Download citation
Download citation
link to html
The asymmetric unit of the title compound, [MnI(C10H9N3)2(H2O)]I, contains a cationic MnII complex and an I anion. In the complex, the MnII ion is six-coordinated in a considerably distorted cis-N4IO octa­hedral environment defined by four N atoms of the two chelating di-2-pyridyl­amine (dpa) ligands, one I anion and one O atom of a water ligand. As a result of the different trans effects of the I, N and O atoms, the Mn—N bond trans to the I atom is slightly longer than the Mn—N bond trans to the N or O atoms. The dpa ligands are not planar, with dihedral angles between the two pyridine rings of 26.2 (4) and 26.5 (4)°. The complex cations are stacked in columns along the a axis and are linked to the anions by inter­molecular O—H...I and N—H...I hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536811047349/wm2558sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536811047349/wm2558Isup2.hkl
Contains datablock I

CCDC reference: 858170

Key indicators

  • Single-crystal X-ray study
  • T = 200 K
  • Mean [sigma](C-C) = 0.013 Å
  • R factor = 0.050
  • wR factor = 0.134
  • Data-to-parameter ratio = 16.6

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT342_ALERT_3_C Low Bond Precision on C-C Bonds ............... 0.0126 Ang PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ..... 1 PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 27 PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 48 PLAT971_ALERT_2_C Large Calcd. Non-Metal Positive Residual Density 1.78 eA-3
Alert level G PLAT005_ALERT_5_G No _iucr_refine_instructions_details in CIF .... ? PLAT154_ALERT_1_G The su's on the Cell Angles are Equal .......... 0.00600 Deg.
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 5 ALERT level C = Check. Ensure it is not caused by an omission or oversight 2 ALERT level G = General information/check it is not something unexpected 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Cationic MnII complexes with the di-2-pyridylamine (dpa; C10H9N3) ligand, such as [MnX(dpa)2(H2O)]ClO4 (X = N3-, NCO-), have been investigated previously (Bose et al., 2005).

The asymmetric unit of the title compound, [MnI(dpa)2(H2O)]I, consists of a cationic MnII complex and an I- anion (Fig. 1). In the complex, the MnII ion is six-coordinated in a considerably distorted cis-N4IO octahedral environment defined by four N atoms of the two chelating dpa ligands, one I- anion and one O atom of a water ligand. The main contribution to the distortion is the tight N—Mn—N chelating angles (Table 1), which results in non-linear trans axes [N3—Mn1—N4 = 165.7 (2)° and O1—Mn1—N6 = 171.7 (2)°]. However, the apical I1—Mn1—N1 bond is almost linear with a bond angle of 177.61 (17)°. The Mn—N(dpa) bond lengths are somewhat different and longer than the Mn—O(H2O) bond (Table 1). As a result of the different trans effects of the I, N and O atoms, the Mn1—N1 bond trans to the I atom is slightly longer than the Mn—N bond trans to the N or O atoms. In the crystal structure, the dpa ligands are not planar. The dihedral angles between the two pyridyl rings of dpa are 26.2 (4)° and 26.5 (4)°.

The complexes are stacked in columns along the a axis, and the component cations and anions are linked by intermolecular O—H···I and N—H···I hydrogen bonds (Fig. 2, Table 2). In the column, numerous inter- and intramolecular π-π interactions between the pyridyl rings are present, the shortest centroid-centroid distance being 3.728 (5) Å.

Related literature top

For the crystal structures of related MnII complexes with dpa, see: Bose et al. (2005).

Experimental top

To a solution of di-2-pyridylamine (0.3432 g, 2.005 mmol) in acetone (50 ml) was added MnI2 (0.3108 g, 1.007 mmol) and refluxed for 7 h. The formed precipitate was separated by filtration and washed with acetone, and dried at 323 K, to give a white powder (0.1571 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from an MeOH solution.

Refinement top

Carbon-bound H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C)]. Nitrogen- and oxygen-bound H atoms were located from Fourier difference maps then allowed to ride on their parent atoms in the final cycles of refinement with N—H = 0.92 Å, O—H = 0.84 Å and Uiso(H) = 1.5 Ueq(N, O). The highest peak (1.01 e Å-3) and the deepest hole (-1.13 e Å-3) in the difference Fourier map are located 1.01 Å and 0.79 Å from the atoms C8 and I1, respectively.

