Download citation
Download citation
link to html
The crystal structure of the co-crystal of aqua­tri­fluorido­boron with two ethyl­ene carbonate (systematic name: 1,3-dioxolan-2-one) mol­ecules, BF3H2O·2OC(OCH2)2, was determined by low-temperature single-crystal X-ray diffraction. The co-crystal crystallizes in the ortho­rhom­bic space group P212121 with four formula units per unit cell. The asymmetric unit consists of an aqua­tri­fluorido­boron mol­ecule and two ethyl­ene carbonate mol­ecules, connected by O—H...O=C hydrogen bonds. This crystal structure is an inter­esting example of a superacidic BF3H2O species co-crystallized with an organic carbonate.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2414314623000627/wm4182sup1.cif
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2414314623000627/wm4182Isup2.hkl
Contains datablock I

CCDC reference: 2237804

Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2022); cell refinement: CrysAlis PRO (Rigaku OD, 2022); data reduction: CrysAlis PRO (Rigaku OD, 2022); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: Olex2 (Dolomanov et al., 2009), DIAMOND (Brandenburg, 2005); software used to prepare material for publication: publCIF (Westrip, 2010).

Aquatrifluoridoboron–1,3-dioxolan-2-one (1/2) top
Crystal data top
2C3H4O3·H2BF3ODx = 1.701 Mg m3
Mr = 261.95Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121Cell parameters from 24984 reflections
a = 5.44197 (4) Åθ = 4.6–75.5°
b = 13.09134 (8) ŵ = 1.65 mm1
c = 14.36102 (9) ÅT = 150 K
V = 1023.12 (1) Å3Plate, clear colourless
Z = 40.18 × 0.08 × 0.05 mm
F(000) = 536
Data collection top
XtaLAB Synergy, Dualflex, Eiger2 R CdTe 1M
diffractometer
2134 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source2100 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.038
Detector resolution: 13.3333 pixels mm-1θmax = 76.1°, θmin = 4.6°
ω scansh = 66
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2022)
k = 1516
Tmin = 0.663, Tmax = 1.000l = 1818
34542 measured reflections
Refinement top
Refinement on F2All H-atom parameters refined
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0311P)2 + 0.1146P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.019(Δ/σ)max < 0.001
wR(F2) = 0.050Δρmax = 0.11 e Å3
S = 1.04Δρmin = 0.13 e Å3
2134 reflectionsExtinction correction: SHELXL (Sheldrick, 2015b), Fc* = kFc[1+0.001xFc2λ3/sin(2θ)]–1/4
195 parametersExtinction coefficient: 0.0035 (5)
0 restraintsAbsolute structure: Flack x determined using 853 quotients [(I+)–(I)]/[(I+)+(I)] (Parsons et al., 2013)
Primary atom site location: dualAbsolute structure parameter: 0.05 (3)
Hydrogen site location: difference Fourier map
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.05387 (16)0.46158 (7)0.69151 (6)0.0345 (2)
F20.31541 (19)0.57475 (6)0.75716 (6)0.0347 (2)
F30.35784 (17)0.40399 (6)0.78723 (6)0.0320 (2)
O10.4683 (2)0.46651 (8)0.64281 (7)0.0283 (2)
H1A0.518 (5)0.404 (2)0.6252 (19)0.071 (8)*
H1B0.432 (5)0.5005 (19)0.5968 (17)0.052 (6)*
O20.6234 (2)0.29312 (8)0.58425 (7)0.0312 (2)
O30.29867 (18)0.19871 (7)0.62526 (7)0.0266 (2)
O40.59130 (18)0.13169 (7)0.53775 (7)0.0255 (2)
C10.5104 (2)0.21312 (10)0.58256 (9)0.0232 (3)
C20.2189 (3)0.09379 (11)0.61128 (10)0.0267 (3)
H2A0.062 (4)0.0949 (14)0.5867 (13)0.033 (5)*
H2B0.220 (3)0.0629 (13)0.6729 (12)0.025 (4)*
C30.4125 (3)0.04997 (10)0.54606 (10)0.0249 (3)
H3A0.349 (4)0.0354 (14)0.4844 (13)0.031 (4)*
H3B0.497 (4)0.0097 (15)0.5697 (12)0.030 (5)*
B10.2884 (3)0.47702 (12)0.72354 (11)0.0252 (3)
O50.3601 (2)0.59963 (8)0.51501 (8)0.0359 (3)
O60.60783 (19)0.63618 (7)0.39559 (7)0.0280 (2)
O70.31353 (19)0.74337 (7)0.43534 (6)0.0266 (2)
C40.4246 (3)0.65572 (10)0.45246 (9)0.0240 (3)
C50.6409 (3)0.72193 (11)0.33235 (10)0.0305 (3)
H5B0.793 (4)0.7521 (16)0.3486 (14)0.040 (5)*
H5A0.649 (4)0.6923 (14)0.2694 (14)0.038 (5)*
C60.4207 (3)0.78959 (11)0.35281 (10)0.0291 (3)
H6B0.470 (3)0.8616 (15)0.3687 (13)0.032 (4)*
H6A0.296 (4)0.7853 (15)0.3028 (14)0.040 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0260 (4)0.0419 (5)0.0356 (4)0.0012 (4)0.0027 (3)0.0046 (4)
F20.0475 (5)0.0265 (4)0.0300 (4)0.0037 (4)0.0046 (4)0.0043 (3)
F30.0379 (5)0.0309 (4)0.0273 (4)0.0026 (4)0.0013 (4)0.0085 (3)
O10.0324 (5)0.0254 (5)0.0271 (5)0.0034 (4)0.0049 (4)0.0046 (4)
O20.0325 (5)0.0237 (4)0.0373 (5)0.0033 (4)0.0051 (5)0.0004 (4)
O30.0256 (5)0.0243 (4)0.0299 (5)0.0006 (4)0.0066 (4)0.0026 (4)
O40.0236 (5)0.0243 (4)0.0285 (5)0.0008 (4)0.0043 (4)0.0025 (4)
C10.0240 (6)0.0236 (6)0.0220 (6)0.0025 (5)0.0007 (5)0.0016 (5)
C20.0243 (7)0.0258 (6)0.0300 (7)0.0032 (5)0.0023 (6)0.0027 (5)
C30.0236 (6)0.0234 (6)0.0275 (6)0.0009 (5)0.0003 (5)0.0010 (5)
B10.0282 (8)0.0253 (7)0.0220 (7)0.0020 (6)0.0007 (6)0.0015 (5)
O50.0459 (6)0.0315 (5)0.0303 (5)0.0073 (5)0.0016 (5)0.0098 (4)
O60.0299 (5)0.0225 (4)0.0314 (5)0.0031 (4)0.0017 (4)0.0006 (4)
O70.0303 (5)0.0240 (4)0.0255 (4)0.0035 (4)0.0055 (4)0.0024 (4)
C40.0278 (7)0.0212 (6)0.0229 (6)0.0023 (5)0.0024 (5)0.0002 (5)
C50.0343 (8)0.0271 (7)0.0302 (7)0.0041 (6)0.0083 (6)0.0000 (6)
C60.0355 (8)0.0244 (7)0.0273 (6)0.0000 (6)0.0034 (6)0.0069 (5)
Geometric parameters (Å, º) top
F1—B11.3718 (18)C2—C31.522 (2)
F2—B11.3753 (17)C3—H3A0.969 (19)
F3—B11.3760 (17)C3—H3B0.97 (2)
O1—H1A0.90 (3)O5—C41.2122 (17)
O1—H1B0.82 (3)O6—C41.3139 (18)
O1—B11.5236 (18)O6—C51.4550 (17)
O2—C11.2147 (17)O7—C41.3200 (16)
O3—C11.3187 (16)O7—C61.4530 (17)
O3—C21.4545 (16)C5—H5B0.95 (2)
O4—C11.3208 (16)C5—H5A0.98 (2)
O4—C31.4512 (17)C5—C61.519 (2)
C2—H2A0.92 (2)C6—H6B1.01 (2)
C2—H2B0.972 (18)C6—H6A0.99 (2)
H1A—O1—H1B110 (2)F1—B1—O1109.23 (11)
B1—O1—H1A119.4 (18)F2—B1—F3112.57 (12)
B1—O1—H1B114.2 (17)F2—B1—O1106.41 (12)
C1—O3—C2109.38 (10)F3—B1—O1105.47 (11)
C1—O4—C3109.35 (10)C4—O6—C5109.37 (11)
O2—C1—O3123.81 (12)C4—O7—C6109.27 (11)
O2—C1—O4122.46 (12)O5—C4—O6124.23 (13)
O3—C1—O4113.73 (12)O5—C4—O7122.13 (14)
O3—C2—H2A108.3 (12)O6—C4—O7113.64 (11)
O3—C2—H2B105.4 (10)O6—C5—H5B106.1 (13)
O3—C2—C3103.55 (11)O6—C5—H5A105.9 (11)
H2A—C2—H2B110.9 (16)O6—C5—C6103.38 (11)
C3—C2—H2A114.2 (12)H5B—C5—H5A110.5 (17)
C3—C2—H2B113.6 (11)C6—C5—H5B113.6 (13)
O4—C3—C2103.71 (11)C6—C5—H5A116.3 (12)
O4—C3—H3A108.0 (11)O7—C6—C5103.40 (11)
O4—C3—H3B107.7 (11)O7—C6—H6B108.2 (11)
C2—C3—H3A112.9 (12)O7—C6—H6A107.1 (12)
C2—C3—H3B114.7 (11)C5—C6—H6B112.2 (11)
H3A—C3—H3B109.3 (16)C5—C6—H6A111.6 (11)
F1—B1—F2110.75 (12)H6B—C6—H6A113.6 (15)
F1—B1—F3112.08 (13)
O3—C2—C3—O45.22 (14)O6—C5—C6—O79.38 (14)
C1—O3—C2—C34.14 (14)C4—O6—C5—C67.83 (15)
C1—O4—C3—C24.81 (14)C4—O7—C6—C58.29 (15)
C2—O3—C1—O2178.23 (13)C5—O6—C4—O5177.25 (14)
C2—O3—C1—O41.26 (15)C5—O6—C4—O72.92 (16)
C3—O4—C1—O2178.06 (13)C6—O7—C4—O5176.09 (13)
C3—O4—C1—O32.44 (15)C6—O7—C4—O63.74 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O20.90 (3)1.67 (3)2.5637 (15)175 (3)
O1—H1B···O50.82 (3)1.79 (3)2.5985 (15)166 (2)
C3—H3B···F3i0.97 (2)2.474 (19)3.3085 (16)144.2 (14)
C6—H6B···F1ii1.01 (2)2.51 (2)3.3974 (17)146.4 (14)
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1/2, y+3/2, z+1.
 

Follow IUCrData
Sign up for e-alerts
Follow IUCrData on Twitter
Follow us on facebook
Sign up for RSS feeds