Download citation
Download citation
link to html
In the crystal structure of the title compound, C7H6N3O2+·H2PO4·C7H5N3O2·2H2O, the components are connected through O—H...O, N—H...O and O—H...N hydrogen-bonding inter­actions, forming a sheet-like structure parallel to (101). Adjacent sheets are further linked together by strong O—H...O hydrogen-bonds involving the dihydrogenphosphate groups. π–π stacking inter­actions between neighbouring aromatic constituents [centroid–centroid distance 3.653 (3) Å] help to consolidate the crystal packing.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536810023603/wm2359sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536810023603/wm2359Isup2.hkl
Contains datablock I

CCDC reference: 786676

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.041
  • wR factor = 0.141
  • Data-to-parameter ratio = 15.3

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT417_ALERT_2_B Short Inter D-H..H-D H9B .. H10B .. 2.04 Ang.
Alert level C PLAT245_ALERT_2_C U(iso) H9A Smaller than U(eq) O9 by ... 0.01 AngSq PLAT245_ALERT_2_C U(iso) H9B Smaller than U(eq) O9 by ... 0.01 AngSq PLAT245_ALERT_2_C U(iso) H10A Smaller than U(eq) O10 by ... 0.03 AngSq PLAT245_ALERT_2_C U(iso) H10B Smaller than U(eq) O10 by ... 0.03 AngSq PLAT355_ALERT_3_C Long O-H Bond (0.82A) O6 - H6A ... 1.03 Ang. PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ..... 7 PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 5 PLAT042_ALERT_1_C Calc. and Reported MoietyFormula Strings Differ ? PLAT480_ALERT_4_C Long H...A H-Bond Reported H10B .. O3 .. 2.61 Ang. PLAT737_ALERT_1_C D...A Calc 3.107(5), Rep 3.106(2) ...... 2.50 su-Ra O10 -O3 1.555 2.776 PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 36
Alert level G PLAT154_ALERT_1_G The su's on the Cell Angles are Equal (x 10000) 3000 Deg. PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature 293 K
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 11 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 5 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 5 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Phosphates are of great interest because of their rich crystal chemistry and practical applications. Up to now, numerous inorganic metal phosphates have been reported (e.g. Benard et al., 1996; Jensen et al., 2000). Furthermore, various of these phosphates were synthesized by structure-orienting templates molecules, most ferquently amines (Sameski et al., 1993; Lii et al., 1998). Compared with these inorganic phosphates, the synthesis of non-metal phosphates was less well explored in the past decades (Dakhlaoui et al., 2007). Herein, we describe the synthesis and crystal structure of the title compound (I), a new non-metal phosphate with formula (C7H6N3O2)[H2PO4].(C7H5N3O2).2(H2O)

As shown in Fig.1, the structure of (I) consists of one (C7H6N3O2)+ cation, one [H2PO4]- anion, one (C7H5N3O2) solvent molecule and two H2O molecules, viz. one imidazole molecule is protonated, one imidazole molecule acts as an unprotonated solvent and a dihydrogenphosphate group is present. The O—P—O angles are in the range 105.62 (11)—115.73 (13) °. The P—O bond lengths to the terminal O atoms are 1.500 (2) and 1.504 (2) Å while the P—OH bond lengths are considerably longer with 1.5591 (19) and 1.562 (2) Å.

As is well known, hydrogen bonding interactions play an important role in the formation and stability of low-dimensional structures. In the present structure, the [(C7H6N3O2)]+ cations, [H2PO4]- anions, (C7H5N3O2) and H2O molecules are linked together through hydrogen bonds: N1—H1A···O7, N5—H5B···O7; N2—H2A···O9, O6—H6A···N4, O9—H4A···O4, O9—H9B···O10, O10—H10B···O3 (Fig. 2), forming a two-dimensional sheetlike structure parallel to (101). Adjacent sheets are further linked together by strong H-bonding interactions [O5—H5A···O8, O10—H10A···O8, O10—H10B···O9]. ππ stacking interactions between neighboring 6-nitrobenzimidazole molecules with an interplanar distance of 3.653 (3) Å help to consolidate a three-dimensional supramolecular network structure (Fig. 3).

Related literature top

For the preparation of inorganic metal phosphates, see: Benard et al. (1996); Jensen et al. (2000). For template synthesis of phosphates, see: Sameski et al. (1993); Lii et al. (1998). For phosphates with organic cations, see: Dakhlaoui et al. (2007).

Experimental top

The title compound was obtained by the reaction of phosphoric acid, 6-nitrobenzimidazole and methanol/distilled water under room temperature. Typically, a mixture of phosphoric acid (0.2 ml), analytically pure 6-nitrobenzimidazole (0.164 g) and methanol/distilled water (10 ml/10 ml) was stirred at room temperature before it was filtered. The final filtrate was allowed to evaporate slowly at room temperature for 7 days to obtain yellow crystals.

Refinement top

All H atoms associated with C atoms and N atoms were positioned geometrically and refined as riding model, with N–H = 0.86 Å, C–Haromatic type = 0.93 Å, Uiso(H) = 1.2Ueq(N), Uiso(H) = 1.2Ueq(C). Hydrogen atoms attached to O5, O6, O9 and O10 were discernible from difference Fourier maps. Their Uiso(H) values were fixed at 0.05 Å2 and their coordinates were not refined.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: Crystal Structure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The layer structure of (C7H6N3O2)[H2PO4].(C7H5N3O2).2(H2O). Hydrogen bonds are indicated by dashed lines.
[Figure 3] Fig. 3. A packing diagram for the title compound, viewed along the a axis. Dashed lines indicate hydrogen bonds.
6-Nitrobenzimidazolium dihydrogen phosphate 6-nitrobenzimidazole solvate dihydrate top
Crystal data top
C7H6N3O2+·H2PO4·C7H5N3O2·2H2OZ = 2
Mr = 460.31F(000) = 476
Triclinic, P1Dx = 1.610 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.4683 (19) ÅCell parameters from 6404 reflections
b = 9.990 (2) Åθ = 3.1–27.5°
c = 11.407 (2) ŵ = 0.22 mm1
α = 90.73 (3)°T = 293 K
β = 107.10 (3)°Platelet, yellow
γ = 111.66 (3)°0.37 × 0.32 × 0.12 mm
V = 949.4 (3) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4286 independent reflections
Radiation source: fine-focus sealed tube2827 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1212
Tmin = 0.924, Tmax = 0.975k = 1212
9332 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0532P)2 + 0.7024P]
where P = (Fo2 + 2Fc2)/3
4286 reflections(Δ/σ)max = 0.005
280 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
C7H6N3O2+·H2PO4·C7H5N3O2·2H2Oγ = 111.66 (3)°
Mr = 460.31V = 949.4 (3) Å3
Triclinic, P1Z = 2
a = 9.4683 (19) ÅMo Kα radiation
b = 9.990 (2) ŵ = 0.22 mm1
c = 11.407 (2) ÅT = 293 K
α = 90.73 (3)°0.37 × 0.32 × 0.12 mm
β = 107.10 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4286 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2827 reflections with I > 2σ(I)