Structure description top

Cationic MnII complexes with the di-2-pyridylamine (dpa; C10H9N3) ligand, such as [MnX(dpa)2(H2O)]ClO4 (X = N3-, NCO-), have been investigated previously (Bose et al., 2005).

The asymmetric unit of the title compound, [MnI(dpa)2(H2O)]I, consists of a cationic MnII complex and an I- anion (Fig. 1). In the complex, the MnII ion is six-coordinated in a considerably distorted cis-N4IO octahedral environment defined by four N atoms of the two chelating dpa ligands, one I- anion and one O atom of a water ligand. The main contribution to the distortion is the tight N—Mn—N chelating angles (Table 1), which results in non-linear trans axes [N3—Mn1—N4 = 165.7 (2)° and O1—Mn1—N6 = 171.7 (2)°]. However, the apical I1—Mn1—N1 bond is almost linear with a bond angle of 177.61 (17)°. The Mn—N(dpa) bond lengths are somewhat different and longer than the Mn—O(H2O) bond (Table 1). As a result of the different trans effects of the I, N and O atoms, the Mn1—N1 bond trans to the I atom is slightly longer than the Mn—N bond trans to the N or O atoms. In the crystal structure, the dpa ligands are not planar. The dihedral angles between the two pyridyl rings of dpa are 26.2 (4)° and 26.5 (4)°.

The complexes are stacked in columns along the a axis, and the component cations and anions are linked by intermolecular O—H···I and N—H···I hydrogen bonds (Fig. 2, Table 2). In the column, numerous inter- and intramolecular π-π interactions between the pyridyl rings are present, the shortest centroid-centroid distance being 3.728 (5) Å.

For the crystal structures of related MnII complexes with dpa, see: Bose et al. (2005).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure the title compound, with displacement ellipsoids drawn at the 40% probability level for non-H atoms.
[Figure 2] Fig. 2. View of the unit-cell contents of the title compound. Hydrogen-bond interactions are drawn with dashed lines.
cis-Aquabis(di-2-pyridylamine-κ2N,N')iodidomanganese(II) iodide top
Crystal data top
[MnI(C10H9N3)2(H2O)]IZ = 2
Mr = 669.16F(000) = 642
Triclinic, P1Dx = 1.917 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.598 (3) ÅCell parameters from 2534 reflections
b = 10.156 (3) Åθ = 2.5–25.7°
c = 13.909 (4) ŵ = 3.26 mm1
α = 93.091 (6)°T = 200 K
β = 104.402 (6)°Block, colorless
γ = 98.262 (6)°0.28 × 0.23 × 0.19 mm
V = 1159.0 (6) Å3
Data collection top
Bruker SMART 1000 CCD
diffractometer
4509 independent reflections
Radiation source: fine-focus sealed tube3069 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
φ and ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 910
Tmin = 0.725, Tmax = 1.000k = 1212
7310 measured reflectionsl = 1715
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0448P)2 + 2.3714P]
where P = (Fo2 + 2Fc2)/3
4509 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 1.01 e Å3
0 restraintsΔρmin = 1.13 e Å3
Crystal data top
[MnI(C10H9N3)2(H2O)]Iγ = 98.262 (6)°
Mr = 669.16V = 1159.0 (6) Å3
Triclinic, P1Z = 2
a = 8.598 (3) ÅMo Kα radiation
b = 10.156 (3) ŵ = 3.26 mm1
c = 13.909 (4) ÅT = 200 K
α = 93.091 (6)°0.28 × 0.23 × 0.19 mm
β = 104.402 (6)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
4509 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3069 reflections with I > 2σ(I)
Tmin = 0.725, Tmax = 1.000Rint = 0.041
7310 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.06Δρmax = 1.01 e Å3
4509 reflectionsΔρmin = 1.13 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.92450 (15)0.83226 (11)0.17727 (9)0.0334 (3)
I10.70020 (7)0.84510 (6)0.01259 (4)0.0439 (2)
O11.0782 (8)1.0190 (6)0.1727 (5)0.0597 (19)
H1A1.13701.05660.22760.090*
H1B1.10971.07410.13590.090*
N11.0972 (8)0.8255 (6)0.3329 (5)0.0330 (15)
N20.8918 (8)0.8161 (7)0.4170 (5)0.0399 (17)
H2N0.86270.78220.47120.060*
N30.7974 (8)0.9327 (6)0.2754 (5)0.0362 (16)
N41.0645 (8)0.7020 (6)0.1115 (5)0.0320 (15)
N51.0185 (8)0.5213 (6)0.2056 (5)0.0348 (16)
H5N1.07250.45830.23870.052*
N60.7948 (8)0.6322 (6)0.1996 (5)0.0318 (15)
C11.2452 (10)0.7983 (8)0.3321 (6)0.040 (2)
H11.29430.83450.28310.048*
C21.3298 (11)0.7210 (10)0.3981 (7)0.051 (3)
H21.43630.70760.39660.061*
C31.2553 (12)0.6636 (9)0.4664 (7)0.048 (2)
H31.30620.60380.50940.057*
C41.1086 (11)0.6936 (8)0.4715 (6)0.040 (2)
H41.05670.65770.51940.048*
C51.0354 (10)0.7785 (8)0.4046 (6)0.0348 (19)
C60.7953 (9)0.9056 (7)0.3694 (6)0.0304 (18)
C70.6994 (10)0.9603 (8)0.4199 (6)0.0371 (19)
H70.70610.94300.48720.045*
C80.5937 (10)1.0399 (8)0.3740 (7)0.040 (2)
H80.52431.07620.40820.048*
C90.5890 (11)1.0668 (8)0.2771 (6)0.042 (2)
H90.51481.11980.24240.051*
C100.6939 (11)1.0151 (8)0.2330 (6)0.042 (2)
H100.69501.03820.16790.050*
C111.1421 (10)0.7549 (9)0.0432 (6)0.038 (2)
H111.12320.84050.02320.046*
C121.2430 (10)0.6932 (10)0.0028 (6)0.046 (2)
H121.29420.73430.04360.055*
C131.2698 (10)0.5664 (10)0.0317 (6)0.046 (2)
H131.34150.52090.00550.055*
C141.1937 (10)0.5088 (9)0.0966 (6)0.041 (2)
H141.20950.42220.11550.050*
C151.0906 (9)0.5798 (7)0.1355 (6)0.0314 (18)
C160.8692 (9)0.5266 (7)0.2229 (6)0.0303 (18)
C170.7977 (11)0.4190 (8)0.2649 (6)0.042 (2)
H170.85290.34540.28140.050*
C180.6502 (12)0.4210 (8)0.2814 (6)0.046 (2)
H180.60300.35040.31250.055*
C190.5665 (10)0.5270 (8)0.2529 (6)0.038 (2)
H190.46090.52880.26200.046*
C200.6419 (9)0.6271 (8)0.2117 (6)0.0312 (18)
H200.58450.69790.19000.037*
I20.23491 (7)0.28327 (5)0.35974 (4)0.03842 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0398 (7)0.0302 (6)0.0334 (7)0.0067 (6)0.0144 (6)0.0048 (5)
I10.0482 (4)0.0497 (4)0.0375 (3)0.0134 (3)0.0131 (3)0.0129 (3)
O10.084 (5)0.040 (3)0.054 (4)0.021 (3)0.034 (4)0.003 (3)
N10.034 (4)0.031 (4)0.033 (4)0.001 (3)0.012 (3)0.000 (3)
N20.043 (4)0.047 (4)0.036 (4)0.015 (3)0.016 (3)0.011 (3)
N30.045 (4)0.031 (4)0.040 (4)0.017 (3)0.018 (3)0.002 (3)
N40.030 (4)0.026 (3)0.042 (4)0.003 (3)0.014 (3)0.001 (3)
N50.034 (4)0.033 (4)0.042 (4)0.013 (3)0.013 (3)0.011 (3)
N60.035 (4)0.028 (3)0.029 (4)0.002 (3)0.005 (3)0.005 (3)
C10.031 (5)0.051 (5)0.032 (5)0.003 (4)0.008 (4)0.017 (4)
C20.032 (5)0.064 (6)0.051 (6)0.013 (5)0.003 (4)0.014 (5)
C30.057 (6)0.048 (5)0.037 (5)0.021 (5)0.002 (5)0.003 (4)
C40.054 (6)0.030 (4)0.033 (5)0.002 (4)0.009 (4)0.001 (4)
C50.032 (5)0.031 (4)0.037 (5)0.003 (4)0.004 (4)0.004 (4)
C60.031 (4)0.019 (4)0.040 (5)0.002 (3)0.009 (4)0.005 (3)
C70.039 (5)0.036 (5)0.039 (5)0.005 (4)0.018 (4)0.002 (4)
C80.037 (5)0.031 (4)0.055 (6)0.010 (4)0.015 (4)0.005 (4)
C90.056 (6)0.030 (4)0.043 (5)0.018 (4)0.011 (4)0.008 (4)
C100.053 (6)0.039 (5)0.038 (5)0.011 (4)0.019 (4)0.005 (4)
C110.031 (5)0.047 (5)0.041 (5)0.006 (4)0.015 (4)0.005 (4)
C120.036 (5)0.070 (6)0.034 (5)0.000 (5)0.015 (4)0.005 (5)
C130.027 (5)0.073 (7)0.040 (5)0.016 (4)0.011 (4)0.008 (5)
C140.033 (5)0.047 (5)0.039 (5)0.011 (4)0.001 (4)0.011 (4)
C150.019 (4)0.031 (4)0.036 (4)0.003 (3)0.000 (3)0.011 (4)
C160.035 (4)0.023 (4)0.029 (4)0.001 (3)0.002 (3)0.002 (3)
C170.042 (5)0.032 (4)0.051 (5)0.013 (4)0.007 (4)0.005 (4)
C180.062 (6)0.034 (5)0.040 (5)0.006 (4)0.017 (5)0.006 (4)
C190.038 (5)0.035 (5)0.042 (5)0.004 (4)0.014 (4)0.002 (4)
C200.025 (4)0.038 (4)0.034 (4)0.014 (4)0.007 (3)0.003 (4)
I20.0426 (3)0.0392 (3)0.0373 (3)0.0124 (3)0.0130 (2)0.0094 (2)
Geometric parameters (Å, º) top
Mn1—O12.164 (6)C3—H30.9500
Mn1—N42.215 (6)C4—C51.399 (11)
Mn1—N32.238 (6)C4—H40.9500
Mn1—N62.249 (6)C6—C71.364 (10)
Mn1—N12.312 (6)C7—C81.366 (11)
Mn1—I12.8785 (15)C7—H70.9500
O1—H1A0.8400C8—C91.383 (12)
O1—H1B0.8400C8—H80.9500
N1—C51.321 (10)C9—C101.356 (11)
N1—C11.343 (9)C9—H90.9500
N2—C51.391 (10)C10—H100.9500
N2—C61.401 (9)C11—C121.349 (11)
N2—H2N0.9200C11—H110.9500
N3—C61.355 (10)C12—C131.403 (13)
N3—C101.359 (10)C12—H120.9500
N4—C151.338 (10)C13—C141.351 (12)
N4—C111.381 (10)C13—H130.9500
N5—C161.371 (10)C14—C151.407 (11)
N5—C151.395 (10)C14—H140.9500
N5—H5N0.9200C16—C171.403 (11)
N6—C161.339 (9)C17—C181.347 (12)
N6—C201.361 (9)C17—H170.9500
C1—C21.378 (12)C18—C191.401 (11)
C1—H10.9500C18—H180.9500
C2—C31.382 (13)C19—C201.356 (11)
C2—H20.9500C19—H190.9500
C3—C41.358 (12)C20—H200.9500
O1—Mn1—N496.3 (2)N1—C5—N2119.4 (7)
O1—Mn1—N391.1 (2)N1—C5—C4123.5 (8)
N4—Mn1—N3165.7 (2)N2—C5—C4117.1 (8)
O1—Mn1—N6171.7 (2)N3—C6—C7122.5 (7)
N4—Mn1—N681.0 (2)N3—C6—N2119.7 (7)
N3—Mn1—N689.9 (2)C7—C6—N2117.8 (7)
O1—Mn1—N185.5 (2)C6—C7—C8120.1 (8)
N4—Mn1—N189.6 (2)C6—C7—H7120.0
N3—Mn1—N178.8 (2)C8—C7—H7120.0
N6—Mn1—N186.7 (2)C7—C8—C9119.0 (8)
O1—Mn1—I194.82 (18)C7—C8—H8120.5
N4—Mn1—I192.68 (17)C9—C8—H8120.5
N3—Mn1—I198.81 (18)C10—C9—C8117.8 (8)
N6—Mn1—I193.11 (16)C10—C9—H9121.1
N1—Mn1—I1177.61 (17)C8—C9—H9121.1
Mn1—O1—H1A116.6C9—C10—N3124.7 (8)
Mn1—O1—H1B145.6C9—C10—H10117.6
H1A—O1—H1B97.7N3—C10—H10117.6
C5—N1—C1116.5 (7)C12—C11—N4124.4 (8)
C5—N1—Mn1118.9 (5)C12—C11—H11117.8
C1—N1—Mn1114.9 (5)N4—C11—H11117.8
C5—N2—C6131.9 (7)C11—C12—C13117.8 (8)
C5—N2—H2N112.5C11—C12—H12121.1
C6—N2—H2N115.2C13—C12—H12121.1
C6—N3—C10115.7 (7)C14—C13—C12120.1 (8)
C6—N3—Mn1126.3 (5)C14—C13—H13119.9
C10—N3—Mn1117.4 (5)C12—C13—H13119.9
C15—N4—C11115.9 (7)C13—C14—C15118.6 (8)
C15—N4—Mn1126.9 (5)C13—C14—H14120.7
C11—N4—Mn1117.1 (5)C15—C14—H14120.7
C16—N5—C15130.6 (6)N4—C15—N5119.0 (7)
C16—N5—H5N114.2N4—C15—C14123.1 (8)
C15—N5—H5N114.4N5—C15—C14117.8 (7)
C16—N6—C20117.4 (7)N6—C16—N5120.3 (7)
C16—N6—Mn1123.8 (5)N6—C16—C17121.6 (8)
C20—N6—Mn1117.2 (5)N5—C16—C17118.2 (7)
N1—C1—C2123.8 (8)C18—C17—C16119.3 (8)
N1—C1—H1118.1C18—C17—H17120.3
C2—C1—H1118.1C16—C17—H17120.3
C1—C2—C3118.1 (9)C17—C18—C19120.1 (8)
C1—C2—H2121.0C17—C18—H18120.0
C3—C2—H2121.0C19—C18—H18120.0
C4—C3—C2119.2 (8)C20—C19—C18117.5 (8)
C4—C3—H3120.4C20—C19—H19121.3
C2—C3—H3120.4C18—C19—H19121.3
C3—C4—C5118.5 (8)C19—C20—N6124.0 (7)
C3—C4—H4120.8C19—C20—H20118.0
C5—C4—H4120.8N6—C20—H20118.0
O1—Mn1—N1—C5142.6 (6)Mn1—N1—C5—C4138.1 (6)
N4—Mn1—N1—C5121.0 (6)C6—N2—C5—N14.3 (12)
N3—Mn1—N1—C550.6 (6)C6—N2—C5—C4174.6 (7)
N6—Mn1—N1—C540.0 (6)C3—C4—C5—N13.9 (12)
O1—Mn1—N1—C172.4 (6)C3—C4—C5—N2174.9 (7)
N4—Mn1—N1—C123.9 (6)C10—N3—C6—C71.9 (11)
N3—Mn1—N1—C1164.5 (6)Mn1—N3—C6—C7172.1 (6)
N6—Mn1—N1—C1105.0 (6)C10—N3—C6—N2176.7 (7)
O1—Mn1—N3—C6117.8 (6)Mn1—N3—C6—N26.5 (10)
N4—Mn1—N3—C63.7 (14)C5—N2—C6—N326.0 (12)
N6—Mn1—N3—C654.0 (6)C5—N2—C6—C7155.4 (8)
N1—Mn1—N3—C632.6 (6)N3—C6—C7—C83.7 (12)
I1—Mn1—N3—C6147.1 (6)N2—C6—C7—C8174.9 (7)
O1—Mn1—N3—C1072.1 (6)C6—C7—C8—C91.8 (12)
N4—Mn1—N3—C10166.3 (8)C7—C8—C9—C101.7 (12)
N6—Mn1—N3—C10116.1 (6)C8—C9—C10—N33.7 (13)
N1—Mn1—N3—C10157.3 (6)C6—N3—C10—C91.9 (12)
I1—Mn1—N3—C1022.9 (6)Mn1—N3—C10—C9169.2 (7)
O1—Mn1—N4—C15143.8 (6)C15—N4—C11—C121.9 (12)
N3—Mn1—N4—C1522.8 (14)Mn1—N4—C11—C12174.1 (7)
N6—Mn1—N4—C1528.3 (6)N4—C11—C12—C130.6 (13)
N1—Mn1—N4—C1558.4 (6)C11—C12—C13—C141.1 (13)
I1—Mn1—N4—C15121.0 (6)C12—C13—C14—C151.2 (12)
O1—Mn1—N4—C1131.7 (6)C11—N4—C15—N5178.8 (7)
N3—Mn1—N4—C11152.7 (9)Mn1—N4—C15—N53.2 (10)
N6—Mn1—N4—C11156.2 (6)C11—N4—C15—C141.6 (11)
N1—Mn1—N4—C11117.1 (6)Mn1—N4—C15—C14173.9 (5)
I1—Mn1—N4—C1163.4 (5)C16—N5—C15—N436.6 (11)
N4—Mn1—N6—C1636.5 (6)C16—N5—C15—C14146.2 (8)
N3—Mn1—N6—C16132.5 (6)C13—C14—C15—N40.2 (12)
N1—Mn1—N6—C1653.7 (6)C13—C14—C15—N5177.3 (7)
I1—Mn1—N6—C16128.7 (6)C20—N6—C16—N5175.3 (7)
N4—Mn1—N6—C20158.5 (6)Mn1—N6—C16—N519.7 (9)
N3—Mn1—N6—C2032.5 (5)C20—N6—C16—C174.4 (10)
N1—Mn1—N6—C20111.3 (5)Mn1—N6—C16—C17160.5 (6)
I1—Mn1—N6—C2066.3 (5)C15—N5—C16—N627.0 (12)
C5—N1—C1—C22.9 (11)C15—N5—C16—C17152.7 (8)
Mn1—N1—C1—C2142.9 (7)N6—C16—C17—C180.6 (12)
N1—C1—C2—C32.8 (12)N5—C16—C17—C18179.2 (8)
C1—C2—C3—C45.2 (13)C16—C17—C18—C192.7 (12)
C2—C3—C4—C52.1 (12)C17—C18—C19—C202.0 (12)
C1—N1—C5—N2172.5 (6)C18—C19—C20—N62.1 (12)
Mn1—N1—C5—N243.2 (9)C16—N6—C20—C195.3 (11)
C1—N1—C5—C46.3 (11)Mn1—N6—C20—C19160.7 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···I2i0.842.763.500 (6)148
O1—H1B···I1ii0.842.733.490 (6)152
N2—H2N···I2iii0.922.773.681 (7)172
N5—H5N···I2iv0.922.803.710 (6)173
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+2, z; (iii) x+1, y+1, z+1; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formula[MnI(C10H9N3)2(H2O)]I
Mr669.16
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)8.598 (3), 10.156 (3), 13.909 (4)
α, β, γ (°)93.091 (6), 104.402 (6), 98.262 (6)
V3)1159.0 (6)
Z2
Radiation typeMo Kα
µ (mm1)3.26
Crystal size (mm)0.28 × 0.23 × 0.19
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.725, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7310, 4509, 3069
Rint0.041
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.134, 1.06
No. of reflections4509
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.01, 1.13

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Mn1—O12.164 (6)Mn1—N62.249 (6)
Mn1—N42.215 (6)Mn1—N12.312 (6)
Mn1—N32.238 (6)Mn1—I12.8785 (15)
N4—Mn1—N681.0 (2)N3—Mn1—N178.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···I2i0.842.763.500 (6)148.3
O1—H1B···I1ii0.842.733.490 (6)151.5
N2—H2N···I2iii0.922.773.681 (7)171.7
N5—H5N···I2iv0.922.803.710 (6)173.3
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+2, z; (iii) x+1, y+1, z+1; (iv) x+1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds