Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536812050969/wm2707sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S1600536812050969/wm2707Isup2.hkl |
Key indicators
- Single-crystal X-ray study
- T = 296 K
- Mean (P-O) = 0.005 Å
- R factor = 0.043
- wR factor = 0.078
- Data-to-parameter ratio = 16.4
checkCIF/PLATON results
No syntax errors found
Alert level B CHEMS01_ALERT_1_B The sum formula contains elements in the wrong order. Yb precedes O Sequence must be alphabetical for inorganic structures. PLAT774_ALERT_1_B Suspect X-Y Bond in CIF: YB -- RB .. 4.02 Ang. PLAT774_ALERT_1_B Suspect X-Y Bond in CIF: YB -- RB .. 4.32 Ang.
Alert level C RINTA01_ALERT_3_C The value of Rint is greater than 0.12 Rint given 0.143 PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.966 PLAT041_ALERT_1_C Calc. and Reported SumFormula Strings Differ ? PLAT068_ALERT_1_C Reported F000 Differs from Calcd (or Missing)... ? PLAT774_ALERT_1_C Suspect X-Y Bond in CIF: YB -- P3 .. 3.52 Ang. PLAT774_ALERT_1_C Suspect X-Y Bond in CIF: P1 -- RB .. 3.69 Ang. PLAT774_ALERT_1_C Suspect X-Y Bond in CIF: P2 -- RB .. 3.68 Ang. PLAT774_ALERT_1_C Suspect X-Y Bond in CIF: P3 -- YB .. 3.52 Ang. PLAT975_ALERT_2_C Positive Residual Density at 0.51A from O4 . 1.19 eA-3 PLAT976_ALERT_2_C Negative Residual Density at 1.08A from O6 . -1.08 eA-3
Alert level G PLAT004_ALERT_5_G Info: Polymeric Structure Found with Dimension . 3 PLAT005_ALERT_5_G No _iucr_refine_instructions_details in the CIF ? PLAT128_ALERT_4_G Alternate Setting of Space-group P21/c ....... P21/n PLAT779_ALERT_4_G Suspect or Irrelevant (Bond) Angle in CIF .... # 174 O6 -P3 -YB 1.555 1.555 3.657 33.00 Deg. PLAT779_ALERT_4_G Suspect or Irrelevant (Bond) Angle in CIF .... # 185 O9 -P4 -YB 1.555 1.555 1.555 31.48 Deg. PLAT794_ALERT_5_G Note: Tentative Bond Valency for Yb (III) 3.00 PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600 93
0 ALERT level A = Most likely a serious problem - resolve or explain 3 ALERT level B = A potentially serious problem, consider carefully 10 ALERT level C = Check. Ensure it is not caused by an omission or oversight 7 ALERT level G = General information/check it is not something unexpected 9 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion 3 ALERT type 5 Informative message, check
Single crystals of RbYb(PO3)4 were grown by solid state reactions. All reagents were purchased commercially and used without further purification. The starting materials RbNO3, Yb2O3 and NH4H2PO4 were weighed in the molar ratio of Rb/Yb/P = 7/1/18 and finely ground in an agate mortar to ensure the best homogeneity and reactivity, and were then placed in a corundum crucible and preheated at 373 K for 6 h. Afterwards, the material was reground and heated to 723 K for 36 h and then cooled to 393 K at a rate of 6 K/h and finally air-quenched to room temperature. A few colourless block-shaped crystals were obtained from the reaction product.
EDX spectrometry using a JSM6700F scanning electron microscope confirmed the composition. The remaining maximum and minimum electron densities are located 0.87 Å and 0.81 Å, respectively, from the Rb atom.
Extensive studies on structures and properties of condensed rare earth phosphates have been carried out in the past owing to their potential application in the optics domain (Miyazawa et al., 1979; Malinowski et al., 1989). Furthermore, their chemical and thermal stability ensures the feasibility of possible applications. Numerous rare-earth phosphates with ytterbium, such as YbP3O9 (Hong, 1974), CsYbP2O7 (Jansen et al., 1991), and K2CsYb(PO4)2 (Rghioui et al., 2002) have been synthesized and structurally determined. However, the literature shows that in the polyphosphate family with general formula MRE(PO3)4 (M = monovalent cation, RE = rare earth cation), only a few examples with ytterbium are known [LiYb(PO3)4 (Fang et al., 2008)]. The reason for this situation is probably the difficulty in obtaining crystals of high quality. Accordingly, our research group is paying attention to the preparation of new polyphosphates MYb(PO3)4. We successfully grew single crystals of rubidium ytterbium polyphosphate, RbYb(PO3)4, the structure of which is reported here.
The crystal structure of RbYb(PO3)4 is shown in Figs. 1 and 2. It is isostructural with CsEu(PO3)4 (Zhu et al., 2009) and belongs to type IV of the MRE(PO3)4 (M = alkali metal and RE = rare earth) family of compounds. The structure can be described as a three-dimensional framework made up from polyphosphate double spiral chains extending parallel to [101] and YbO8 polyhedra. The Rb+ cations are located in infinite tunnels along [100] delimited by the three-dimensional framework. As illustrated in Fig. 3, the P atom is four-coordinated, and four crystallographically distinct PO4 tetrahedra form the (PO3)∞- double spiral chains by corner-sharing. The P–O bond lengths and O—P—O bond angles show normal values for catena-polyphosphates. There are eight PO4 tetrahedra in the repeating unit of the double spiral chain. The YbIII cation is eight-coordinated in form of a distorted polyhedron with Y—O bond lengths ranging from 2.253 (5) to 2.412 (5) Å, which are consistent with those reported previously (Fang et al., 2008). The shortest Yb···Yb contact is 6.3540 (8) Å. The Rb+ cation are located in the intersecting channels and are surrounded by eleven O atoms, with Rb—O bond lengths in the range of 2.915 (5)–3.504 (5) Å. Neighboring two RbO11 polyhedra are connected by corner-sharing.
For background to applications of condensed rare earth phosphates, see: Malinowski (1989); Miyazawa et al. (1979). For the structures of other ytterbium phosphate compounds, see: Rghioui et al. (2002); Fang et al. (2008); Hong (1974); Jansen et al. (1991). For an isotypic structure, see: Zhu et al. (2009).
Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
RbYb(PO3)4 | F(000) = 1049 |
Mr = 574.40 | Dx = 4.052 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 2802 reflections |
a = 10.2022 (15) Å | θ = 2.4–29.5° |
b = 8.7975 (13) Å | µ = 15.80 mm−1 |
c = 10.9300 (16) Å | T = 296 K |
β = 106.323 (2)° | Block, colorless |
V = 941.5 (2) Å3 | 0.10 × 0.07 × 0.04 mm |
Z = 4 |
Bruker APEXII CCD diffractometer | 2676 independent reflections |
Radiation source: fine-focus sealed tube | 2024 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.143 |
φ and ω scans | θmax = 30.1°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −14→14 |
Tmin = 0.725, Tmax = 0.854 | k = −12→12 |
9912 measured reflections | l = −15→15 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Primary atom site location: structure-invariant direct methods |
R[F2 > 2σ(F2)] = 0.043 | Secondary atom site location: difference Fourier map |
wR(F2) = 0.078 | w = 1/[σ2(Fo2) + (0.016P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max < 0.001 |
2676 reflections | Δρmax = 2.95 e Å−3 |
163 parameters | Δρmin = −2.99 e Å−3 |
RbYb(PO3)4 | V = 941.5 (2) Å3 |
Mr = 574.40 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 10.2022 (15) Å | µ = 15.80 mm−1 |
b = 8.7975 (13) Å | T = 296 K |
c = 10.9300 (16) Å | 0.10 × 0.07 × 0.04 mm |
β = 106.323 (2)° |
Bruker APEXII CCD diffractometer | 2676 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 2024 reflections with I > 2σ(I) |
Tmin = 0.725, Tmax = 0.854 | Rint = 0.143 |
9912 measured reflections |
R[F2 > 2σ(F2)] = 0.043 | 163 parameters |
wR(F2) = 0.078 | 0 restraints |
S = 1.00 | Δρmax = 2.95 e Å−3 |
2676 reflections | Δρmin = −2.99 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Yb | 0.49845 (3) | 0.22753 (3) | 0.68227 (3) | 0.00898 (9) | |
Rb | 0.68841 (9) | −0.06519 (10) | 0.95773 (7) | 0.02424 (19) | |
P1 | 0.45844 (18) | −0.1715 (2) | 0.63271 (16) | 0.0088 (3) | |
P2 | 0.85263 (18) | 0.0916 (2) | 0.74217 (16) | 0.0093 (3) | |
P3 | 0.75504 (18) | 0.0245 (2) | 1.27947 (15) | 0.0088 (3) | |
P4 | 0.67393 (18) | 0.3877 (2) | 0.97599 (16) | 0.0091 (3) | |
O1 | 0.4366 (5) | −0.2434 (6) | 0.5063 (4) | 0.0135 (11) | |
O2 | 0.5242 (5) | −0.2914 (6) | 0.7444 (5) | 0.0141 (10) | |
O3 | 0.5348 (5) | −0.0274 (6) | 0.6642 (5) | 0.0144 (10) | |
O4 | 0.8988 (5) | −0.0414 (6) | 0.8251 (5) | 0.0137 (10) | |
O5 | 0.7325 (5) | 0.1773 (6) | 0.7555 (5) | 0.0142 (10) | |
O6 | 0.6458 (5) | −0.0858 (6) | 1.2179 (4) | 0.0112 (10) | |
O7 | 0.6895 (5) | 0.1572 (6) | 1.3448 (5) | 0.0122 (10) | |
O8 | 0.8156 (5) | 0.3283 (6) | 1.0176 (5) | 0.0140 (11) | |
O9 | 0.5637 (5) | 0.2853 (6) | 0.9024 (4) | 0.0118 (10) | |
O10 | 0.6370 (5) | 0.4504 (6) | 1.1006 (4) | 0.0100 (10) | |
O11 | 0.3317 (5) | 0.4059 (6) | 0.6976 (4) | 0.0125 (10) | |
O12 | 0.6715 (5) | −0.4534 (6) | 0.9034 (4) | 0.0134 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Yb | 0.00774 (14) | 0.01101 (15) | 0.00853 (13) | −0.00035 (12) | 0.00286 (9) | −0.00056 (12) |
Rb | 0.0245 (4) | 0.0340 (5) | 0.0145 (4) | 0.0045 (3) | 0.0060 (3) | −0.0013 (3) |
P1 | 0.0063 (8) | 0.0108 (8) | 0.0098 (8) | 0.0007 (6) | 0.0029 (6) | 0.0001 (7) |
P2 | 0.0078 (8) | 0.0108 (9) | 0.0089 (8) | −0.0006 (6) | 0.0018 (6) | −0.0012 (6) |
P3 | 0.0074 (8) | 0.0117 (9) | 0.0076 (8) | −0.0011 (6) | 0.0024 (7) | 0.0015 (6) |
P4 | 0.0076 (8) | 0.0127 (9) | 0.0066 (7) | −0.0003 (6) | 0.0015 (6) | 0.0006 (6) |
O1 | 0.013 (2) | 0.020 (3) | 0.009 (2) | −0.001 (2) | 0.0051 (18) | −0.0006 (19) |
O2 | 0.012 (2) | 0.018 (3) | 0.011 (2) | 0.006 (2) | 0.0026 (19) | 0.006 (2) |
O3 | 0.006 (2) | 0.016 (3) | 0.022 (3) | −0.005 (2) | 0.005 (2) | −0.002 (2) |
O4 | 0.014 (3) | 0.013 (3) | 0.014 (2) | 0.001 (2) | 0.005 (2) | −0.002 (2) |
O5 | 0.006 (2) | 0.021 (3) | 0.015 (2) | 0.002 (2) | 0.0018 (19) | −0.005 (2) |
O6 | 0.010 (2) | 0.013 (3) | 0.011 (2) | −0.0024 (19) | 0.0025 (19) | −0.0004 (19) |
O7 | 0.011 (2) | 0.012 (3) | 0.015 (2) | −0.002 (2) | 0.006 (2) | −0.0038 (19) |
O8 | 0.010 (2) | 0.020 (3) | 0.013 (2) | 0.004 (2) | 0.0054 (19) | 0.002 (2) |
O9 | 0.007 (2) | 0.015 (2) | 0.011 (2) | −0.004 (2) | 0.0002 (18) | −0.003 (2) |
O10 | 0.005 (2) | 0.019 (3) | 0.007 (2) | −0.0004 (19) | 0.0035 (18) | −0.0024 (19) |
O11 | 0.014 (3) | 0.017 (3) | 0.010 (2) | 0.001 (2) | 0.010 (2) | 0.001 (2) |
O12 | 0.019 (3) | 0.013 (3) | 0.007 (2) | −0.002 (2) | 0.002 (2) | 0.0045 (19) |
Yb—O8i | 2.253 (5) | P2—O4 | 1.474 (5) |
Yb—O3 | 2.291 (5) | P2—O5 | 1.480 (5) |
Yb—O4ii | 2.300 (5) | P2—O12ii | 1.590 (5) |
Yb—O1iii | 2.339 (5) | P2—O2ii | 1.599 (5) |
Yb—O5 | 2.337 (5) | P2—Rbii | 3.681 (2) |
Yb—O11 | 2.355 (5) | P3—O11vi | 1.477 (5) |
Yb—O9 | 2.364 (5) | P3—O6 | 1.488 (5) |
Yb—O6iv | 2.412 (5) | P3—O10vii | 1.595 (5) |
Yb—P4 | 3.5025 (18) | P3—O7 | 1.609 (5) |
Yb—P3iv | 3.5196 (18) | P3—Ybiv | 3.5196 (18) |
Yb—Rb | 4.0215 (9) | P4—O8 | 1.483 (5) |
Yb—Rbii | 4.3152 (10) | P4—O9 | 1.489 (5) |
Rb—O4 | 2.915 (5) | P4—O12x | 1.604 (5) |
Rb—O1v | 2.962 (5) | P4—O10 | 1.609 (5) |
Rb—O11vi | 2.970 (5) | O1—Ybiii | 2.339 (5) |
Rb—O6 | 3.000 (5) | O1—Rbix | 2.962 (5) |
Rb—O2 | 3.164 (5) | O2—P2viii | 1.599 (5) |
Rb—O3 | 3.168 (5) | O4—Ybviii | 2.300 (5) |
Rb—O5 | 3.193 (5) | O5—Rbii | 3.504 (5) |
Rb—O7vii | 3.265 (5) | O6—Ybiv | 2.412 (5) |
Rb—O9 | 3.326 (5) | O7—P1iv | 1.601 (5) |
Rb—O12 | 3.463 (5) | O7—Rbxi | 3.265 (5) |
Rb—P3 | 3.4796 (19) | O8—Ybvi | 2.253 (5) |
Rb—O5viii | 3.504 (5) | O10—P3xi | 1.595 (5) |
P1—O3 | 1.477 (5) | O11—P3i | 1.477 (5) |
P1—O1 | 1.479 (5) | O11—Rbi | 2.970 (5) |
P1—O7iv | 1.601 (5) | O12—P2viii | 1.590 (5) |
P1—O2 | 1.610 (5) | O12—P4xii | 1.604 (5) |
P1—Rbix | 3.695 (2) | ||
O8i—Yb—O3 | 80.51 (18) | O6—Rb—P3 | 25.18 (10) |
O8i—Yb—O4ii | 116.63 (18) | O2—Rb—P3 | 143.14 (10) |
O3—Yb—O4ii | 140.91 (18) | O3—Rb—P3 | 154.20 (11) |
O8i—Yb—O1iii | 71.65 (18) | O5—Rb—P3 | 121.50 (10) |
O3—Yb—O1iii | 83.67 (18) | O7vii—Rb—P3 | 64.64 (9) |
O4ii—Yb—O1iii | 70.81 (17) | O9—Rb—P3 | 85.96 (9) |
O8i—Yb—O5 | 140.30 (18) | O12—Rb—P3 | 112.54 (9) |
O3—Yb—O5 | 70.73 (18) | O4—Rb—O5viii | 51.42 (13) |
O4ii—Yb—O5 | 75.36 (18) | O1v—Rb—O5viii | 53.59 (12) |
O1iii—Yb—O5 | 78.36 (18) | O11vi—Rb—O5viii | 138.09 (13) |
O8i—Yb—O11 | 75.48 (18) | O6—Rb—O5viii | 135.50 (13) |
O3—Yb—O11 | 142.76 (18) | O2—Rb—O5viii | 43.63 (12) |
O4ii—Yb—O11 | 76.06 (17) | O3—Rb—O5viii | 62.28 (13) |
O1iii—Yb—O11 | 114.32 (16) | O5—Rb—O5viii | 82.41 (2) |
O5—Yb—O11 | 142.25 (18) | O7vii—Rb—O5viii | 80.78 (12) |
O8i—Yb—O9 | 142.46 (17) | O9—Rb—O5viii | 128.79 (12) |
O3—Yb—O9 | 107.00 (18) | O12—Rb—O5viii | 42.07 (12) |
O4ii—Yb—O9 | 81.08 (17) | P3—Rb—O5viii | 143.41 (9) |
O1iii—Yb—O9 | 144.61 (17) | O3—P1—O1 | 121.0 (3) |
O5—Yb—O9 | 73.97 (17) | O3—P1—O7iv | 110.8 (3) |
O11—Yb—O9 | 77.69 (17) | O1—P1—O7iv | 106.0 (3) |
O8i—Yb—O6iv | 77.00 (17) | O3—P1—O2 | 107.8 (3) |
O3—Yb—O6iv | 70.55 (17) | O1—P1—O2 | 110.4 (3) |
O4ii—Yb—O6iv | 144.63 (17) | O7iv—P1—O2 | 98.3 (3) |
O1iii—Yb—O6iv | 142.15 (17) | O3—P1—Rbix | 157.9 (2) |
O5—Yb—O6iv | 116.22 (17) | O1—P1—Rbix | 49.7 (2) |
O11—Yb—O6iv | 76.54 (17) | O7iv—P1—Rbix | 62.01 (18) |
O9—Yb—O6iv | 71.55 (16) | O2—P1—Rbix | 94.2 (2) |
O8i—Yb—P4 | 156.26 (13) | O3—P1—Rb | 54.7 (2) |
O3—Yb—P4 | 114.82 (13) | O1—P1—Rb | 150.9 (2) |
O4ii—Yb—P4 | 63.63 (12) | O7iv—P1—Rb | 101.48 (18) |
O1iii—Yb—P4 | 125.81 (12) | O2—P1—Rb | 55.5 (2) |
O5—Yb—P4 | 63.41 (13) | Rbix—P1—Rb | 144.73 (6) |
O11—Yb—P4 | 81.96 (12) | O4—P2—O5 | 118.2 (3) |
O9—Yb—P4 | 19.19 (12) | O4—P2—O12ii | 110.5 (3) |
O6iv—Yb—P4 | 90.74 (11) | O5—P2—O12ii | 109.0 (3) |
O8i—Yb—P3iv | 59.09 (13) | O4—P2—O2ii | 110.3 (3) |
O3—Yb—P3iv | 62.33 (13) | O5—P2—O2ii | 108.4 (3) |
O4ii—Yb—P3iv | 156.75 (13) | O12ii—P2—O2ii | 98.6 (3) |
O1iii—Yb—P3iv | 122.81 (12) | O4—P2—Rb | 53.8 (2) |
O5—Yb—P3iv | 123.65 (14) | O5—P2—Rb | 64.7 (2) |
O11—Yb—P3iv | 80.89 (13) | O12ii—P2—Rb | 126.9 (2) |
O9—Yb—P3iv | 91.18 (12) | O2ii—P2—Rb | 134.3 (2) |
O6iv—Yb—P3iv | 19.64 (11) | O4—P2—Rbii | 168.4 (2) |
P4—Yb—P3iv | 110.36 (4) | O5—P2—Rbii | 71.5 (2) |
O8i—Yb—Rb | 125.11 (14) | O12ii—P2—Rbii | 69.6 (2) |
O3—Yb—Rb | 51.84 (13) | O2ii—P2—Rbii | 58.8 (2) |
O4ii—Yb—Rb | 117.65 (12) | Rb—P2—Rbii | 136.06 (6) |
O1iii—Yb—Rb | 120.11 (13) | O11vi—P3—O6 | 116.9 (3) |
O5—Yb—Rb | 52.52 (13) | O11vi—P3—O10vii | 107.9 (3) |
O11—Yb—Rb | 125.40 (11) | O6—P3—O10vii | 111.2 (3) |
O9—Yb—Rb | 55.76 (13) | O11vi—P3—O7 | 109.0 (3) |
O6iv—Yb—Rb | 63.71 (11) | O6—P3—O7 | 108.8 (3) |
P4—Yb—Rb | 63.69 (3) | O10vii—P3—O7 | 102.0 (3) |
P3iv—Yb—Rb | 73.93 (3) | O11vi—P3—Rb | 57.8 (2) |
O8i—Yb—Rbii | 109.77 (13) | O6—P3—Rb | 59.07 (19) |
O3—Yb—Rbii | 103.25 (13) | O10vii—P3—Rb | 129.2 (2) |
O4ii—Yb—Rbii | 39.06 (13) | O7—P3—Rb | 128.73 (19) |
O1iii—Yb—Rbii | 40.64 (12) | O11vi—P3—Ybiv | 149.9 (2) |
O5—Yb—Rbii | 54.17 (13) | O6—P3—Ybiv | 33.00 (19) |
O11—Yb—Rbii | 111.43 (12) | O10vii—P3—Ybiv | 90.31 (19) |
O9—Yb—Rbii | 104.20 (12) | O7—P3—Ybiv | 89.63 (19) |
O6iv—Yb—Rbii | 170.36 (11) | Rb—P3—Ybiv | 92.05 (4) |
P4—Yb—Rbii | 85.20 (3) | O8—P4—O9 | 118.4 (3) |
P3iv—Yb—Rbii | 161.86 (3) | O8—P4—O12x | 109.7 (3) |
Rb—Yb—Rbii | 106.683 (15) | O9—P4—O12x | 110.8 (3) |
O4—Rb—O1v | 54.42 (14) | O8—P4—O10 | 107.5 (3) |
O4—Rb—O11vi | 99.00 (14) | O9—P4—O10 | 110.1 (3) |
O1v—Rb—O11vi | 85.77 (14) | O12x—P4—O10 | 98.4 (3) |
O4—Rb—O6 | 142.98 (13) | O8—P4—Yb | 110.0 (2) |
O1v—Rb—O6 | 98.05 (13) | O9—P4—Yb | 31.48 (19) |
O11vi—Rb—O6 | 50.08 (14) | O12x—P4—Yb | 87.94 (19) |
O4—Rb—O2 | 89.44 (14) | O10—P4—Yb | 137.13 (18) |
O1v—Rb—O2 | 91.34 (13) | O8—P4—Rb | 67.5 (2) |
O11vi—Rb—O2 | 167.11 (13) | O9—P4—Rb | 53.3 (2) |
O6—Rb—O2 | 118.21 (14) | O12x—P4—Rb | 147.1 (2) |
O4—Rb—O3 | 73.31 (13) | O10—P4—Rb | 113.9 (2) |
O1v—Rb—O3 | 113.31 (13) | Yb—P4—Rb | 64.49 (3) |
O11vi—Rb—O3 | 145.61 (14) | P1—O1—Ybiii | 142.4 (3) |
O6—Rb—O3 | 143.52 (13) | P1—O1—Rbix | 107.9 (2) |
O2—Rb—O3 | 46.43 (13) | Ybiii—O1—Rbix | 108.41 (17) |
O4—Rb—O5 | 48.79 (13) | P2viii—O2—P1 | 129.8 (3) |
O1v—Rb—O5 | 102.94 (13) | P2viii—O2—Rb | 95.6 (2) |
O11vi—Rb—O5 | 99.53 (14) | P1—O2—Rb | 99.7 (2) |
O6—Rb—O5 | 141.49 (14) | P1—O3—Yb | 140.6 (3) |
O2—Rb—O5 | 93.36 (13) | P1—O3—Rb | 102.9 (3) |
O3—Rb—O5 | 49.81 (13) | Yb—O3—Rb | 93.51 (16) |
O4—Rb—O7vii | 100.66 (14) | P2—O4—Ybviii | 138.6 (3) |
O1v—Rb—O7vii | 46.25 (13) | P2—O4—Rb | 102.2 (2) |
O11vi—Rb—O7vii | 76.57 (13) | Ybviii—O4—Rb | 111.14 (19) |
O6—Rb—O7vii | 57.20 (13) | P2—O5—Yb | 149.0 (3) |
O2—Rb—O7vii | 92.37 (13) | P2—O5—Rb | 90.6 (2) |
O3—Rb—O7vii | 137.41 (14) | Yb—O5—Rb | 91.97 (16) |
O5—Rb—O7vii | 148.80 (13) | P2—O5—Rbii | 84.9 (2) |
O4—Rb—O9 | 98.07 (14) | Yb—O5—Rbii | 93.09 (16) |
O1v—Rb—O9 | 145.46 (13) | Rb—O5—Rbii | 174.93 (17) |
O11vi—Rb—O9 | 77.95 (13) | P3—O6—Ybiv | 127.4 (3) |
O6—Rb—O9 | 94.50 (13) | P3—O6—Rb | 95.7 (2) |
O2—Rb—O9 | 110.67 (12) | Ybiv—O6—Rb | 136.85 (19) |
O3—Rb—O9 | 70.33 (13) | P1iv—O7—P3 | 130.7 (3) |
O5—Rb—O9 | 51.39 (12) | P1iv—O7—Rbxi | 92.3 (2) |
O7vii—Rb—O9 | 150.34 (12) | P3—O7—Rbxi | 135.0 (2) |
O4—Rb—O12 | 89.65 (13) | P4—O8—Ybvi | 147.0 (3) |
O1v—Rb—O12 | 57.93 (13) | P4—O9—Yb | 129.3 (3) |
O11vi—Rb—O12 | 127.26 (12) | P4—O9—Rb | 105.7 (2) |
O6—Rb—O12 | 95.14 (13) | Yb—O9—Rb | 88.25 (15) |
O2—Rb—O12 | 42.48 (12) | P3xi—O10—P4 | 124.3 (3) |
O3—Rb—O12 | 86.74 (13) | P3i—O11—Yb | 146.7 (3) |
O5—Rb—O12 | 123.37 (12) | P3i—O11—Rbi | 97.3 (2) |
O7vii—Rb—O12 | 50.74 (12) | Yb—O11—Rbi | 115.97 (17) |
O9—Rb—O12 | 152.28 (12) | P2viii—O12—P4xii | 133.6 (3) |
O4—Rb—P3 | 121.61 (10) | P2viii—O12—Rb | 84.9 (2) |
O1v—Rb—P3 | 91.92 (10) | P4xii—O12—Rb | 141.4 (2) |
O11vi—Rb—P3 | 24.90 (10) |
Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) −x+3/2, y+1/2, −z+3/2; (iii) −x+1, −y, −z+1; (iv) −x+1, −y, −z+2; (v) x+1/2, −y−1/2, z+1/2; (vi) x+1/2, −y+1/2, z+1/2; (vii) −x+3/2, y−1/2, −z+5/2; (viii) −x+3/2, y−1/2, −z+3/2; (ix) x−1/2, −y−1/2, z−1/2; (x) x, y+1, z; (xi) −x+3/2, y+1/2, −z+5/2; (xii) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | RbYb(PO3)4 |
Mr | 574.40 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 296 |
a, b, c (Å) | 10.2022 (15), 8.7975 (13), 10.9300 (16) |
β (°) | 106.323 (2) |
V (Å3) | 941.5 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 15.80 |
Crystal size (mm) | 0.10 × 0.07 × 0.04 |
Data collection | |
Diffractometer | Bruker APEXII CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.725, 0.854 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9912, 2676, 2024 |
Rint | 0.143 |
(sin θ/λ)max (Å−1) | 0.706 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.043, 0.078, 1.00 |
No. of reflections | 2676 |
No. of parameters | 163 |
Δρmax, Δρmin (e Å−3) | 2.95, −2.99 |
Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).
Extensive studies on structures and properties of condensed rare earth phosphates have been carried out in the past owing to their potential application in the optics domain (Miyazawa et al., 1979; Malinowski et al., 1989). Furthermore, their chemical and thermal stability ensures the feasibility of possible applications. Numerous rare-earth phosphates with ytterbium, such as YbP3O9 (Hong, 1974), CsYbP2O7 (Jansen et al., 1991), and K2CsYb(PO4)2 (Rghioui et al., 2002) have been synthesized and structurally determined. However, the literature shows that in the polyphosphate family with general formula MRE(PO3)4 (M = monovalent cation, RE = rare earth cation), only a few examples with ytterbium are known [LiYb(PO3)4 (Fang et al., 2008)]. The reason for this situation is probably the difficulty in obtaining crystals of high quality. Accordingly, our research group is paying attention to the preparation of new polyphosphates MYb(PO3)4. We successfully grew single crystals of rubidium ytterbium polyphosphate, RbYb(PO3)4, the structure of which is reported here.
The crystal structure of RbYb(PO3)4 is shown in Figs. 1 and 2. It is isostructural with CsEu(PO3)4 (Zhu et al., 2009) and belongs to type IV of the MRE(PO3)4 (M = alkali metal and RE = rare earth) family of compounds. The structure can be described as a three-dimensional framework made up from polyphosphate double spiral chains extending parallel to [101] and YbO8 polyhedra. The Rb+ cations are located in infinite tunnels along [100] delimited by the three-dimensional framework. As illustrated in Fig. 3, the P atom is four-coordinated, and four crystallographically distinct PO4 tetrahedra form the (PO3)∞- double spiral chains by corner-sharing. The P–O bond lengths and O—P—O bond angles show normal values for catena-polyphosphates. There are eight PO4 tetrahedra in the repeating unit of the double spiral chain. The YbIII cation is eight-coordinated in form of a distorted polyhedron with Y—O bond lengths ranging from 2.253 (5) to 2.412 (5) Å, which are consistent with those reported previously (Fang et al., 2008). The shortest Yb···Yb contact is 6.3540 (8) Å. The Rb+ cation are located in the intersecting channels and are surrounded by eleven O atoms, with Rb—O bond lengths in the range of 2.915 (5)–3.504 (5) Å. Neighboring two RbO11 polyhedra are connected by corner-sharing.