Tmin = 0.924, Tmax = 0.975Rint = 0.021
9332 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.14Δρmax = 0.43 e Å3
4286 reflectionsΔρmin = 0.47 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.46015 (8)0.77962 (7)0.52850 (6)0.03448 (19)
O11.0279 (3)0.6110 (3)0.1175 (3)0.0759 (8)
N10.4441 (3)0.4733 (2)0.2701 (2)0.0392 (5)
H1A0.43680.41140.32210.047*
C10.6946 (3)0.4893 (3)0.2258 (2)0.0336 (5)
H1B0.71810.42260.27600.040*
O20.9605 (3)0.4445 (3)0.2308 (2)0.0638 (6)
N20.3902 (3)0.6274 (2)0.1497 (2)0.0385 (5)
H2A0.34170.68000.11200.046*
C20.5632 (3)0.5227 (3)0.2149 (2)0.0313 (5)
O31.1886 (3)1.0612 (3)0.1237 (3)0.0771 (8)
N30.9352 (3)0.5369 (3)0.1686 (2)0.0447 (6)
C30.5284 (3)0.6217 (3)0.1383 (2)0.0317 (5)
O41.0632 (3)1.1997 (3)0.1303 (3)0.0762 (8)
N41.0431 (3)0.7285 (2)0.4511 (2)0.0379 (5)
C40.6251 (3)0.6929 (3)0.0684 (2)0.0376 (6)
H4B0.60110.75830.01680.045*
O50.4699 (3)0.8359 (2)0.40310 (18)0.0489 (5)
H5A0.49180.93240.40140.050*
N50.8298 (3)0.7543 (2)0.47608 (19)0.0375 (5)
H5B0.74990.74030.50240.045*
C50.7570 (3)0.6616 (3)0.0796 (2)0.0376 (6)
H5C0.82590.70700.03550.045*
O60.2931 (2)0.6510 (2)0.4983 (2)0.0471 (5)
H6A0.18680.66470.48260.050*
N61.0976 (3)1.0955 (3)0.1613 (2)0.0492 (6)
C60.7888 (3)0.5623 (3)0.1566 (2)0.0347 (6)
O70.5822 (2)0.7132 (2)0.57244 (19)0.0456 (5)
C70.3444 (3)0.5381 (3)0.2287 (3)0.0425 (6)
H7B0.25390.52340.25180.051*
O80.4731 (3)0.8988 (2)0.61749 (16)0.0435 (5)
C81.0885 (3)0.9142 (3)0.3032 (2)0.0367 (6)
H8B1.17690.90450.29020.044*
O90.2853 (3)0.8166 (3)0.0119 (2)0.0625 (6)
H9A0.20250.84210.01120.050*
H9B0.34010.85900.03390.050*
C91.0114 (3)0.8331 (3)0.3813 (2)0.0320 (5)
O100.4652 (3)0.9058 (3)0.8556 (2)0.0754 (8)
H10A0.46520.89140.77710.050*
H10B0.55640.96460.90080.050*
C100.8767 (3)0.8494 (3)0.3970 (2)0.0322 (5)
C110.8168 (3)0.9477 (3)0.3391 (2)0.0389 (6)
H11A0.72790.95780.35080.047*
C120.8942 (3)1.0293 (3)0.2638 (2)0.0401 (6)
H12A0.85921.09760.22440.048*
C131.0254 (3)1.0093 (3)0.2469 (2)0.0364 (6)
C140.9324 (3)0.6863 (3)0.5052 (2)0.0387 (6)
H14A0.92530.61610.55850.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0389 (4)0.0324 (4)0.0420 (4)0.0175 (3)0.0220 (3)0.0148 (3)
O10.0584 (15)0.097 (2)0.104 (2)0.0408 (15)0.0564 (15)0.0469 (16)
N10.0364 (12)0.0418 (13)0.0442 (13)0.0156 (10)0.0187 (10)0.0156 (10)
C10.0338 (13)0.0333 (13)0.0338 (13)0.0131 (11)0.0109 (10)0.0113 (10)
O20.0587 (14)0.0820 (17)0.0750 (16)0.0482 (14)0.0283 (12)0.0319 (13)
N20.0416 (13)0.0427 (13)0.0403 (12)0.0253 (11)0.0146 (10)0.0109 (10)
C20.0294 (12)0.0323 (13)0.0327 (13)0.0109 (10)0.0120 (10)0.0063 (10)
O30.0843 (18)0.103 (2)0.0893 (18)0.0559 (17)0.0655 (16)0.0499 (16)
N30.0375 (13)0.0537 (15)0.0484 (14)0.0204 (12)0.0182 (11)0.0078 (11)
C30.0347 (13)0.0311 (13)0.0282 (12)0.0131 (11)0.0084 (10)0.0037 (9)
O40.0911 (19)0.0713 (16)0.101 (2)0.0464 (15)0.0594 (16)0.0566 (15)
N40.0334 (12)0.0393 (12)0.0444 (13)0.0156 (10)0.0151 (10)0.0105 (10)
C40.0433 (15)0.0337 (13)0.0330 (13)0.0130 (12)0.0107 (11)0.0087 (10)
O50.0798 (15)0.0367 (10)0.0441 (11)0.0264 (11)0.0341 (11)0.0164 (8)
N50.0325 (12)0.0453 (13)0.0373 (12)0.0135 (10)0.0172 (9)0.0084 (9)
C50.0366 (14)0.0419 (15)0.0325 (13)0.0109 (12)0.0144 (11)0.0086 (11)
O60.0365 (11)0.0321 (10)0.0764 (14)0.0126 (8)0.0240 (10)0.0171 (9)
N60.0469 (14)0.0591 (16)0.0500 (15)0.0219 (13)0.0252 (12)0.0194 (12)
C60.0289 (13)0.0423 (14)0.0322 (13)0.0149 (11)0.0078 (10)0.0036 (10)
O70.0405 (11)0.0490 (11)0.0649 (13)0.0249 (9)0.0316 (10)0.0280 (10)
C70.0383 (15)0.0491 (16)0.0470 (16)0.0212 (13)0.0182 (12)0.0106 (12)
O80.0659 (13)0.0377 (10)0.0380 (10)0.0233 (10)0.0281 (9)0.0151 (8)
C80.0297 (13)0.0420 (15)0.0407 (14)0.0125 (11)0.0166 (11)0.0042 (11)
O90.0635 (14)0.0811 (16)0.0725 (15)0.0465 (13)0.0389 (12)0.0432 (12)
C90.0291 (12)0.0320 (13)0.0331 (13)0.0088 (10)0.0116 (10)0.0031 (10)
O100.0840 (19)0.100 (2)0.0467 (13)0.0308 (16)0.0344 (13)0.0136 (13)
C100.0298 (13)0.0349 (13)0.0319 (13)0.0097 (11)0.0133 (10)0.0055 (10)
C110.0332 (14)0.0465 (15)0.0410 (15)0.0189 (12)0.0133 (11)0.0054 (11)
C120.0376 (14)0.0437 (15)0.0426 (15)0.0183 (12)0.0148 (12)0.0108 (11)
C130.0357 (14)0.0355 (14)0.0360 (14)0.0090 (11)0.0150 (11)0.0075 (10)
C140.0367 (14)0.0356 (14)0.0417 (15)0.0111 (12)0.0132 (11)0.0093 (11)
Geometric parameters (Å, º) top
P1—O81.500 (2)O5—H5A0.9100
P1—O71.504 (2)N5—C141.348 (4)
P1—O51.5591 (19)N5—C101.364 (3)
P1—O61.562 (2)N5—H5B0.8600
O1—N31.221 (3)C5—C61.391 (4)
N1—C71.315 (4)C5—H5C0.9300
N1—C21.388 (3)O6—H6A1.0287
N1—H1A0.8600N6—C131.463 (3)
C1—C21.376 (3)C7—H7B0.9300
C1—C61.378 (3)C8—C131.371 (4)
C1—H1B0.9300C8—C91.396 (3)
O2—N31.221 (3)C8—H8B0.9300
N2—C71.328 (3)O9—H9A0.9074
N2—C31.374 (3)O9—H9B0.8512
N2—H2A0.8600C9—C101.405 (3)
C2—C31.393 (3)O10—H10A0.9048
O3—N61.215 (3)O10—H10B0.8438
N3—C61.467 (3)C10—C111.389 (4)
C3—C41.394 (4)C11—C121.373 (4)
O4—N61.228 (3)C11—H11A0.9300
N4—C141.310 (3)C12—C131.395 (4)
N4—C91.388 (3)C12—H12A0.9300
C4—C51.367 (4)C14—H14A0.9300
C4—H4B0.9300
O8—P1—O7115.73 (13)C6—C5—H5C119.8
O8—P1—O5109.95 (10)P1—O6—H6A123.8
O7—P1—O5108.51 (11)O3—N6—O4122.7 (3)
O8—P1—O6110.30 (12)O3—N6—C13118.9 (3)
O7—P1—O6105.62 (11)O4—N6—C13118.4 (2)
O5—P1—O6106.23 (13)C1—C6—C5124.3 (2)
C7—N1—C2107.7 (2)C1—C6—N3117.6 (2)
C7—N1—H1A126.2C5—C6—N3118.0 (2)
C2—N1—H1A126.2N1—C7—N2110.9 (2)
C2—C1—C6114.8 (2)N1—C7—H7B124.5
C2—C1—H1B122.6N2—C7—H7B124.5
C6—C1—H1B122.6C13—C8—C9115.7 (2)
C7—N2—C3108.4 (2)C13—C8—H8B122.2
C7—N2—H2A125.8C9—C8—H8B122.2
C3—N2—H2A125.8H9A—O9—H9B116.1
C1—C2—N1131.2 (2)N4—C9—C8130.5 (2)
C1—C2—C3122.0 (2)N4—C9—C10109.0 (2)
N1—C2—C3106.8 (2)C8—C9—C10120.4 (2)
O1—N3—O2122.8 (3)H10A—O10—H10B110.3
O1—N3—C6118.4 (2)N5—C10—C11132.1 (2)
O2—N3—C6118.8 (2)N5—C10—C9105.6 (2)
N2—C3—C2106.2 (2)C11—C10—C9122.3 (2)
N2—C3—C4131.9 (2)C12—C11—C10117.3 (2)
C2—C3—C4121.9 (2)C12—C11—H11A121.4
C14—N4—C9104.8 (2)C10—C11—H11A121.4
C5—C4—C3116.5 (2)C11—C12—C13119.7 (3)
C5—C4—H4B121.8C11—C12—H12A120.1
C3—C4—H4B121.8C13—C12—H12A120.1
P1—O5—H5A115.9C8—C13—C12124.6 (2)
C14—N5—C10107.1 (2)C8—C13—N6118.7 (2)
C14—N5—H5B126.5C12—C13—N6116.7 (2)
C10—N5—H5B126.5N4—C14—N5113.5 (2)
C4—C5—C6120.4 (2)N4—C14—H14A123.3
C4—C5—H5C119.8N5—C14—H14A123.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O7i0.861.742.600 (2)179
N2—H2A···O90.861.922.752 (2)164
O6—H6A···N4ii1.031.662.665 (2)165
O5—H5A···O8iii0.911.622.531 (2)174
N5—H5B···O70.861.912.773 (2)176
O9—H9A···O3ii0.912.593.269 (2)132
O9—H9A···O4iv0.912.433.161 (2)137
O9—H9B···O10v0.851.922.754 (2)165
O10—H10A···O80.911.852.740 (2)169
O10—H10B···O9iii0.842.162.917 (2)149
O10—H10B···O3vi0.842.613.106 (2)119
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x+1, y+2, z+1; (iv) x+1, y+2, z; (v) x, y, z1; (vi) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC7H6N3O2+·H2PO4·C7H5N3O2·2H2O
Mr460.31
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.4683 (19), 9.990 (2), 11.407 (2)
α, β, γ (°)90.73 (3), 107.10 (3), 111.66 (3)
V3)949.4 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.37 × 0.32 × 0.12
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.924, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
9332, 4286, 2827
Rint0.021
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.141, 1.14
No. of reflections4286
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.47

Computer programs: RAPID-AUTO (Rigaku, 1998), Crystal Structure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2008).

Selected bond lengths (Å) top
P1—O81.500 (2)P1—O51.5591 (19)
P1—O71.504 (2)P1—O61.562 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O7i0.861.742.600 (2)179
N2—H2A···O90.861.922.752 (2)164
O6—H6A···N4ii1.031.662.665 (2)165
O5—H5A···O8iii0.911.622.531 (2)174
N5—H5B···O70.861.912.773 (2)176
O9—H9A···O4iv0.912.433.161 (2)137
O9—H9B···O10v0.851.922.754 (2)165
O10—H10A···O80.911.852.740 (2)169
O10—H10B···O9iii0.842.162.917 (2)149
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x+1, y+2, z+1; (iv) x+1, y+2, z; (v) x, y, z1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds