9—H9A0.9600
N1—C21.344 (4)C9—H9B0.9600
N2—C41.331 (5)C9—H9C0.9600
O2—Cu1—O591.48 (13)C3—C2—C1125.4 (4)
O2—Cu1—O3i177.39 (13)N2—C3—C2121.3 (4)
O5—Cu1—O3i89.82 (13)N2—C3—C6114.5 (4)
O2—Cu1—N182.17 (12)C2—C3—C6124.2 (4)
O5—Cu1—N1169.37 (13)N2—C4—C5122.6 (4)
O3i—Cu1—N196.87 (12)N2—C4—H4118.7
O2—Cu1—O3ii100.87 (12)C5—C4—H4118.7
O5—Cu1—O3ii94.99 (12)N1—C5—C4120.6 (4)
O3i—Cu1—O3ii76.75 (12)N1—C5—H5119.7
N1—Cu1—O3ii94.57 (12)C4—C5—H5119.7
C1—O2—Cu1116.7 (3)O4—C6—O3126.2 (4)
C6—O3—Cu1iii118.9 (3)O4—C6—C3117.2 (4)
C6—O3—Cu1iv137.1 (3)O3—C6—C3116.4 (4)
Cu1iii—O3—Cu1iv103.25 (12)O5—C7—N3125.4 (5)
C7—O5—Cu1122.7 (3)O5—C7—H7117.3
H6A—O6—H6B113.5 (19)N3—C7—H7117.3
C5—N1—C2118.1 (4)N3—C8—H8A109.5
C5—N1—Cu1129.7 (3)N3—C8—H8B109.5
C2—N1—Cu1112.2 (3)H8A—C8—H8B109.5
C4—N2—C3116.4 (4)N3—C8—H8C109.5
C7—N3—C9120.4 (5)H8A—C8—H8C109.5
C7—N3—C8121.9 (5)H8B—C8—H8C109.5
C9—N3—C8117.6 (5)N3—C9—H9A109.5
O1—C1—O2124.5 (4)N3—C9—H9B109.5
O1—C1—C2120.4 (4)H9A—C9—H9B109.5
O2—C1—C2115.1 (3)N3—C9—H9C109.5
N1—C2—C3121.0 (4)H9A—C9—H9C109.5
N1—C2—C1113.7 (3)H9B—C9—H9C109.5
O5—Cu1—O2—C1169.1 (3)O1—C1—C2—C33.7 (7)
O3i—Cu1—O2—C171 (3)O2—C1—C2—C3175.6 (4)
N1—Cu1—O2—C12.3 (3)C4—N2—C3—C20.4 (6)
O3ii—Cu1—O2—C195.5 (3)C4—N2—C3—C6177.3 (4)
O2—Cu1—O5—C711.7 (4)N1—C2—C3—N21.5 (6)
O3i—Cu1—O5—C7166.0 (4)C1—C2—C3—N2178.8 (4)
N1—Cu1—O5—C764.7 (9)N1—C2—C3—C6176.0 (4)
O3ii—Cu1—O5—C789.4 (4)C1—C2—C3—C63.7 (7)
O2—Cu1—N1—C5179.2 (4)C3—N2—C4—C50.5 (6)
O5—Cu1—N1—C5127.0 (7)C2—N1—C5—C40.8 (6)
O3i—Cu1—N1—C51.7 (4)Cu1—N1—C5—C4178.4 (3)
O3ii—Cu1—N1—C578.9 (4)N2—C4—C5—N10.3 (7)
O2—Cu1—N1—C20.1 (3)Cu1iii—O3—C6—O47.2 (6)
O5—Cu1—N1—C253.8 (8)Cu1iv—O3—C6—O4175.4 (3)
O3i—Cu1—N1—C2177.5 (3)Cu1iii—O3—C6—C3167.7 (3)
O3ii—Cu1—N1—C2100.3 (3)Cu1iv—O3—C6—C30.5 (6)
Cu1—O2—C1—O1176.6 (4)N2—C3—C6—O484.7 (5)
Cu1—O2—C1—C24.1 (5)C2—C3—C6—O492.9 (5)
C5—N1—C2—C31.6 (6)N2—C3—C6—O390.7 (4)
Cu1—N1—C2—C3177.6 (3)C2—C3—C6—O391.7 (5)
C5—N1—C2—C1178.7 (4)Cu1—O5—C7—N3179.4 (4)
Cu1—N1—C2—C12.1 (4)C9—N3—C7—O50.6 (9)
O1—C1—C2—N1176.6 (4)C8—N3—C7—O5179.3 (6)
O2—C1—C2—N14.1 (5)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+3/2, z1/2; (iii) x+1, y+1/2, z+1/2; (iv) x, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6B···O4v0.82 (5)2.00 (3)2.771 (5)156 (7)
O6—H6A···O1vi0.82 (5)2.38 (3)3.138 (6)153 (5)
O6—H6A···O2vi0.82 (5)2.30 (3)3.037 (5)149 (5)
Symmetry codes: (v) x, y1, z; (vi) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu(C6H2N2O4)(C3H7NO)]·H2O
Mr320.75
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.1656 (5), 13.6310 (8), 9.1461 (2)
β (°) 91.430 (2)
V3)1266.96 (10)
Z4
Radiation typeMo Kα
µ (mm1)1.75
Crystal size (mm)0.39 × 0.10 × 0.06
Data collection
DiffractometerBruker APEX area-detector
diffractometer
Absorption correctionIntegration
(SADABS; Bruker, 2002)
Tmin, Tmax0.549, 0.902
No. of measured, independent and
observed [I > 2σ(I)] reflections
6222, 2283, 1600
Rint0.058
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.115, 0.98
No. of reflections2283
No. of parameters180
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.34

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6B···O4i0.82 (5)2.00 (3)2.771 (5)156 (7)
O6—H6A···O1ii0.82 (5)2.38 (3)3.138 (6)153 (5)
O6—H6A···O2ii0.82 (5)2.30 (3)3.037 (5)149 (5)
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds